
Catalyzing green total factor
productivity through digital
innovation: mechanisms,
evidence, and policy implications
from urban China

Lu Yao1* and Cheng Lu2

1School of Economics andManagement, Taiyuan Normal University, Jinzhong, China, 2College of Optics
and Electronic Technology, China Jiliang University, Hangzhou, China

Introduction: Digital technological innovation has emerged as a crucial catalyst
in balancing economic growthwith environmental sustainability. In the context of
high-quality development, understanding how digital innovation contributes to
green total factor productivity (GTFP) is of growing importance, particularly amid
global efforts toward decarbonization and industrial transformation.

Methods: This study investigates the impact and underlying mechanisms of
digital technological innovation on green total factor productivity (GTFP) by
constructing a panel dataset comprising 278 Chinese prefecture-level cities
from 2007 to 2022. To examine both the direct and indirect effects, the
analysis applies a range of econometric methods, including fixed effects
models, mediation models, and instrumental variable estimation. Robustness
of the results is verified through alternative specifications, exclusion of outliers,
lagged variables, and policy-based instruments.

Results: The empirical findings demonstrate that digital technological innovation
exerts a significant positive impact on GTFP, with each one-unit increase in the
digital innovation index leading to an estimated 0.8% improvement in carbon
emission efficiency. Further mediation analysis suggests that this enhancement in
GTFP is primarily driven by two interrelated mechanisms: the intensification of
green technological innovation activities and the advancement of industrial
structure toward more sustainable configurations. Additionally, heterogeneity
analysis reveals that the strength and direction of this relationship vary notably
across cities, depending on their specific resource endowments, the strength of
intellectual property protection, and the extent of engagement in green policy
pilot initiatives.

Discussion: These findings underscore the importance of integrating digital and
green development pathways. To fully harness the potential of digital innovation
for promoting green productivity, policymakers should foster a collaborative
digital-green innovation ecosystem, improve institutional support for green
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technology diffusion, and coordinate industrial policies that jointly advance
digitalization and environmental goals. City-specific strategies should leverage
local strengths to facilitate the emergence of new digital-green industries.

KEYWORDS

digital technological innovation, green total factor productivity, green technological
innovation, industrial structure upgrading, digtial economy

1 Introduction

China is currently the world’s largest carbon emitter, accounting
for approximately 30% of global carbon emissions. Although the share
of coal consumption in China’s energy mix fell below 55% in 2023,
fossil fuels remain the primary source of energy in the short term.
Against the backdrop of intensifying climate change and mounting
resource constraints, fostering the synergistic development of
economic growth and environmental quality has become a global
consensus (Wu et al., 2022). The United Nations’ 2030 Sustainable
Development Goals explicitly call for a clean energy transition and
sustainable industrialization, underscoring the unsustainability of
traditional, extensive growth models. In response to global
environmental challenges, countries have adopted diverse strategies
tailored to their national circumstances and developmental stages. For
instance, the European Union pledged to achieve carbon neutrality by
2050 in the 2019 European Green Deal; China committed at the 75th
session of the United Nations General Assembly in 2020 to peak
carbon emissions before 2030 and strive for carbon neutrality by 2060;
and the United States allocated USD 369 billion to support clean
energy through the Inflation Reduction Act of 2022. Within this
context, Green Total Factor Productivity (GTFP) has emerged as a
pivotal metric for assessing the quality of economic growth and
ecological efficiency. By incorporating undesirable outputs (e.g.,
carbon emissions, wastewater discharge) and energy consumption
(Wang et al., 2021), GTFP captures the green premium of economic
growth, enabling the decoupling of economic development from
environmental degradation.

Currently, digital technologies (e.g., artificial intelligence, big
data, and the Internet of Things) are rapidly permeating all sectors of
the economy and society, reshaping production functions and the
logic of resource allocation (Wang et al., 2025a; Wang et al., 2025b).
Digital technological innovation refers to a systemic innovation
process centered on digital technologies that enhances economic
and social efficiency, optimizes structural configurations, and
promotes sustainable development through technological research
and development (R&D), product and service innovation, and
business model transformation. Digital innovation contributes to
green transformation not only by improving efficiency but also by
redefining sustainable development paradigms through innovative
models (Li et al., 2025). The “14th Five-Year Plan for Digital
Economy Development” explicitly advocates digitalization as a
driver of greening. A recent World Bank report suggests that
digital technologies could contribute 15%–20% of the global
carbon reduction target. China’s digital innovation has evolved
from a stage of technological catch-up to parallel development
and even global leadership in specific domains. As both the
largest carbon emitter and a leading digital economy, China
offers a unique case for examining the role of digital

technological innovation in enhancing GTFP. Exploring the
nexus between digital innovation and GTFP is not only a
theoretical imperative for addressing the climate crisis and
achieving sustainable development, but also a practical urgency
for securing technological leadership and mitigating systemic
risks. The synergy between the two is poised to reshape the logic
of economic growth, shifting from high-carbon development toward
a model of digitally driven green prosperity.

Building upon the preceding discussion, it is imperative to further
investigate the relationship between digital technological innovation
and green total factor productivity, given their intrinsic linkage.
Specifically, does digital innovation have a significant influence on
GTFP? Through which transmission mechanisms does this influence
occur? Moreover, how does the impact of digital technological
innovation on GTFP vary across cities with different resource
endowments, levels of intellectual property protection, and policy
pilot designations? To address these questions, this study employs
panel data from 278 prefecture-level cities in China spanning the
period from 2007 to 2022, and constructs a series of econometric
models to empirically examine both the effects and the underlying
mechanisms through which digital technological innovation
influences GTFP. By answering these questions, the study aims to
inform the formulation of differentiated “digital + green”
development policies at the governmental level, support enterprises
in reducing environmental compliance costs through digital
transformation, and offer practical insights for cities seeking to
achieve green growth via technological upgrading.

The main contributions of this study are threefold. First, it
enriches the literature on the determinants of GTFP by introducing
digital technological innovation as a key explanatory variable and
establishing an integrated “technology–economy–environment”
analytical framework. Second, it advances the theoretical
understanding of the synergistic evolution of the digital and
green economies by exploring how digital innovation stimulates
GTFP through channels such as green technological progress and
industrial structure upgrading, thereby contributing to the emerging
theory of dual spiral dynamics between digitalization and greening.
Third, the study empirically verifies the effect and mechanism of
digital technological innovation on GTFP and conducts
heterogeneity analyses based on resource endowments,
intellectual property protection levels, and policy pilot city status,
offering robust empirical support for the role of digital innovation in
fostering green economic transformation.

2 Related work

Recent years have witnessed a surge in scholarly interest in
understanding how digital technological innovation influences
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green development outcomes, particularly in relation to GTFP. As
an essential indicator of sustainable economic transformation, the
GTFP has drawn increasing attention in discussions on ecological
modernization and the integration of the digital economy. Against
this backdrop, the existing body of literature can be broadly
categorized into two main strands: studies focusing on digital
technological innovation and those examining the driving
factors of GTFP.

