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With the rapid progress of industrialization and urbanization, large amounts of
industrial wastewater and mining waste have been discharged into rivers. The
problem is especially severe in areas with intensive mineral resource
development and hardware manufacturing. Moreover, frequent heavy rainfall
and flooding during the flood season significantly increase surface runoff and
sediments resuspension, promoting the mobilization and redistribution of heavy
metals (HMs) in river systems. Therefore, it is of great practical importance to
systematically identify the distribution characteristics and ecological risks of HMs
pollution in such regions under changing climatic conditions. Eighty-five surface
sediment samples were collected in Southwest China, and the concentrations of
As, Hg, Cd, and Pb were determined. The geo-accumulation index (Igeo) and the
potential ecological risk index (RI) were used to assess contamination levels and
ecological risks, and principal component analysis (PCA) and positive matrix
factorization (PMF) were applied to trace pollution sources. The results show
that Cd and Hg have similar spatial patterns, with high concentrations mainly
downstream ofmining areas and industrial parks. Igeo and RI assessments indicate
that Hg pollution in sediments is severe in four major rivers of Dazu District,
followed by Cd, while As and Pb show relatively low pollution levels. Source
apportionment revealed that industrial and traffic-related activities contribute
55.05% of HMs inputs, mining activities account for 41.28%, and natural sources
contribute 3.67%. Cd and Pbmainly originate from industrial emissions and traffic,
Hg is primarily associated with mining, and As is derived from natural sources.
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1 Introduction

Rivers play a key role in surficial environments by controlling material transport
between terrestrial and marine ecosystems (Ren et al., 2025). Due to the acceleration of
urbanization and industrialization, especially the increase in industrial discharges and
urban wastewater, large amounts of untreated or poorly treated wastewater and pollutants
enter rivers, posing a significant threat to aquatic ecosystems (Saxena, 2025;Wu et al., 2025).
Currently, major pollutants in rivers include nutrients (Nie et al., 2018; Ren et al., 2025),
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heavy metals (HMs) (Le and Nguyen, 2024; Liu et al., 2023), and
organic contaminants (Net et al., 2015; Schwanen et al., 2023; Sousa
et al., 2018). HMs have attracted considerable attention due to their
high toxicity, persistence, and strong accumulation in sediments (Tu
et al., 2023; Yiika et al., 2023; Zheng et al., 2023). HMs pollution
threatens aquatic ecosystems and may pose potential risks to human
health through the food chain (Ali and Khan, 2019), and has become
a global concern.

Sediments serve as both reservoirs and transport media for HMs,
making them a critical component in the study of riverine pollution
(Shen et al., 2024; Xie et al., 2022). Compared to the overlying water,
sediments exhibit stronger accumulation and indicative properties,
providing valuable insights into the historical input and spatial
distribution of pollutants across the watershed (Li et al., 2022b;
Sultana et al., 2025). Through continuous interactions with the
surrounding environment and their strong adsorption capacity,
sediments can retain HMs for extended periods (Kachoueiyan
et al., 2024; Xie et al., 2022). However, these HMs are not
permanently immobilized. Extreme weather events such as heavy
rainfall, flooding, and prolonged drought can significantly alter
hydrological conditions in river systems (Gao et al., 2018; Zhang
et al., 2018). These changes enhance the capacity of sediments to
resuspend and erode (Li et al., 2022a; Zhang et al., 2018). As a result,
HMs previously stored in sediments may be released into the
overlying water. This release can significantly affect the mobility,
bioavailability, and ecological risk of HMs (Wu et al., 2017). For
example, flooding may disturb sediments and mobilize Zn, Pb and
Cd that were previously bound to fine particles. Changes in pH or
redox conditions can trigger this release, posing potential threats to
water environmental safety (Ciszewski, 2001). Therefore, systematic
investigations of HMs contamination in sediments are essential for
tracing pollution sources, understanding their temporal evolution,
and informing watershed management and risk mitigation
strategies.

