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Anthropogenic activities increasingly alter Earth’s biogeochemical cycles,
threatening the integrity and resilience of critical planetary systems. This
perspective paper highlights the pivotal role of biogeochemical cycles in
global sustainability challenges such as climate change, biodiversity loss, land
degradation, and water scarcity, underlining feedbacks that exacerbate
ecosystem degradation and diminish Earth’s self-regulating capacity. Advances
in integrated Earth system models demonstrate the necessity of capturing
nutrient interactions to accurately predict ecosystem productivity and carbon
sequestration, particularly under nutrient-limited conditions. The emergence of
novel entities introduces unprecedented vulnerabilities to elemental cycles, with
their long-term impacts and planetary boundary exceedances still poorly
understood. These challenges, coupled with nutrient boundary exceeding and
ongoing climate change, regional variability and nonlinear and cascading
responses emphasize an urgent need for interdisciplinary research, enhanced
monitoring, and robust regulatory frameworks, supported by advances in
modeling, big data analytics, and artificial intelligence.
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Introduction

Understanding Earth as an integrated physical, chemical, and biological system, and the
consequences of human-induced disturbances is at the core of modern biogeosciences
(Steffen et al., 2020). Biogeochemistry deals with how elements circulate through the
atmosphere, biosphere, hydrosphere, and lithosphere, sustaining life and regulating
planetary processes. This understanding is increasingly vital as climate change and
different anthropogenic pressures accelerate. The Biogeochemical Dynamics section of
Frontiers in Environmental Science, launched in 2019, offers a dedicated platform for
advancing knowledge on the complex interactions among biological, geological, and
chemical processes (Slaveykova, 2019). As we progress through the 21st century, this
multidisciplinary section stands at the forefront of disseminating cutting-edge scientific
knowledge and impactful discoveries in the field of biogeochemistry to researchers,
industry, policymakers, and the public worldwide. Wide spectrum of research topics
spans from greenhouse gasses, such as methane cycling (McGinnis et al., 2023) to
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ecological risks posed anthropogenic particles (Mitrano et al., 2021),
from distinct dynamics of biogeochemical cycling within wetland
(Rezanezhad et al., 2020) to urban systems (Mitchell et al., 2023) and
cold regions in transition (Rezanezhad et al., 2023).

But what’s ahead signals growing concern: the integrity of
Earth’s biogeochemical cycles is increasingly threatened by
anthropogenic activities, which are altering the natural flow,
transformation, and storage of essential elements across
atmospheric, terrestrial, and aquatic systems (Bertrand and
Legendre, 2021; Ciais et al., 2014; Friedlingstein et al., 2025).
These alterations have far-reaching consequences, intersecting
with major global sustainability challenges, including climate
change, land degradation, biodiversity loss, and water scarcity
(Fletcher et al., 2024; Lenton et al., 2008; Lieu et al., 2025; Wang
et al., 2024). Big data analyses confirmed widespread planetary
decline but also highlight areas of resilience and recovery
(Runting et al., 2020).

Climate change is both a driver and consequence of
biogeochemical cycle disruption (Friedlingstein et al., 2025). As
warming intensifies, interactions between the C, N, and P are
expected to become more dynamic potentially reshaping
ecosystem processes in complex ways (Luo et al., 2022; Menge
et al., 2023; Zhang et al., 2020; Zuccarini et al., 2023). However,
the direction and scale of these changes remain uncertain, as
biogeochemical responses vary across systems (Cui et al., 2025).
The interconnection of C, N, P, and other elemental cycles means
perturbations can cascade, complicating predictions and
management efforts (Gruber and Galloway, 2008).
Simultaneously, land degradation, often exacerbated by
unsustainable land-use practices, has led to altered soil nutrient
dynamics and declining ecosystem productivity, further weakening
biogeochemical resilience (Amelung et al., 2020; Burrell et al., 2020;
Gibbs and Salmon, 2015). Biogeochemical imbalances also underlie
the ongoing global biodiversity crisis. Imbalance of global nutrient
cycles exacerbated by the greater retention of P over N potentially
leading to biodiversity losses within lakes and algal blooms in
downstream N-limited coastal zone (Wu et al., 2022). Nutrient
enrichment from agricultural runoff, such as excess N and P,
disrupts aquatic food webs and contributes to hypoxic zones and
species loss in freshwater and coastal systems (Devlin and Brodie,
2023). Conversely, diverse plant and microbial communities’ buffer
against nutrient losses by enhancing element retention and
recycling. They degrade the natural capacity of ecosystems to
regulate essential and toxic elements, with cascading effects on
climate, water quality, and food security. Preserving and restoring
biodiversity—especially in soils—is critical for maintaining stable
and resilient biogeochemical cycles. Moreover, water scarcity and
declining water quality are deeply connected to alterations in the
hydrological and geochemical cycling of both nutrients and
pollutants, especially in regions undergoing rapid climate and
land-use change (Akhtar et al., 2021).

What is the Earth capacity to support disruptions to
biogeochemical cycles due to the anthropogenic activities without
crossing critical thresholds? This is a key question in biogeochemical
dynamics research because Earth’s systems operate within finely
balanced thresholds, and exceeding limits can trigger cascading
effects (Rockström et al., 2024b). The planetary boundaries
framework (Rockström et al., 2009; Steffen et al., 2015) identifies

nine Earth system processes with proposed “safe operating spaces”.
This framework allows define safe limits for the elements of Earth’s
biogeochemical cycle and assess the stability of Earth’s life-support
system. Among the nine identified boundaries, biogeochemical
flows of N and P, along with C (through climate change) cycle
disturbance, have emerged as some of the most severely stressed
(Richardson et al., 2023). These cycles underpin core ecosystem
functions, such as primary productivity, soil fertility, and
water quality.