Research on digital technological innovation has primarily
focused on several key areas. First, in terms of the concept of
digital technological innovation, some scholars view it as a
dynamic process aimed at reconfiguring existing digital elements
or creating new digital technologies, leading to the development of
new products and services (Yoo et al., 2010; George et al., 2021).
Other scholars, however, consider digital technological innovation
as an outcome, where companies introduce digital technologies to
create new products, services, and business models, ultimately
resulting in value addition (Hinings et al., 2018). Second,
regarding the relationship between digital technologies and the
green economy, some studies suggest that digital technologies
promote industrial upgrading, optimize resource allocation, and
strengthen environmental regulations, which in turn enhance green
technological innovation capacity (Fan et al., 2023; Zhao and Qian,
2024), reduce carbon emission intensity (Liu et al., 2023; Shen and
Zhang, 2024; Huang et al., 2024), and mitigate air pollution (Shen
et al., 2024), thus contributing to the sustainable development of the
green economy (Yang et al., 2023). However, other studies argue that
the rapid development of digital technologies may exacerbate energy
consumption, thereby increasing carbon emissions (Chen et al.,
2024). Additionally, digital technologies may have spatial spillover
effects, reducing carbon emissions in neighboring cities (Liu et al.,
2022; Wang H. et al., 2023). Third, in terms of the environmental
governance effects of digital technological innovation, much
research has focused on the relationship between digital
innovation and carbon emissions, with inconsistent results still
being reported. Some scholars argue that digital innovation
enables companies to acquire more tacit knowledge, reduce R&D
costs, and increase their willingness to engage in technological
innovation (Ge et al., 2023). Furthermore, digital technologies
can overcome geographical and temporal barriers (Wanof, 2023),
accelerate the dissemination of digital knowledge, and improve
energy efficiency (Ma and Lin, 2025), thereby reducing carbon
emission intensity (Wang X. et al., 2023; Pu et al., 2025).
Additionally, some studies propose that the relationship between
digital innovation and carbon emissions is nonlinear. One group of
studies suggests a U-shaped nonlinear relationship, asserting that
digital innovation has a more significant impact on improving
carbon emission efficiency than traditional technological
innovations (Li and Yue, 2024). Other studies argue for an
inverted U-shaped nonlinear relationship, noting that the
relationship between digital innovation and carbon emissions
varies with the level of technological innovation and economic
development (Chen et al., 2022; Li et al., 2024).

Another major strand of literature focuses on the determinants
of GTFP. As an extension of traditional total factor productivity,
GTFP incorporates environmental constraints and pollution factors
into the productivity framework, providing a more accurate
assessment of sustainable economic development and serving as

an essential indicator for evaluating the transition toward green and
high-quality growth. Existing studies have explored the driving
forces of GTFP from multiple perspectives. At the macro level,
scholars have emphasized the role of green technological innovation,
green finance, and the digital economy in reducing information
asymmetries and improving resource allocation efficiency,
ultimately enhancing regional GTFP (Fan et al., 2022; Lee and
Lee, 2022; Lyu et al., 2023). From a microeconomic perspective,
research has shown that firms’ digital transformation and
government subsidies can alleviate financing constraints and
improve production efficiency, thereby contributing to
improvements in firm-level green productivity (Wang J. et al.,
2023; Qian and Zhou, 2024). In addition, from a policy
perspective, various public initiatives (e.g., smart city pilot
programs, clean air actions, and low-carbon city policies) have
been found to stimulate technological upgrading, foster
innovation, and optimize industrial structures, all of which are
conducive to enhancing GTFP (Wang et al., 2022; Zhou et al.,
2024; Liu et al., 2024).

In summary, existing literature primarily focuses on the
definition of digital technological innovation, the relationship
between digital technologies and the green economy, the
environmental governance effects of digital technological
innovation, and the factors driving GTFP at the macro, micro,
and policy levels. These studies provide theoretical support and
empirical foundations for exploring the relationship between digital
technological innovation and GTFP. However, gaps remain in this
area: Firstly, most studies focus on the impact of digital technological
innovation on carbon emissions, treating carbon reduction and
green economy development as separate entities. This paper
adopts a holistic approach, considering both economic growth
and environmental quality, to examine the green economic
effects of digital technological innovation. Secondly, while most
research focuses on the effects of digital technologies on the green
economy, few studies address digital technological innovation from
the perspective of patent elements to explore its green economic
effects. This study investigates the environmental economic benefits
of digital technologies from a patent perspective. Thirdly, there is a
lack of research exploring the mechanisms through which digital
technological innovation influences GTFP. We systematically
examine the impact mechanisms of digital technological
innovation on GTFP, integrating green technological innovation
and industrial upgrading into the analysis framework, thus
providing new insights into the black box of how digital
technological innovation affects GTFP.

3 Theoretical analysis and research
hypotheses

3.1 Direct impact of digital technological
innovation on green total factor productivity

Digital technological innovation can directly enhance GTFP
through several mechanisms. First, it promotes efficiency
improvement. On the one hand, digital innovation facilitates the
restructuring of smart manufacturing systems. The integration of
industrial internet platforms enables real-time monitoring of energy
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consumption throughout production processes, thereby increasing
efficiency and reducing energy use on the production line. On the
other hand, digital technologies also support the transformation of
intelligent energy systems by enhancing monitoring and
optimization capabilities in energy generation, making
production more flexible and efficient while curbing energy
consumption. Second, digital innovation enables business model
innovation. The rise of the sharing economy—supported by Internet
of Things (IoT) and 5G-enabled shared manufacturing
platforms—enhances equipment utilization and fosters the
transition to greener business models. Moreover, digital
technologies support the development of circular economies by
improving material recovery rates, establishing closed-loop
recycling systems, and reducing raw material consumption.
Third, it facilitates data factor reconstruction. Digital innovation
enables the integration of urban data resources and the efficient flow
of data among firms, governments, and the public, thus breaking
data monopolies and optimizing urban governance. At the same
time, it promotes the construction of data governance frameworks
that address issues such as data security and privacy, leading to
innovation in urban governance models and facilitating the
transition to green urban economies. Fourth, digital innovation
drives governance upgrades. It strengthens government digital
oversight by establishing continuous environmental monitoring
networks, which in turn compel firms to reduce emissions and
improve their green productivity. Furthermore, the development of
digital infrastructure for carbon markets, including tamper-proof
carbon accounts and automatically executed smart contracts for
emissions trading, enhances urban management efficiency and
contributes to improvements in green productivity. Based on this,
we propose the following research hypothesis.

H1: Digital technological innovation significantly promotes green
total factor productivity.