Extensive research has been conducted on HMs pollution in
river sediments, and various assessment and analytical methods
have been increasingly refined (Dai et al., 2018; Ding et al., 2025; Li
et al., 2022c; Nieva et al., 2018). Commonly, methods including geo-
accumulation index (Igeo), sediment quality guidelines (SQGs), and
the potential ecological risk index (RI) have been widely employed
for the evaluation of HMs enrichment levels and associated
ecological threats (Gu et al., 2024; Li et al., 2022b). Multivariate
statistical methods, such as principal component analysis (PCA) and
positive matrix factorization (PMF), are frequently employed to
identify pollution sources and quantify source contributions (Liu
et al., 2017; Zhao et al., 2020). For example, Li et al. assessed six HMs
in the Yellow River using Igeo, SQGs and RI, finding The ecological
risk of HMs increases when the Yellow River passes through the
Loess Plateau (Li et al., 2022b). Zhao et al. used PCA in the Pearl
River Estuary to trace HMs origins to upstream industrial
discharges, including metal plating and battery production, while
Liu et al. applied PMF in Lingding Bay and the lower Xijiang River to
reveal contributions frommixed industrial effluents (Liu et al., 2017;
Zhao et al., 2020). Despite these advances, most studies focus on
large mainstream rivers or single-source-dominated systems. Small
and medium-sized watersheds, particularly those influenced by both
industrial parks and mining activities, remain understudied. The
distribution, sources, and ecological risks of HMs in such composite-

pollution systems have not been systematically characterized.
Therefore, selecting representative watersheds with overlapping
anthropogenic pressures and conducting comprehensive
investigations into sediment contamination and ecological risk is
crucial for informing targeted pollution control and restoration
strategies.

Dazu District is rich in mineral resources, making mining
activities intense and a key pillar of the regional economy.
Meanwhile, Dazu is one of China’s largest hardware production
bases and distribution centers, featuring a highly developed
industrial system with concentrated hardware processing and
related industry chains (Ao et al., 2024). Over time, industrial
development and resource extraction have released large amounts
of heavy metal-containing waste gases, wastewater, and solid waste.
These pollutants enter the regional river systems through
atmospheric deposition, surface runoff, and groundwater
migration (Zhang et al., 2022). This increases HMs input load
and raises the accumulation risk of Pb, Cd, As, Hg, and other
metals in sediments. Especially during the flood season, heavy
rainfall causes increased surface runoff and river flow (Ciszewski,
2001). This enhances the potential for HMs from industrial parks,
mines, and polluted soils to migrate and spread into river systems
(Frogner-Kockum et al., 2020). The sampling for this study took
place during the flood season. The intense and frequent rainfall
increased surface runoff and soil erosion (Li et al., 2022a; Zhang
et al., 2018). This facilitated the transport of HMs frommining waste
and industrial discharges into rivers, leading to significant increases
in sediment HMs loads (Poot et al., 2007). Although previous studies
have revealed HMs pollution in farmland soils and agricultural
products in Dazu District, there is still a lack of systematic research
on the geochemical characteristics, pollution sources, and ecological
risks of HMs in river sediments under the influence of complex
human activities (Liu et al., 2022). This study focuses on river
sediments in Dazu District and aims to: (1) analyze the spatial
distribution and pollution levels of Pb, Cd, As, and Hg in sediments;
(2) identify their potential sources using PCA and PMF; (3) assess
the ecological risk based on Igeo and RI. The results will help clarify
the distribution and ecological risks of sediment HMs under the
joint influence of mining and hardware industries during the flood
season. It also fills a research gap in sediment contamination in this
region and provides scientific support for pollution control and
ecological restoration in Dazu District and other similarly disturbed
watersheds.