Biogeochemical cycles are tightly interconnected, and their
interactions critically shape ecosystem productivity and resilience.
Yet many Earth systemmodels still simulate these cycles in isolation,
missing key feedback and nutrient co-limitations. Recent modeling
advances, such as the dynamic land ecosystem model, show that
coupling C, N, and P cycles significantly improves predictions of
carbon sequestration, especially under phosphorus-limited
conditions in tropical ecosystems (Wang et al., 2020). This
emphasizes the need for integrated models that reflect the
complex interdependencies among elemental cycles. Integrating
micronutrient dynamics into Earth system models is also
essential for accurately predicting ecosystem responses to global
change. In marine systems, nutrients like Fe, Mn, Zn, and Co are
vital for phytoplankton and carbon cycling (Tittensor et al., 2021)
but are often underrepresented. Modeling shows that climate-driven
changes, such as ocean stratification, can disrupt micronutrient
availability and affect primary production (Bian et al., 2023).

Biogeochemical dynamics is characterized by non-linear
interactions, feedback loops, and cross-scale processes, which
represent a challenge for predictive ecological modeling (Jones
et al., 2024). Traditional process-based models, while
indispensable, often struggle to integrate high-dimensional,
heterogeneous data streams in ways that capture emergent
patterns across Earth system boundaries (Jones et al., 2024). In
such context, artificial intelligence (AI) offers promise for tracking,
pattern recognition, and forecasting (Gupta et al., 2023; Irrgang
et al., 2021), as well as for quantifying safe operating spaces and
helping reduce risks to human and planetary health (Rockstroem
et al., 2023). This aligns with the One Health concept, which
emphasizes integrated approach across environmental, animal,
and human health (Pitt and Gunn, 2024). However, the full
potential of AI in this field is still emerging. It was highlighted
that transforming existing process-based models into neural
network-based tools could enable predictive insights into key
ecological processes, harnessing the full potential of the big data
revolution (Alexandrov, 2025).

Recent inclusion of novel entities, including synthetic chemicals,
plastics, pharmaceuticals, nanomaterials added a new dimension to
biogeochemical “vulnerability” of the Earth system (Persson et al.,
2022). For instance the persistence and global spread of four selected
per- and polyfluoroalkyl substances (PFAS) in the atmosphere has
led to the planetary boundary for chemical pollution being exceeded
(Cousins et al., 2022). Unlike traditional pollutants, novel entities do
not cycle through the environment in predictable or reversible ways,
and their long-term impacts on global biogeochemical processes are
still poorly understood. Their persistence and interactions with
elemental cycles remain poorly understood and largely under-
investigated. A recent study has demonstrated that the plastic
pollution exacerbated all planetary boundaries (Villarrubia-
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Gómez et al., 2024). Understanding the influence of novel entities on
biogeochemical cycles remains thus a critical frontier in
environmental science.

Together, the overshoot of nutrient boundaries and the rise of
persistent novel entities signal that the planet’s buffering capacity is
nearing critical limits. Addressing these interlinked threats demands
not only limiting excess nutrient flows but also investing in early
detection, monitoring, and regulation of novel substances.
Interdisciplinary research is urgently needed to define safe
exposure thresholds and understand how these emerging
stressors interact with global element cycles under accelerating
climate change. Furthermore, very recent study revealed that
even under optimistic scenario with strong environmental policy
measures, critical boundaries, in particularly those related to climate
change, biogeochemical cycles, and biodiversity, are projected to
remain exceeded by 2050 due to systemic inertia and delayed
responses (van Vuuren et al., 2025).

Recent advances have improved quantification of planetary
boundaries, yet significant uncertainties remain, particularly
regarding regional variability and nonlinear responses in coupled
biogeochemical cycles (Schulte-Uebbing et al., 2022) and crucial to
defining safe operating spaces that balance human development
with Earth system stability (Gupta et al., 2023). Understanding these
thresholds is essential for shaping effective environmental policies,
guiding mitigation strategies, and building resilience in socio-
ecological systems (Rockström et al., 2024a). Research
emphasizes the link between societal tipping points and
ecological tipping points and highlight the necessity of unified
understanding of the Earth by integrating physical components
(atmosphere, cryosphere, land, ocean, lithosphere) with human
and social processes (Lam and Rousselot, 2024). Bridging science
and policy require integrated nutrient monitoring systems,
institutional reform to enable cross-sector collaboration, and
inclusion of social sciences to leverage behavioral change.
Strengthening local governance is also essential for equitable,
context-specific solutions. However, translating this knowledge
into effective governance remains a major challenge (Rockstroem
et al., 2023). Governance tools for integrating land use, water
management, and climate action are still fragmented. Integrated
policy frameworks and technology-enabled monitoring, such as AI
and satellite tools, are critical for real-time tracking of nutrient flows
and emissions. Additionally, stronger regulation of novel chemical
entities is needed to prevent accumulation and long-term
ecological harm.

Looking ahead, biogeochemical cycles will encounter
multifaceted and interdependent challenges necessitating
integrative scientific and policy approaches. While current
understanding acknowledges that Earth’s capacity is finite and
under strain, there is urgent need for more spatially resolved,
process-based insights. The biogeochemistry community is actively

working on refining models, identifying thresholds, and providing
actionable knowledge to avoid irreversible ecological change. The
forthcoming decade represents a pivotal period for advancing
scientific understanding and policy implementation to prevent
ecological overshoot and to navigate toward sustainability.
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