3.2 Mechanisms of digital technological
Innovation’s impact on GTFP

3.2.1 Green innovation mechanism
Digital innovation contributes to the enhancement of green

innovation capabilities by unlocking digital dividends. First, it
provides firms with accurate tools for resource and cost
management, allowing for precise tracking of green innovation
investments and returns. Through real-time environmental data
collection, AI algorithms can analyze pollution sources, energy
consumption distribution, and other key metrics, providing
targeted insights for green technology research and development.
It reduces resource waste and production costs, thereby encouraging
firms to engage in green technological innovation. Second, unlike
traditional innovation, digital innovation overcomes geographical
and temporal constraints, possesses strong spillover effects and
information retrieval capabilities, and enables the aggregation and
sharing of fragmented knowledge on green innovation. Such
capabilities break down traditional barriers and limitations,
fostering collaboration and coordinated responses among firms
and advancing their green innovation capabilities (Luo et al.,
2023). Third, digital technology innovation is highly versatile,

allowing it to blur the boundaries of economic activities across
different firms and industries. It can transcend traditional industry
barriers, enabling cross-domain collaboration in data, equipment,
and supply chains, promoting the recombination of production
factors, fostering the emergence of green business models, and
advancing the intelligent transformation of the economy.

Additionally, green innovation serves as a crucial pathway for
achieving sustainable development while fostering economic
growth. On the one hand, companies can enhance their energy
efficiency through green processes and technologies, thereby
significantly reducing energy consumption per unit of output,
minimizing resource waste, and mitigating the negative
environmental impacts associated with traditional production
methods. It helps lower the costs of environmental governance
and boosts regional GTFP (Hao et al., 2023). On the other hand,
green innovation products can influence consumer preferences.
Through differentiated design and functionality, they gradually
change consumer behavior, guiding consumers toward more
sustainable consumption patterns and increasing public
environmental awareness (Zhang et al., 2018). Consumer
preference for green products can create a favorable competitive
environment for businesses, forming a market-driven selection
mechanism. It encourages firms to improve their technologies
and reduce emissions to remain competitive, fostering a
“demand-driven supply” cycle that improves production
efficiency and reduces pollution emissions. Based on this, we
propose the following research hypothesis.

H2: Digital technological innovation can enhance green innovation
capabilities, which in turn contributes to the improvement of GTFP.

3.2.2 Industrial structure upgrading mechanism
Digital technological innovation has the potential to unlock the

digital dividend and drive industrial structural upgrading. First,
digital technological innovation is highly permeative and deeply
integrated into traditional production and management processes.
Technologies such as the IoT, big data, and artificial intelligence (AI)
optimize traditional production workflows, enabling disruptive
innovations in traditional industries and transforming the
original industrial division of labor. As specialization and
division of labor within industries increase, the production
segments of traditional industries gradually shift towards service-
oriented functions. Correspondingly, the secondary sector exhibits a
trend of transitioning towards the tertiary sector, leading to an
economy characterized by “servicification” and, ultimately,
industrial structural upgrading. Second, with the development of
digital technological innovation, companies, pressured by
competition, must adopt technologies such as cloud computing,
AI, and IoT to optimize production processes and improve
efficiency. In turn, it fosters the emergence of new technological
service industries. Traditional manufacturing industries are
transforming into a “manufacturing + services” model (e.g.,
industrial internet platforms), giving rise to high-value-added
services such as technical consulting and data analysis. As a
result, the share of the tertiary sector continues to grow.
Additionally, traditional service industries are undergoing digital
upgrades and, through deep integration with technological services,
are forming synergistic effects. These industries are rapidly
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becoming a driving force within the broader industrial structure,
contributing significantly to the overall upgrading of the economy.
Third, the application of digital technologies can break down
information and resource barriers between firms (Niu et al.,
2023). Technologies such as blockchain and cloud computing
enable real-time cross-enterprise data sharing, eliminating
information silos. This promotes the interconnectedness of
information, knowledge, and resources across the entire
industrial chain, effectively reducing information, knowledge, and
resource biases. Furthermore, through the use of electronic contracts
and smart contracts, automated transaction processes are realized,
shortening settlement cycles, reducing manual verification costs,
and lowering transaction fees. These innovations enhance
communication and coordination efficiency across the industrial
chain, collectively driving the optimization and upgrading of the
entire industrial structure.

In addition, the transfer of production factors (e.g., capital,
labor, and technology) from high-energy-consuming, low-
efficiency traditional industries (e.g., steel and chemicals) to low-
energy-consuming, high-value-added emerging industries (e.g.,
renewable energy and advanced manufacturing) leads to a more
efficient industrial structure. The shift fosters the substitution of
high-energy-consuming industries with high-value-added ones.
Through digitalization, intelligent technologies, and green
processes, emerging industries are reducing energy intensity,
gradually replacing traditional industries that are high-pollution
and high-carbon-emission. It promotes the low-carbon
transformation of the economy and significantly reduces energy
consumption per unit of GDP, enhancing both production and
environmental efficiency, thereby driving the improvement of GTFP
(Lin et al., 2024). Furthermore, industrial structure upgrading is

often accompanied by technological progress, and the
dissemination, diffusion, and transfer of technology help enhance
the green production efficiency of firms, further promoting regional
GTFP. Based on the above, we propose the following research
hypothesis.

H3: Digital technological innovation can promote industrial
structure upgrading, which in turn contributes to the
improvement of GTFP.

Based on the above hypotheses, this study constructs the
theoretical framework as illustrated in Figure 1.

4 Data and model description

4.1 Model design

4.1.1 Baseline regression model
To comprehensively examine the relationship between digital

technological innovation and green total factor productivity, we
construct the following fixed effects model to estimate the impact of
digital innovation on GTFP, as specified in Equation 1.

GTFPi,t � β0 + β1 × DTIi,t + θ1 × Xi,t + εi,t (1)
where GTFPi,t denotes green total factor productivity in city i
and year t,DTIi,t represents digital technological innovation, Xi,t

is a vector of control variables, and εi,t is the random error term.
The coefficients β0, β1, and θ1 represent the intercept, the
coefficient of interest (i.e., the effect of digital innovation on
GTFP), and the vector of coefficients for the control variables,
respectively.

FIGURE 1
Theoretical framework for examining the impact of digital technological innovation on green total factor productivity.
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4.1.2 Transmission path model
To test the mechanisms through which digital technological

innovation affects GTFP (e.g., green innovation capacity and
industrial structure upgrading), we establish the following
mediation models in conjunction with the baseline regression, as
specified in Equations 2, 3.

Mi,t � α0 + α1 × DTIi,t + θ2 × Xi,t + εi,t (2)
GTFPi,t � γ0 + γ1 × DTIi,t + γ2 × Mi,t + θ3 × Xi,t + εi,t (3)

where, Mi,t denotes the mediator variable (e.g., green innovation
capacity or industrial structure upgrading). The coefficient α1
captures the effect of digital innovation on the mediator, while γ1
and γ2 indicate the direct and indirect (mediated) effects of digital
innovation on GTFP.