2 Materials and methods

2.1 Study area

Dazu District is located in the southeastern Sichuan Basin and
the northwestern part of Chongqing, China. It lies on the watershed
between the Fujiang and Tuojiang Rivers and is the source region of
the Laixi River. The main rivers in the district include the Laixi,
Kulong, and Huaiyuan Rivers. The terrain is generally elevated in the
northwest and southeast. The district has a subtropical humid
climate characteristic of the Sichuan Basin. The annual average
temperature ranges from 16.5°C to 18.5°C, with an average annual
precipitation of 1,163.3 mm. The flood season occurs from June to
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October, during which rainfall is concentrated (The climatic
conditions within the month to sampling are shown in
Supplementary Table S1). The average annual wind speed is
1.3 m/s, with the prevailing wind direction being north-northeast
(NNE). The district has a registered population of approximately
1.063 million. Its industrial structure mainly comprises four sectors:
industry, agriculture, tourism, and commerce. The region is rich in
mineral resources, with 19 types of minerals identified, including
coal, natural gas, shale, limestone, quartz sandstone, and ceramic
clay. In addition, Dazu hosts seven industrial clusters and is home to
the largest hardware industrial park in western China.

2.2 Sample collection and processing

Locations of the study area and sampling sites are illustrated in
Figure 1. This study focused on river basins within Dazu District,
where sampling sites were established in major rivers and tributaries
within industrial parks and mining areas. The sampling campaign

was carried out during June and July 2024, and a total of 85 surface
sediment samples (top 5–30 cm) were collected. In the field, A grab
sampler was used to collect sediment samples. Three parallel
samples were taken at each site. The samples were thoroughly
mixed using a wooden spoon. Then, 500–700 g of the mixed
sample was placed in a polyethylene zip-lock bag and sealed, and
stored in a portable refrigerator at 4°C for further analysis.

The sediment samples were analyzed at Chongqing Stand
Testing Technology Co., Ltd. After removing impurities, the
samples were dehydrated, dried, and ground to pass through a
100-mesh sieve. A random selection of 5% of the total submitted
samples was reanalyzed to calculate the relative deviation of
duplicate analyses. Routine analytical precision control was
conducted using certified national primary standard materials.
Four different national primary standard materials were selected
and evenly inserted into each analytical batch (50 samples per batch)
for simultaneous analysis with the sediment samples. Upon
completion of each batch, the logarithmic deviation and
logarithmic standard deviation between the measured and

FIGURE 1
Location of the Dazu District and sampling sites. (a) Distribution of industrial parks and mining areas; (b) Digital Elevation Model of Dazu District.
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certified values for each standard material were calculated to
quantify analytical precision. The selection of the four standard
materials was based on the characteristics of the study area samples,
the types and concentrations of key analytes, and background levels.
Standard materials covering high, medium, and low concentrations
were chosen for quality control. The acceptable analytical precision
rate for each element was required to be ≥ 98%. All sample analyses
met the quality control standards set by the monitoring unit. The
HMs elements analyzed included Pb, Cd, As, and Hg. The analytical
methods and detection limits for each element are presented in
Supplementary Table S2.

2.3 Environmental contamination
assessment

The Igeo was applied to assess the accumulation level of every
HMs investigated in sediments (Muller, 1969). The calculation can
be described as follows Equation 1:

Igeo � log2
Ci

1.5 × Bi
(1)

where Ci represented the determined content of every HMs i in
sediments, Bi represented the background value of stream sediments
in China (BSS) (Shi et al., 2016), 1.5 was a modified coefficient (Shen
et al., 2024). Contamination levels of HMs are categorized in
Supplementary Table S3.

2.4 Sediment quality guidelines

SQGs are widely used to assess the potential biological toxicity of
HMs in freshwater sediments (Macdonald et al., 1996). Each pollutant
is associated with two benchmark values: the Threshold Effect Level
(TEL) and the Probable Effect Level (PEL). These thresholds indicate
the likelihood of toxic effects on benthic organisms. When HMs
concentrations are below the TEL, adverse biological effects are rare or
absent.When concentrations exceed the PEL, toxic effects are likely to
occur frequently (Li et al., 2022b). Concentrations between TEL and
PEL suggest a potential for biological harm (Li et al., 2022c). The TEL
and PEL values for freshwater sediments used in this study are listed in
Supplementary Table S4.