4.2 Variable descriptions

4.2.1 Dependent Variable
Green Total Factor Productivity (GTFP) is calculated using a

super-efficiency Slack-Based Measure (SBM) model with
undesirable outputs, combined with the Global Malmquist
Luenberger (GML) index. The SBM model is an enhanced
version of data envelopment analysis that simultaneously
accounts for slack variables in both inputs and outputs, while
incorporating both ideal and non-ideal outputs. GTFP
emphasizes the inclusion of environmental costs in economic
growth, treating pollution as an undesirable output and directly
incorporating it into the efficiency evaluation framework. Compared
to the Stochastic Frontier Analysis (SFA) model, the SBM model
enables the inclusion of both expected and undesirable outputs,
facilitating multi-objective optimization to calculate efficiency losses
directly. It mitigates the bias that might arise if negative factors, such
as pollution emissions, are ignored, which is often a limitation in
SFA models that must use dummy variables or modify model
structures to indirectly address undesirable outputs, potentially
introducing estimation errors or bias in assumptions. Therefore,
the SBMmodel, which accommodates undesirable outputs, provides
a more comprehensive and precise measurement of GTFP. By
incorporating the Malmquist index or a time-series analysis
framework, the GML-SBM model decomposes changes in GTFP
into two components: technological progress and efficiency change
effects, quantifying the dynamic evolution of environmental
efficiency over time. The GML index is a green productivity
index, which can be further decomposed into the Green
Efficiency Change (GEC) and Green Technical Change (GTC)
indices. The measurement criterion for all three indices is
whether they exceed 1. When all three indices are greater than 1,
it indicates an improvement in green productivity, technological
efficiency, and progress. Conversely, when all indices are less than 1,
it suggests a decline in these areas.

The calculation process of the undesirable output super-
efficiency SBM model combined with the GML index requires
input (e.g., labor, capital, and energy), expected outputs, and
undesirable output indicators. Labor input is represented by the
number of employed persons in each city, capital input is
represented by the fixed capital stock in each city, and the total
electricity consumption of each city represents energy input. The

actual GDP of each city measures expected output, while undesirable
output is measured by industrial SO2 emissions, smoke (dust)
emissions, and wastewater discharges. Additionally, fixed capital
stock is calculated using the perpetual inventory method, with
2007 as the base year.

4.2.2 Core independent variable
Digital Technological Innovation (DTI). This study measures

digital technological innovation at the prefecture-level city level
using the number of authorized digital technology patents. Patent
authorizations reflect the efficiency of technological output, with a
higher number indicating greater regional activity in digital
technology research, application, and intellectual property
protection. The specific measurement process is as follows: (1)
Based on the Classification System of Key Digital Technology
Patents, relevant International Patent Classification codes are
used to extract digital patent data from the China National
Intellectual Property Administration database; (2) Patent
publication numbers filter the dataset to retain only authorized
digital technology patents; (3) Authorized patent counts are
aggregated annually for each city based on the geographic
location of the patents; (4) The total number of authorized
patents is incremented by one and then log-transformed to serve
as a proxy indicator for each city’s digital technological innovation
capability.

4.2.3 Mediating variables
Green Innovation Capacity (GIC). Patents serve as a key carrier

of knowledge and a direct output of innovation activities. Green
patents encompass a diverse range of domains, including renewable
energy, pollution control, and the circular economy. Thus, the
number of green patent applications can comprehensively reflect
a city’s green technology portfolio and industrial diversification
rather than merely representing a single technological
breakthrough. Moreover, green patent application data sourced
from official or authoritative databases offer an objective and
quantifiable measure of innovation input in environmental
protection, clean energy, and energy conservation. It helps reduce
subjectivity and allows for consistent cross-city comparisons.
Accordingly, this study uses the number of green patent
applications, incremented by one and log-transformed, as a proxy
for green innovation capability.

Industrial Structure Upgrading (ISU). An increase in the share
of the tertiary industry often signifies progress in industrial structure
optimization and upgrading. Therefore, this study uses the ratio of
tertiary industry output to secondary industry output as a proxy for
industrial structure upgrading. A higher ratio indicates a growing
share of services in the economic structure, reflecting a shift toward
high-value-added and technology-intensive sectors.

4.2.4 Control variables
The control variables included in this study are as follows:
Financial Development Level (FDL). Measured by the ratio of

year-end financial deposits and loans to GDP for each city. On one
hand, a more developed financial sector can ease financing
constraints for green and low-carbon projects, thereby supporting
green economic development. On the other hand, increased
financial activity may also channel capital into high-pollution,
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energy-intensive industries, thereby hindering the growth of green
initiatives.

Infrastructure Development Level (IDL). Proxied by per capita
urban road area. While improved infrastructure can enhance the
synergy between economic growth and environmental quality, it
may also rely heavily on energy-intensive and polluting industries,
potentially stimulating demand in those sectors and undermining
green development.

Government Intervention Degree (GID). Measured by the ratio of
government fiscal expenditure to GDP. A higher degree of
government intervention can direct resources toward clean energy
and circular economy sectors, thereby promoting green development.
However, excessive intervention may create path dependence among
firms and weaken their capacity for independent innovation, which
could be detrimental to green development.

Urbanization Level (UL). Proxied by the logarithm of population
density in each city. Urbanization can enhance resource allocation
efficiency by concentrating population and industries, thereby
reducing energy consumption and emissions per unit of output.
However, rapid urban expansion also increases demand for
construction materials and energy, exacerbating resource scarcity
and potentially impeding green development.

4.3 Data sources

This study examines data from 278 prefecture-level cities in China
for the period 2007–2022. The selection of this time window is based on
several factors. First, regarding key time points, the year 2007 marks the
onset of the global financial crisis, which prompted countries worldwide
to adopt technological innovation as a strategy for economic recovery.
During this period, China launched the “Digital China” strategy, and
digital technologies entered a phase of accelerated development. From
2020 to 2022, the global spread of the COVID-19 pandemic triggered a
surge in demand for digital transformation, with remote work and green
energy technologies becoming focal points. This period allows us to
observe both the short-term shocks and long-term adaptability of digital
technologies on green productivity. Second, regarding data completeness
and policy continuity, China initiated the “NationalMedium- and Long-
Term Plan for Science and Technology Development (2006–2020)” in
2008, followed by the “14th Five-Year Plan (2021–2025)” in 2021. These

documents provide a comprehensive policy framework that covers the
full implementation cycle, facilitating the analysis of policy effects.
Additionally, public data from institutions such as the National
Bureau of Statistics of China and the World Bank has become more
robust after 2007, ensuring the availability of high-quality data for the
study. Finally, the technological evolution and green transformation
align well within the selected timeframe. From 2007 to 2022, cloud
computing, artificial intelligence, and renewable energy technologies
experienced rapid growth, coinciding with the early stages of China’s
“dual carbon” goals. This period effectively captures the dynamic impact
of digital technological innovation on green total factor productivity.

The research data is sourced from the National Intellectual
Property Database and the China City Statistical Yearbook. To
ensure data consistency and diversity, the following data
processing steps were applied: 1) Data consistency: Data was
standardized to ensure comparability across different datasets; 2)
Missing data: Missing data points were filled using linear
interpolation methods; 3) Price-adjusted indicators: For
indicators containing price factors, the base year of 2000 was
used, and corresponding price indices were applied to deflate the
data; 4) Diversity of data: The study covers 278 cities to ensure data
diversity, with selected variables spanning economic, social, and
environmental dimensions. In summary, descriptive statistics for the
key variables used in this study are presented in Table 1.

5 Empirical results and analysis

To empirically examine the effect and underlying mechanisms
of digital technological innovation on green total factor productivity,
this study adopts the following methodological approach. The
research design is illustrated in Figure 2.

5.1 Empirical results of the baseline
regression

Table 2 presents the estimation results of Model (2). Column (1)
reports the baseline regression without the inclusion of control
variables. The coefficient of digital technological innovation is
significantly positive at the 1% level, indicating that digital

TABLE 1 Descriptive statistics for variables.

Variable Observation Mean Standard deviation Minimum Maximum

GTFP 4,448 1.004 0.075 0.488 2.828

DTI 4,448 2.906 2.166 0.000 10.809

GIC 4,448 1.504 3.613 0.000 49.982

ISU 4,448 1.011 0.582 0.094 5.650

FDL 4,448 2.653 1.833 0.560 38.237

IDL 4,448 10.409 9.023 0.000 108.370

GID 4,448 0.067 0.120 0.000 1.266

UL 4,448 1.734 0.185 0.452 2.128

GTFP: green total factor productivity; DTI: digital technological innovation; GIC: green innovation capacity; ISU: industrial structure upgrading; FDL: financial development level; IDL:

infrastructure development level; GID: government intervention degree; UL: urbanization level.
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FIGURE 2
Analytical framework and empirical strategy.

TABLE 2 Empirical results of baseline regression.

Variable (1) (2) (3) (4) (5)

DTI 0.008*** (0.001) 0.007*** (0.001) 0.007*** (0.001) 0.008*** (0.001) 0.008*** (0.001)

FDL 0.003*** (0.001) 0.003*** (0.001) 0.003*** (0.001) 0.003*** (0.001)

IDL 0.000*** (0.000) 0.001*** (0.000) 0.001*** (0.000)

GID 0.023** (0.010) 0.023** (0.010)

UL 0.030 (0.082)

CFE YES YES YES YES YES

YFE YES YES YES YES YES

Constant 0.980*** (0.003) 0.976*** (0.003) 0.970*** (0.004) 0.968*** (0.004) 0.916*** (0.143)

Observations 4,448 4,448 4,448 4,448 4,448

DTI: digital technological innovation; FDL: financial development level; IDL: infrastructure development level; GID: government intervention degree; UL: urbanization level; CFE: city fixed

effects; YFE: Year Fixed Effects. The symbols *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively, while the values in parentheses indicate standard errors.
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innovation plays a significant role in enhancing GTFP. Columns (2)
through (5) sequentially incorporate control variables into the
model. The coefficient for digital technological innovation
remains significantly positive at the 1% level across all
specifications, reaffirming its critical role as a key driver in
promoting GTFP.

Regarding the control variables, the coefficient for financial
development is significantly positive, suggesting that improvements
in financial development can help alleviate financing constraints faced
by green investment projects, thereby facilitating their
implementation and contributing to the enhancement of GTFP.
The coefficient for infrastructure development is also significantly
positive, implying that improved infrastructure canmarkedly enhance
urban environmental quality and residents’ living standards, which in
turn supports the advancement of GTFP. Government intervention is
likewise positively associated with GTFP at a statistically significant
level, highlighting the role of proactive environmental legislation and
increased governmental emphasis on pollution control in fostering
green productivity growth. In contrast, the coefficient for the level of
urbanization is statistically insignificant, indicating no robust effect on
GTFP in this context.

5.2 Empirical results of the
endogeneity check

To mitigate potential endogeneity issues (e.g., reverse causality)
may bias the baseline regression results, we employ three empirical
strategies to address possible endogeneity concerns.

5.2.1 Exogenous policy shocks
We exploit two exogenous policy shocks related to digital

technology development to instrument for digital innovation
in cities.

(1) Smart City Pilot Policy: Recognizing that the Smart City
initiative substantially promotes the adoption of digital
technologies such as the IoT, cloud computing, and
Information and Communication Technology, we use
China’s Smart City pilot program, which was launched in
three phases in 2012, 2013, and 2015, as an exogenous source
of variation. A policy dummy is constructed by assigning a
value of one to pilot cities from the pilot year onward and 0 to
all other cities. Column (2) of Table 3 reports the regression
results. The estimated coefficient on the Smart City policy is
significantly positive, suggesting that the implementation of
the policy leads to a marked improvement in cities’ GTFP.

(2) Broadband China Pilot Policy: To further validate our
findings, we incorporate the Broadband China pilot policy,
implemented in three batches during 2014, 2015, and 2016, as
an alternative exogenous shock. This policy aimed to
accelerate broadband infrastructure and facilitate digital
transformation, thereby encouraging enterprise-level
innovation in digital technologies. Similarly, a dummy
variable is constructed to equal one for pilot cities from
the implementation year onward. As shown in Column (3)
of Table 3, the estimated coefficient remains significantly
positive, indicating a robust positive impact of the
policy on GTFP.

TABLE 3 Empirical results of endogeneity check.

Variable Exogenous policy shock Instrumental variable approach

Smart city pilot policy Broadband China pilot policy DTI GTFP

DTI 0.028*** (0.002)

SCPP 0.014*** (0.004)

BCPP 0.029*** (0.004)

NPO 0.000*** (0.000)

FDL 0.004*** (0.001) 0.003*** (0.001) 0.376*** (0.015) −0.008*** (0.001)

IDL 0.001*** (0.000) 0.001*** (0.000) 0.048*** (0.004) −0.001*** (0.000)

GID 0.008 (0.010) 0.011 (0.010) −2.068*** (0.250) 0.075*** (0.014)

UL 0.132 (0.081) 0.071 (0.081) 5.726*** (0.180) −0.162*** (0.017)

CFE YES YES YES YES

YFE YES YES YES YES

Constant 0.755*** (0.141) 0.859*** (0.141) −8.599*** (0.321) 1.228*** (0.028)

LM Statistic 560.141***
(0.000)

Wald F Statistic 663.922 [16.38]

Observations 4,448 4,448 3,551 3,551

DTI: digital technological innovation; SCPP: smart city pilot policy; BCPP: broadband china pilot policy; NPO: number of post offices; GTFP: green total factor productivity; FDL: financial

development level; IDL: infrastructure development level; GID: government intervention degree; UL: urbanization level; CFE: city fixed effects; YFE: Year Fixed Effects. The symbols *, **, and

*** denote statistical significance at the 10%, 5%, and 1% levels, respectively, while the values in parentheses indicate standard errors.
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5.2.2 Instrumental variable approach
We further employ an instrumental variable strategy using the

number of post offices in each city in 1984 as the instrument for digital
innovation. This variable satisfies both relevance and exogeneity
criteria: historically determined postal infrastructure is plausibly
exogenous to current GTFP levels, while also serving as a proxy
for early-stage communication infrastructure that may influence the
foundation for contemporary digital technology development.