2.5 Ecological risk assessment

The RI offers a comprehensive assessment of ecological risks by
incorporating HMs’ migration, transformation, and toxicity
(Hakanson, 1980; Lin et al., 2016). RI is computed using
Equations 2, 3:

Ei
r � Ti

r * C
i
f � Ti

r

Ci

Bi
(2)

RI � ∑n
i�1
Ei
r (3)

where Ei
r represents RI, T

i
r and C

i
f denote the toxicity coefficient and

contamination factor of heavy metal i, respectively. The toxicity

coefficients for As, Cd, Pb and Hg are 10, 30, 5 and 40, respectively.
Evaluation categories are shown in Supplementary Table S5.

2.6 Source apportionment methods

PCA were applied to initially identify the sources of HMs (Li
et al., 2022b; Liu et al., 2019). The PMF was utilized to further
identify and quantify the sources and their contributions of HMs
(Equations 4–6) (Dong et al., 2019; Liu et al., 2019; Liu et al., 2017)

Xij � ∑p
k�1

gikf kj + eij (4)

Q � ∑n
i�1

∑m
j�1

eij
uij

( )2

(5)

uij �

������������������������
Xij × RSD( )2 + 0.5 × MDL( )2

√
Xij >MDL( )

5
6
× MDL Xij ≤MDL( )

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (6)

where Xij denotes the concentration of HMj in sample i; Q is the
minimized objective function; uij indicates the uncertainty for HMj

in sample i; gik represents the contribution of source k to sample i, fkj
is the concentration of HMj from source k; eij is the residual matrix;
RSD refers to the relative standard deviation of the content of HMs;
MDL stands for the method detection limit.

3 Results and discussion

3.1 Distribution characteristics of HMs
in sediments

3.1.1 Concentration characteristics of HMs
The statistical characteristics of HMs concentrations in river

sediments within the study area are presented in Supplementary
Table S4. The concentration ranges of Pb, Cd, As, and Hg were
5.20–55.10 mg/kg, 0.02–0.71 mg/kg, 0.87–12.00 mg/kg, and
0.03–0.79 mg/kg, respectively. Their average concentrations
follow the order of Pb > As > Cd > Hg, with corresponding
values of 23.43 ± 8.32, 3.69 ± 2.30, 0.24 ± 0.1, and 0.09 ±
0.092 mg/kg. Only the concentration of As was below BSS. The
average concentrations of Pb, Cd, and Hg were 1.02, 1.84, and
3 times higher than BSS, respectively. This suggests that Pb, Cd, and
Hg may be significantly influenced by anthropogenic activities.

Among the 11 rivers in the study area, only a few samples from
the Ciba River and Huaiyuan River show mean As concentrations
slightly exceeding the BSS (Figure 2). The other rivers had As
concentrations below the BSS. Previous studies have shown that
the natural geological background and mining activities in upstream
mining zones, along with pollutant discharge from industrial parks
and local agricultural activities, can all contribute to the enrichment
of As (Jia et al., 2018; Yang et al., 2007). In the study area, As
concentrations in the upper Huaiyuan River are higher than BSS. No
mines or industrial enterprises are present in the anomalous areas.
Therefore, As levels are mainly controlled by natural geological
background and show no clear signs of external pollution. The
average concentrations of Cd and Hg exceeded the BSS in all rivers.
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Industrial production may release Cd and Hg (Liu et al., 2023; Liu
et al., 2024). Mining and tailings leachate may also introduce these
metals into surface waters (Chen et al., 2019; Liu et al., 2023).
Agricultural activities may increase Cd and Hg input through
surface runoff. The application of Cd-containing phosphate
fertilizers, organic fertilizers, and livestock manure can introduce
Cd and Hg into river systems during rainfall or irrigation. This
process contributes to elevated HMs levels in sediments (Liu et al.,
2024). Cd and Hg enrichment in the study area may be due to
combined effects of industrial discharge, mining activities, and
agricultural non-point source pollution. Multiple studies have
shown that Pb released from vehicle exhaust can accumulate on
the ground through atmospheric deposition. During intense rainfall,
surface runoff can transport this Pb into river systems, resulting in
increased Pb concentrations in sediments (Hanfi et al., 2019; Liu
et al., 2023; Nawrot et al., 2020). This leads to Pb accumulation in
sediments. Due to emissions and dust from vehicles used in
hardware industry zones and mining areas, Pb input increases.
As a result, Pb levels in sediments are generally higher than BSS.
Traffic emissions and industrial activities are likely the main reasons.