The two-stage least squares regression results are presented in
Columns (4) and (5) of Table 3. In the first stage, the instrument is
significantly and positively associated with digital innovation, confirming
its relevance. In the second stage, digital innovation remains significantly
and positively correlated with GTFP, consistent with the baseline results.
Moreover, the Kleibergen–Paap LM test yields a p-value of 0.000,
indicating no under-identification issue. The Wald F-statistic for
weak instruments is 663.922, which far exceeds the 10% critical value
of 16.38, ruling out concerns of weak instrumentation. These results
support the validity and robustness of the chosen instrument.

5.3 Empirical results of the
robustness analysis

To ensure the reliability of the baseline regression results, this study
conducts a series of robustness checks using five alternative approaches.

(1) Alternative Estimation Method. To rule out the possibility
that the observed improvement in GTFP is driven by model

specification, the Generalized Method of Moments (GMM) is
employed for re-estimation. As shown in Column (1) of
Table 4, the coefficient of digital technological innovation
remains significantly positive, confirming that the observed
relationship is robust to model changes. Moreover, the
Arellano-Bond test for autocorrelation (AR statistics) and
the Sargan test for over-identifying restrictions both reject the
null hypotheses, indicating no evidence of serial correlation or
over-identification issues in the GMM model.

(2) Excluding Municipalities. Given the distinctive economic
scale and development patterns of the four centrally
administered municipalities (Beijing, Shanghai, Tianjin,
and Chongqing), their inclusion may overestimate the
effect of digital innovation on GTFP. Thus, a robustness
check is conducted by excluding these municipalities from
the sample. Column (2) of Table 4 shows that the coefficient
of digital innovation remains significantly positive, indicating
that the baseline findings are not driven by sample selection
bias related to municipalities.

(3) Excluding Outliers. To account for the potential influence of
extreme values on regression results, all continuous variables
are winsorized at the 1st and 99th percentiles. As presented in
Column (3) of Table 4, the coefficient of digital innovation
remains significantly positive and consistent with the baseline
estimates, supporting the robustness of the findings.

(4) Lagged Core Explanatory Variable. Considering the potential
time-lagged effect of digital innovation on GTFP, a one-
period lag of the core explanatory variable is introduced.

TABLE 4 Empirical results of the robustness.

Variable Model
replacement

Municipality
exclusion

Outlier
removal

One-
period lag

Alternative GTFP
measure

Alternative DTI
measure

(1) (2) (3) (4) (5) (6)

DTI 0.014*** (0.003) 0.006*** (0.001) 0.005*** (0.001) 0.029*** (0.001) 0.006*** (0.001)

L.GTFP 0.524*** (0.118)

L.DTI 0.007*** (0.001)

FDL −0.002 (0.001) 0.002*** (0.001) 0.003*** (0.001) 0.003*** (0.001) −0.001 (0.001) 0.003*** (0.001)

IDL 0.003*** (0.001) 0.001*** (0.000) −0.000* (0.000) 0.001*** (0.000) 0.000** (0.000) 0.001*** (0.000)

GID 0.057*** (0.021) 0.022*** (0.008) 0.023*** (0.008) 0.019* (0.010) 0.018 (0.012) 0.031*** (0.011)

UL 0.172 (0.154) −0.025 (0.065) 0.047 (0.061) 0.008 (0.087) 0.074 (0.098) 0.052 (0.082)

AR
statistics (1)

−4.399

AR
statistics (2)

3.554

Sargan 245.428

CFE YES YES YES YES YES YES

YFE YES YES YES YES YES YES

Constant 0.113 (0.346) 1.015*** (0.113) 0.899*** (0.106) 0.955*** (0.151) 0.118 (0.170) 0.872*** (0.142)

Observations 4,170 4,384 4,016 4,170 4,448 4,448

DTI: digital technological innovation; GTFP: green total factor productivity; FDL: financial development level; IDL: infrastructure development level; GID: government intervention degree; UL:

urbanization level; AR, statistics: Arellano-Bond test for autocorrelation; CFE: city fixed effects; YFE: Year Fixed Effects. The symbols *, **, and *** denote statistical significance at the 10%, 5%,

and 1% levels, respectively, while the values in parentheses indicate standard errors.
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The results in Column (4) of Table 4 show that the lagged
variable of digital innovation still yields a significantly positive
coefficient, suggesting a persistent and sustained impact of
digital innovation on the enhancement of GTFP.

(5) Alternative Measurement of the Dependent Variable. To
account for the possibility that the measurement method for
GTFP may affect the regression results, we adopt an alternative
approach by recalculating GTFP using the undesirable output
super-efficiency SBM model combined with the
Malmquist–Luenberger index. As presented in Column (5)
of Table 4, the coefficient of digital technological innovation
remains significantly positive, consistent with the baseline
findings, thereby confirming the robustness of the results.

(6) Alternative Measurement of the Core Explanatory Variable. To
assess whether the measurement of digital technological
innovation (DTI) affects the results, we substitute the original
indicator with industrial robot density, a proxy for the intensity
of digital and automation technology integration in production
processes. The increasing installation density of industrial robots
across cities reflects the depth of digital technology application in
industrial production. Column (6) of Table 4 demonstrates that
the coefficient of digital innovation remains significantly positive,
consistent with the baseline results, thus confirming the
robustness of the empirical conclusions.

5.4 Empirical results of the
mechanism check

The preceding regression analysis supports the hypothesis that
digital technological innovation contributes to the improvement of
GTFP. To further examine the underlying transmission
mechanisms, we conduct a mediation effect analysis based on
Models (1)–(3), with the regression results presented in Table 5.

5.4.1 Effect via green innovation capability
Column (3) of Table 5 reports the impact of digital technological

innovation on GTFP. The regression coefficient of digital innovation
is significantly positive, indicating that digital technological
innovation enhances green innovation capability. Furthermore, in
Model (3) shown in Column (4), the coefficient of digital innovation
remains significantly positive at 0.004, which is smaller than the
coefficient reported inModel (1) (0.008, shown in Column (2)). This
suggests that green innovation capability acts as a partial mediator in
the relationship between digital innovation and GTFP. In other
words, digital technological innovation promotes GTFP in part by
improving green innovation capacity.

5.4.2 Effect via industrial structure upgrading
Column (5) of Table 5 presents the effect of industrial structure

upgrading on GTFP. The regression coefficient of digital innovation
is significantly positive, indicating that digital innovation facilitates
the upgrading of the industrial structure. In Model (3), shown in
Column (6), the coefficient of digital innovation remains
significantly positive at 0.006, which is again lower than the
coefficient in Model (1) (0.008). This implies that industrial
structure upgrading also serves as a partial mediator in the
pathway from digital innovation to GTFP. That is, digital
innovation contributes to the enhancement of GTFP by driving
the transformation and upgrading of the industrial structure.

5.5 Empirical results of the
heterogeneity test

The baseline regression results provide empirical support for the
hypothesis that digital technological innovation promotes
improvements in GTFP. However, the magnitude and
significance of this impact may vary across cities due to

TABLE 5 Empirical results of mechanism check.