3.1.2 Spatial distribution of HMs
The spatial distribution of HMs accumulation in river

sediments is demonstrated in Figure 3. Among the four HMs,
the As concentration in the spatial distribution rarely exceeds BSS,
except in the upper reaches of the Huaiyuan River and the lower
reaches of the Ciba River. Certain areas in the study region are
naturally enriched in As, particularly in the upper reaches of the
Huaiyuan River, which may be attributed to local geological
structures and mineral weathering (Jia et al., 2018; Yang et al.,
2007). Although localized mining activities may contribute to As
levels to some extent, the fact that the concentrations are close to
the BSS suggests that the slight exceedance of As is primarily due to
the natural geochemical background. The concentrations of Cd
and Hg in the study area’s river basins all exceed the BSS. Modern
industrial processes frequently discharge wastewater and exhaust
gases containing Cd and Hg, and these pollutants can enter water
bodies either through atmospheric deposition or direct discharge,
resulting in Cd and Hg levels in sediments that generally surpass
the local background values in all river sections (Gao et al., 2025;
Liu et al., 2023). Chen et al. found that mining, ore processing,

FIGURE 2
The content of HMs in sediments of different rivers within the study area. The dashed line represents BSS: (a) As, (b) Cd, (c) Pb, and (d) Hg.
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smelting, and tailings disposal in several mining areas around
Taojiang in Quannan County were often accompanied by the
release of Cd and Hg (Chen et al., 2019). Li et al. reported that
in the Han River Basin, high concentrations of Cd and Hg in
sediments mainly originated from leakage of leachate from tailings
storage facilities. These HMs entered river systems through surface
runoff or groundwater migration, leading to their continuous
accumulation in sediments across different river sections (Li
et al., 2022c). Therefore, frequent mining activities and dense
tailings storage, coupled with climate-induced heavy rainfall
and enhanced runoff during the flood season, may jointly
contribute to the high accumulation of Cd and Hg in river
sediments. Under intensive agricultural activities, fertilizers and

pesticides containing trace Cd and Hg enter rivers more readily
during heavy rainfall events, which are increasingly frequent due to
climate variability, thereby intensifying sediment contamination
(Liu et al., 2024). Pb concentrations in sediments from Kulong
River, Taiping River, and the upper Huaiyuan River are
significantly higher than BSS. These rivers are located
downstream of industrial parks or upstream of mining areas.
Vehicle transport and production activities release exhaust and
dust during hardware manufacturing and mining. These emissions
are important sources of Pb input (Hanfi et al., 2019; Liu et al.,
2023; Nawrot et al., 2020). Therefore, traffic emissions and
industrial activities are likely the main reasons for Pb
accumulation in these sediments.

FIGURE 3
Spatial distribution of HMs concentration in sediments: (a) As, (b) Cd, (c) Pb, and (d) Hg.
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3.2 Pollution levels of HMs in sediments

According to Igeo classification standards, As and Pb levels in
river sediments across the study area are generally within the
unpolluted category, while Cd levels range from unpolluted to
slightly polluted. Hg exhibits the highest pollution levels, with
48.2% of sampling sites classified as slightly polluted, 15.3% as
moderately polluted, 3.5% as moderately to heavily polluted, and
1.1% as heavily polluted. The results indicate that sedimentary As
exhibits unpolluted to low pollution levels, while Cd, Pb, and Hg
show varying degrees of contamination. As and Pb concentrations
are relatively high in the Huaiyuan River, whereas Cd and Hg reach
peak levels in the Laixi River. This suggests both rivers were strongly
affected by human activities. The Laixi River is influenced by the
hardware industrial park, whereas the Huaiyuan River flows through
areas with intensive mining. Industrial activities may mainly
contribute to As and Pb enrichment. Mining is likely the main

source of Cd and Hg pollution. The Igeo of Cd and Hg were greater
than 0 in all rivers. This indicates that sediments in all 11 rivers were
polluted to different degrees. In Laixi River, Luojia River, Taiping
River, and Hongqi River, Igeo of Hg was greater than 2. These four
rivers may be severely polluted by Hg (Figure 4).

As shown in Figures 5A-D, the concentrations of As, Cd, and Pb
in sediments from all 11 rivers were below their corresponding PEL
values. This indicates that the overall biological toxicity risk from
these metals is low. However, several samples showed As, Pb, andHg
concentrations exceeding their TEL values. One sample showed Hg
concentration above the PEL value. These results suggest that As, Pb,
and Hg may occasionally cause adverse biological effects. The
sampling period of this study coincided with the flood season.
Heavy rainfall during this period may have increased surface
runoff, disturbed sediments, and promoted pollutant
resuspension (Li et al., 2022a; Zhang et al., 2018). These
processes may enhance the mobility and bioavailability of HMs,

FIGURE 4
Igeo values of HMs in sediments along the different rivers. The dashed line represents classification line. I-Practically uncontaminated, II-
Uncontaminated to moderately contaminated, III-Moderately contaminated, IV-Moderately to strongly contaminated, V-Strongly contaminated: (a) As,
(b) Cd, (c) Pb, and (d) Hg.
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especially As, Cd, and Hg. Based on sediment quality guideline
thresholds, As, Cd, and Hg are identified as the main ecological risk
elements in the study area (Ciszewski, 2001; Wu et al., 2017). Their
high-risk zones are mainly located in the Laixi River, Huaiyuan
River, and Taiping River. These rivers are more susceptible to HMs
input and sediment disturbance during the flood season. Sediments
in these zones are more likely to release HMs, posing potential
threats to aquatic ecosystems.

3.3 Ecological risk levels of HMs in sediments

The Er considers the toxicity response coefficients and biological
sensitivity of different HMs (Gąsiorek et al., 2017;Wang et al., 2023).
It was used to evaluate the ecological risks of HMs in sediments from
11 rivers in the study area. The mean values of the individual
potential ecological risk indices for the four HMs decrease in the
following order: Hg (102.49) > Cd (55.79) > Pb (5.09) > As (4.09).
Among them, the average Er value for Cd falls within the moderate

ecological risk category (40 ≤ Er < 80), Hg falls within the strong
ecological risk category (80 ≤ Er < 160), while As and Pb are both
classified as slight ecological risk. Cd and Hg had the highest values
in the Laixi River, indicating the highest potential ecological risks in
this basin (Figure 6).

The spatial distribution of RI for HMs in sediments is shown in
Figure 7. The RI values in the upper reaches of the Huaiyuan River
and the Kulong River indicate medium-high to high ecological risk.
Several historical and active mines, quarries, and tailings storage
sites are located in this area. Mining activities release dust,
wastewater, and leachate containing HMs. These pollutants are
transported into river systems via surface runoff. During the
flood season, intensified precipitation and frequent flood events
further accelerate the mobilization of these contaminants, resulting
in significantly elevated concentrations of Cd and Hg in sediments
(Chen et al., 2019; Li et al., 2022c). Cd and Hg have high toxic
response factors. These two elements are the key contributors to
elevated RI values. Their accumulation directly increases the
ecological risk level in this region. The RI values in the Laixi

FIGURE 5
SQGs of HMs in sediments along the different rivers. The dashed line represents classification line: (a) As, (b) Cd, (c) Pb, and (d) Hg.
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River and Taiping River basins are generally at strong to very strong
levels. These basins contain concentrated industrial parks for
hardware processing, electroplating, and acid washing. Long-term
emissions from these parks affect sediment quality (Jia et al., 2018;
Yang et al., 2007). Industrial wastewater treatment has improved in
recent years. However, some enterprises still discharge illegally.
Mixed drainage and leakage from aging pipelines are also
observed. These issues, when combined with climate-driven
heavy rainfall, enhance the input of Cd and Hg into sediments
through both surface runoff and groundwater recharge (Ciszewski,
2001). As a result, ecological risks continue to accumulate.