Variable Model (1) Model (2) Model (3) Model (2) Model (3)

GTFP gpa GTFP Ind GTFP

DTI 0.008*** (0.001) 0.820*** (0.030) 0.004*** (0.001) 0.144*** (0.004) 0.006*** (0.001)

GIC 0.004*** (0.001)

ISU 0.013*** (0.004)

FDL 0.003*** (0.001) −0.030 (0.024) 0.003*** (0.001) 0.034*** (0.003) 0.002*** (0.001)

IDL 0.001*** (0.000) −0.020*** (0.005) 0.001*** (0.000) −0.001 (0.001) 0.001*** (0.000)

GID 0.023** (0.010) 1.207*** (0.312) 0.018* (0.010) −0.028 (0.042) 0.023** (0.010)

UL 0.030 (0.082) 28.670*** (2.473) −0.089 (0.084) −0.116 (0.344) 0.032 (0.082)

CFE YES YES YES YES YES

YFE YES YES YES YES YES

Constant 0.916*** (0.143) −50.497*** (4.288) 1.125*** (0.145) 0.716 (0.595) 0.907*** (0.142)

Observations 4,448 4,448 4,448 4,448 4,448

DTI: digital technological innovation; GIC: green innovation capacity; ISU: industrial structure upgrading; FDL: financial development level; IDL: infrastructure development level; GID:

government intervention degree; UL: urbanization level; CFE: city fixed effects; YFE: Year Fixed Effects. The symbols *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels,

respectively, while the values in parentheses indicate standard errors.
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differences in resource endowments, the level of intellectual
property protection, and policy designation status. To account
for this, we conduct a series of heterogeneity tests as follows.

5.5.1 Heterogeneity by resource endowment
On the one hand, cities with lower resource endowments exhibit

higher levels of industrial development and more substantial
marginal returns to digital innovation, potentially leading to
more pronounced improvements in GTFP. On the other hand,
such cities often exhibit more diversified industrial structures and
lower levels of environmental pollution, thereby facing less pressure
for environmental governance. As a result, digital innovations
specifically targeting environmental protection may be less
prevalent, limiting their contribution to GTFP enhancement.

In this study, the ratio of employment in the mining sector to
total employment is used as a proxy for the level of resource
endowment. By calculating the average of this ratio over the
period 2007–2022, we classify cities with values above the median
as resource-abundant and those below as resource-scarce. As shown
in Table 6, digital innovation exhibits a significantly positive
coefficient in both groups. Notably, the effect is stronger in
resource-abundant cities, with a coefficient of 0.009 compared to
0.007 in resource-scarce cities. It is attributed to the prevalence of
natural resource extraction and processing industries in resource-
abundant cities, where the adoption of digital technologies can
substantially enhance resource utilization efficiency, reduce
pollutant emissions, and improve waste treatment, thereby
fostering GTFP growth.

5.5.2 Heterogeneity by intellectual property
protection

On the one hand, stronger intellectual property (IP) protection
ensures the exclusivity of digital innovations, thereby stimulating firms’
motivation and incentives to innovate, ultimately promoting GTFP. On
the other hand, excessively stringent IP protection may hinder inter-
firm knowledge spillovers, suppressing the diffusion of digital
innovation and impeding its contribution to productivity growth.

We proxy the level of IP protection using the number of IP-
related court case closures in each city. By calculating the average
number of such cases from 2007 to 2022, cities above the median are
classified as having strong IP protection, while those below the
median are considered to have weaker IP protection. According to
Table 6, digital innovation maintains a significantly positive effect
on GTFP across both categories. However, the effect is more
pronounced in cities with strong IP protection, where the
estimated coefficient is 0.008, compared to 0.005 in the weaker-
IP group. This finding aligns with the argument that a well-
established IP protection regime can reduce firms’ risk of
infringement (Sweet and Maggio, 2015), enhance innovation
incentives, and play a critical role in enabling digital technologies
to contribute effectively to green productivity improvements.

5.5.3 Heterogeneity by policy pilot status
5.5.3.1 Low-carbon city pilot policy

The low-carbon city initiative seeks to reduce carbon emissions
and promote green development through institutional and
technological innovation. Cities are classified as either pilot or
non-pilot cities based on their inclusion in the national low-
carbon pilot program. Table 7 shows that digital innovation has
a positive effect on GTFP in both groups, with a stronger effect
observed in pilot cities (coefficient = 0.008) compared to non-pilot
cities (coefficient = 0.007). This suggests that pilot cities, which
prioritize industrial upgrading and digital-industrial integration, are
more effective in leveraging digital innovation for green
productivity growth.

5.5.3.2 Smart City Pilot Policy
Smart city policies aim to enhance urban innovation capabilities

via advancements in technology, products, markets, resource
allocation, and organizational structures. Cities are categorized as
pilot or non-pilot cities based on their official designation as smart
city pilots. As shown in Table 7, the impact of digital innovation on
GTFP remains significantly positive in both groups. Interestingly,
the effect is stronger in non-pilot cities (coefficient = 0.009) than in

TABLE 6 Empirical results of heterogeneity check.

Variable Resource endowment heterogeneity Intellectual property protection heterogeneity

Resource-
scarce cities

Resource-
abundant cities

Cities with weaker intellectual
property protection

Cities with stronger intellectual
property protection

DTI 0.007*** (0.001) 0.009*** (0.001) 0.005*** (0.001) 0.008*** (0.002)

FDL 0.003** (0.001) 0.002** (0.001) 0.002*** (0.001) 0.004** (0.002)

IDL 0.001*** (0.000) 0.000 (0.000) 0.000 (0.000) 0.001*** (0.000)

GID 0.017 (0.017) 0.025* (0.013) 0.016* (0.010) 0.032 (0.024)

UL 0.083 (0.175) 0.040 (0.091) −0.014 (0.074) 0.223 (0.234)

CFE YES YES YES YES

YFE YES YES YES YES

Constant 0.814*** (0.312) 0.910*** (0.153) 1.004*** (0.122) 0.548 (0.424)

Observations 2,222 2,216 2,214 2,224

DTI: digital technological innovation; FDL: financial development level; IDL: infrastructure development level; GID: government intervention degree; UL: urbanization level; CFE: city fixed

effects; YFE: Year Fixed Effects. The symbols *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively, while the values in parentheses indicate standard errors.
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pilot cities (coefficient = 0.006). One possible explanation is that
smart city pilots already possess well-established digital
infrastructure (e.g., IoT, AI), reducing the marginal benefits of
further innovation. In contrast, non-pilot cities may exhibit
stronger latecomer advantages, allowing digital innovation to
yield greater returns in terms of GTFP enhancement (Caragliu
and Del Bo, 2019).