In contrast, the Zhuxi River and Luojia River basins are located
at the edge of the study area. These areas do not have significant
mining or industrial activities. Land use is dominated by agriculture.
The rivers have fast flow and strong hydrodynamics. The ecological
risk in these areas remains low. These regions represent the
background condition of non-industrial areas.

Cd and Hg are the main contributors to sediment-related
ecological risk in the study area. These elements show high

biological toxicity and strong mobility. They easily bind with
organic matter or sulfur and accumulate in sediments. They
contribute significantly to ecological risk in many sampling
sections. The toxic response factors of Cd and Hg are 30 and 40,
respectively. These values are much higher than those of other
elements. Therefore, even at moderate concentrations, their
ecological impacts should not be ignored. Future monitoring
should focus on Cd and Hg pollution in sediments, especially in
mining zones, industrial parks, and downstream regions, and should
incorporate hydrological and climatic variables to better assess risk
dynamics under changing environmental conditions.

3.4 Source identification and apportionment
of HMs in sediments

3.4.1 Source identification results
The Kaiser-Meyer-Olkin (KMO) measure and Bartlett’s test of

sphericity were applied to the HMs concentrations across all

FIGURE 6
Er values of HMs in sediments along the different rivers. The dashed line represents classification line. I-Slight ecological risk, II-Moderate ecological
risk, III-Strong ecological risk, IV-Very strong ecological risk, V-Extremely strong ecological risk: (a) As, (b) Cd, (c) Pb, and (d) Hg.
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sampling sites in the study area. The KMO value was 0.59, and
Bartlett’s test yielded a significance level of 0.011, indicating that the
data are suitable for PCA (Li et al., 2022b; Xie et al., 2022). The three
principal components extracted accounted for a cumulative 83.5% of
the total variance, effectively capturing the variability in HMs
concentrations within the sediment samples (Table 1). The
component matrix revealed that Cd and Pb exhibited significant
loadings on PC1, explaining 38.7% of the total variance. Hg was
prominent on PC2, accounting for 24.2% of the variance, while As

was dominant on PC3, explaining 20.6% of the variance.
Considering the spatial distribution and risk assessments of Cd
and Pb in the study area, elevated risks were identified in mining and
industrial park regions. Previous studies suggest that Cd primarily
originates from industrial discharges and non-ferrous metal
smelting, while Pb is commonly associated with various
industrial processes (Liu et al., 2023) and vehicular emissions
(Hanfi et al., 2019; Nawrot et al., 2020). Therefore, PC1 is
indicative of industrial and transportation-related sources. Hg
exhibited the highest loading on PC2. Based on its spatial
distribution and risk assessment, higher risks were observed in
mining zones, whereas lower risks were noted in areas
surrounding industrial parks and downstream regions. This
suggests that PC2 is predominantly influenced by mining activities.
As posed minimal ecological risks across the study area, with only a
few samples in mining zones showing low risk levels. The samples
exceeding background values were located upstream of the industrial
park, eliminating industrial interference. Thus, PC3 is primarily
governed by geological background factors.

3.4.2 Source apportionment results
PMF was further applied to quantitatively apportion the source

contributions of HMs in river sediments. PMF model, as a receptor
model capable of identifying pollutant sources and quantifying their

FIGURE 7
Comprehensive RI map of the study area.

TABLE 1 PCA for HMs of the study area.

HMs Component

PC1 PC2 PC3

As 0.518 −0.005 0.792

Cd 0.551 −0.472 −0.084

Pb 0.562 −0.058 −0.600

Hg 0.336 0.879 −0.081

Total variance (%) 38.7 24.2 20.6

Cumulative variance (%) 38.7 62.9 83.5
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contributions, has been widely applied in environmental studies
(Dong et al., 2019; Liu et al., 2019). To guarantee result accuracy, the
residual matrix E was controlled by minimizing the Qrobust/Qture

ratio, various indicators were tested, and the system was run more
than 20 times to achieve the best solution (Dong et al., 2019). In this
study, the PMF model extracted three factors that resulted in the
lowest Q value, with residuals between −1 and +1, demonstrating the
model’s reliable and precise source apportionment (Detailed
parameters are presented in Supplementary Tables S6–S10). The
quantitative source apportionment results obtained from PMF are
presented in Figure 8.