6 Research conclusions and policy
implications

The synergistic development of digital technological innovation
and green total factor productivity constitutes a crucial pathway
toward achieving China’s dual carbon goals and fostering high-
quality economic growth. Using panel data from 278 prefecture-
level cities in China from 2007 to 2022, this study employs a fixed
effects model and a mediation analysis framework to empirically
investigate both the impact and mechanisms through which digital
innovation influences GTFP. The main findings are as follows: First,
digital technological innovation significantly promotes the
improvement of GTFP. Second, this effect is primarily mediated
by two channels: enhancement in green technological innovation
and the upgrading of industrial structure. Third, the impact of digital
innovation on GTFP exhibits notable heterogeneity across cities
with different resource endowments, levels of intellectual property
protection, and policy pilot statuses. Specifically, the positive effect is
slightly more pronounced in cities with higher resource
endowments, stronger intellectual property protection,
participation in low-carbon city pilot programs, and designation
as smart city pilots. These findings underscore the importance of
tailoring digital innovation strategies to local contextual factors to
maximize their contribution to green and sustainable development.
The conclusions of the study are shown in Figure 3.

Based on empirical findings, this study proposes the following
policy implications: (1) Governments should reinforce the green
orientation of digital technological innovation by prioritizing
breakthroughs in core technologies, establishing dedicated funds

for green digital R&D, and promoting key innovations such as AI-
driven energy optimization, blockchain-based carbon footprint
tracking, and industrial internet applications for energy
conservation. Policy support should also facilitate scenario-based
applications through the development of digital-green
demonstration zones and the implementation of carbon efficiency
standards for digital infrastructures, including data centers and
cloud computing. Moreover, green technical standards should be
enhanced by establishing a carbon efficiency evaluation system for
digital technologies, such as implementing carbon emission limits
per unit of computing power for digital infrastructure (e.g., data
centers and cloud computing platforms). At the same time, attention
must be paid to the potential negative externalities of digital
technological innovation on green total factor productivity. For
example, technologies such as cloud computing and AI are
highly dependent on energy-intensive infrastructure; rapid
hardware iteration generates increasing volumes of electronic
waste; and small- and medium-sized enterprises (SMEs) may
struggle to participate in green digital upgrades due to
technological and financial barriers. Therefore, the government
should strike a balance between the deployment of digital
technology and green productivity goals by developing energy-
efficient chips, establishing green digital technology standards,
and promoting international cooperation. (2) A synergistic
innovation system integrating digital and green technologies
should be developed by enhancing the institutional environment
for green technology transfer, establishing cross-sector R&D funds
(e.g., AI + clean energy, blockchain + carbon accounting), and
fostering open-source platforms for environmental algorithms and
databases. It will lower innovation barriers for SMEs. Moreover,
evaluation metrics in academic institutions should include
indicators such as green patent commercialization rates and
emissions reductions enabled by digital technologies. Financial
instruments, such as digital green insurance products and
preferential green loans, should be further developed and refined
to enhance their effectiveness. (3) Industrial policy should be guided
by dual priorities of digitalization and decarbonization, with support
for emerging digital-green industries. Sector-specific benchmarks

TABLE 7 Empirical results of heterogeneity check (Policy Pilot Heterogeneity).

Variable Policy pilot heterogeneity

Low-carbon city pilot Non-low-carbon city pilot Smart city pilot Non-smart city pilot

DTI 0.008*** (0.002) 0.007*** (0.001) 0.006*** (0.001) 0.009*** (0.001)

FDL 0.005*** (0.002) 0.001** (0.001) 0.003*** (0.001) 0.002** (0.001)

IDL 0.001*** (0.000) 0.000 (0.000) −0.000 (0.000) 0.001*** (0.000)

GID 0.005 (0.022) 0.029*** (0.009) −0.014 (0.012) 0.041*** (0.014)

UL 0.111 (0.229) 0.040 (0.069) −0.057 (0.139) 0.058 (0.101)

CFE YES YES YES YES

YFE YES YES YES YES

Constant 0.760* (0.401) 0.910*** (0.118) 1.078*** (0.239) 0.860*** (0.175)

Observations 1904 2,544 1,440 3,008

DTI: digital technological innovation; FDL: financial development level; IDL: infrastructure development level; GID: government intervention degree; UL: urbanization level; CFE: city fixed

effects; YFE: Year Fixed Effects. The symbols *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively, while the values in parentheses indicate standard errors.

Frontiers in Environmental Science frontiersin.org13

Yao and Lu 10.3389/fenvs.2025.1643646

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1643646


(e.g., digital transformation rates and carbon intensity per unit
output) should be established, particularly for high-emission
sectors, with incentives for compliance. Emerging business
models like virtual power plants and carbon asset management
platforms should be promoted. Real-time environmental
assessments using digital tools can facilitate the phased exit of
inefficient capacities. (4) A differentiated, place-based digital
innovation strategy should be adopted to advance local green
development. In resource-rich cities, policies should encourage
enterprises to adopt intelligent digital upgrades that promote
cleaner resource use, supported by fiscal incentives for green
outcomes. In contrast, resource-scarce cities should focus on
developing high-end green manufacturing through digital
innovation. Cities with weaker IP protection should enhance
regulatory enforcement and integrate environmental credit
systems, while those with stronger IP regimes should be
encouraged to build advanced digital R&D labs. Additionally,
pilot and non-pilot cities should be treated with differentiated
strategies: digital technologies should be leveraged for real-time
policy adjustment in pilot cities, and cost-effective lightweight
digital upgrades should be promoted in non-pilot cities. A
coordinated optimization mechanism between pilot and non-pilot
cities should also be established to foster regional digital-green
alliances and promote data sharing for integrated regional
development.

Despite its contributions, this study has several limitations that
warrant further consideration: (1) Data Selection andMeasurement
Issues. The calculation of green total factor productivity relies
heavily on environmental data. However, China’s environmental
data collection systems remain incomplete, which may lead to

measurement errors and an underestimation of the actual impact of
digital innovation on GTFP. In addition, using only patent counts
to measure digital technological innovation overlooks the influence
of intangible factors such as technology diffusion, digital skills, and
data quality. (2) Model Construction Constraints. The empirical
model may overlook key variables, such as industry-specific
differences and policy interventions (e.g., carbon taxes,
subsidies), which could compromise the explanatory power of
the findings. Furthermore, the model assumes a linear
relationship, whereas the link between digital innovation and
GTFP may be nonlinear. For instance, the productivity benefits
of innovation may be limited in the early stages but could accelerate
after reaching a critical threshold due to diffusion or scale effects. A
linear model may fail to capture such threshold or S-curve
dynamics, resulting in biased estimates. (3) Limited Insight into
Long-Term Effects. The study does not fully capture the dynamic
and lagged impacts of digital innovation, which may unfold over
longer technological cycles. Given the time required for innovation
diffusion and industrial upgrading, short-term observation
windows may miss the extended pathways through which digital
innovation affects GTFP via green innovation or structural
transformation. (4) Insufficient Discussion of Potential Risks.
The study lacks an in-depth examination of potential risks,
including the increased energy consumption associated with
digital technologies. This dependency on complex technologies
may hinder the transformation of traditional industries and pose
significant ethical risks, including data privacy breaches and
algorithmic bias. These factors should be integrated into future
policy design and research frameworks to inform effective
decision-making.

FIGURE 3
Synthesized conclusions and policy implications.
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