Factor 1 accounts for 3.67% of the total contribution and is
primarily characterized by As (71.7%). In this study, the ecological
risk of As is low, and the sampling points exceeding background
values are located upstream of the industrial park, unaffected by
industrial activities. Natural factors are the main contributors to
these HMs concentrations. Therefore, it is presumed that factor
1 may be an natural source of pollution.

Factor 2 accounts for 55.05% of the total contribution and is
primarily composed of Cd (70.9%) and Pb (47.9%). Industrial
emissions and vehicular exhaust are the primary contributors to
these HMs concentrations (Hanfi et al., 2019; Liu et al., 2023; Nawrot
et al., 2020). Field investigation showed that industrial parks and
quarries are distributed in areas with high Cd and Pb levels.
Wastewater and exhaust gases from metallurgical, electroplating,
and acid-washing processes, as well as vehicle emissions, enter the
water environment through atmospheric deposition. Therefore, it is
speculated that factor 2 may be a combined source of industrial
pollution and partial traffic pollution, which is consistent with
PC1 results.

Factor 3 accounts for 41.28% of the total contribution and
primarily consists of Hg (53.9%). Combining the results of
principal component analysis and field observations, mining
activities are identified as the primary source of Hg. Therefore,
Factor3 are attributed to mining-related sources. The PMF model
analysis indicates that surface soil contamination is primarily
influenced by natural sources, industrial-traffic sources, and
mining activities, aligning with the conclusions drawn from PCA.

4 Conclusion

In this study, Cd and Hg showed similar spatial distribution
patterns, with high concentrations mainly occurring downstream of
the mining belt and industrial park, while Pb was more strongly
influenced by the industrial and vehicle transport, and As anomalies
were limited to localized upstream areas within Huaiyuan River. Igeo,
SQGs and RI revealed relatively severe HMs pollution in sediments of
four major rivers in Dazu District, with Hg reaching slight to very
strong pollution levels—particularly in the midstream of the Laixi
River—while As and Pb remained at slight ecological risk. The overall
ecological risk wasmoderate, but areas near the industrial park, mining
zones, and their downstream sections exhibited strong to very strong
ecological risks. Seasonal climatic factors, especially intense rainfall and
flooding during the flood season, enhanced surface runoff and
sediment resuspension. These processes promoted the mobilization
and redistribution of HMs, thereby exacerbating their contamination
and ecological risks. Source identification and apportionment using
PCA and PMF indicated that natural inputs, industrial activities, and
mining operations were the main contributors to HMs contamination.

FIGURE 8
Source apportionment results of HMs based on PMFmodel. (a) Factor 1; (b) Factor 2; (c) Factor 3; (d) Source contributions; (e) Species contribution.
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Source apportionment results indicate that natural sources account for
3.67%, industrial and traffic-related sources contribute 55.05%, and
mining activities contribute 41.28%. Among them, Cd and Pb were
primarily influenced by vehicle emissions and industrial activities, Hg
was mainly linked to mining, and As was derived from both natural
and anthropogenic sources.

5 Future outlook

This study used sediment samples collected once during the
summer. These data reflect the status of HMs contamination in
11 rivers in the study area. However, the absence of multi-seasonal
or multi-year data limits the ability to assess temporal variations.
Seasonal changes in metal concentrations and ecological risks driven
by hydrological or anthropogenic factors remain uncertain. Future
studies should include long-term sampling campaigns conducted in
different seasons and under varying hydrological conditions. This
approach can help capture the spatiotemporal dynamics and
transport mechanisms of sediment-bound HMs. In addition,
long-term monitoring is essential for evaluating the impacts of
climate-related extreme weather events, such as floods and
droughts, on the resuspension and remobilization of HMs. These
efforts will provide scientific support for watershed-scale risk
assessment and adaptive environmental management.
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