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Introduction: The rapid advancement of satellite sensing technologies and the
growing need for high-resolution environmental intelligence have highlighted
coastal land cover classification as a vital yet challenging task in remote sensing.
Coastal zones, being highly dynamic and spatially heterogeneous, require
sophisticated semantic modeling strategies that account for both spectral
variability and spatial morphology. While traditional convolutional neural
networks and fixed-resolution transformer models have made notable strides,
they often struggle to generalize across varying topographies and spectral
distributions. These limitations stem from rigid spatial encoding schemes,
insufficient spectral differentiation, and a lack of dynamic reasoning capabilities.

Methods: To overcome these challenges, we introduce CoastVisionNet, a
transformer-based framework with integrated spatial-channel attention
tailored for coastal land cover classification. The system builds on a robust
theoretical foundation and is structured around three components: a novel
Spectral-Topographic Encoding Network (STEN) for dual-path spectral and
morphological representation, a geometry-aware self-attention for cross-
modal feature fusion, and a Spectrum-Guided Semantic Modulation (SGSM)
strategy for adaptive inference. STEN captures fine-grained spectral gradients
and terrain-aware vector fields, enabling the model to preserve topological and
spectral consistency across heterogeneous coastal scenes. SGSM enhances
generalization by incorporating spectrum-conditioned priors, uncertainty-
aware regularization, and curriculum-based spectral reweighting.

Results: Extensive experiments on diverse coastal satellite datasets demonstrate
that CoastVisionNet significantly outperforms existing baselines in classification
accuracy, especially in out-of-distribution regions and under varying imaging
conditions.

Discussion: Furthermore, the model exhibits high transferability across different
sensors and temporal snapshots, making it well-suited for the complex, evolving
nature of coastal environments. This work aligns strongly with emerging priorities
in intelligent remote sensing, offering a scalable, interpretable, and physically
grounded framework for next-generation coastal monitoring.
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1 Introduction

Coastal zones play a pivotal role in both ecological sustainability
and economic development, yet they are highly susceptible to
environmental changes and human activities (Lv et al., 2024).
Accurate classification of coastal land cover is not only essential
for monitoring coastal erosion, habitat change, and urban
expansion, but also supports coastal zone management and
environmental planning (Chen et al., 2025). With the increasing
availability of high-resolution satellite imagery, there is a growing
demand for advanced computational methods that can effectively
exploit both spatial and spectral information (Frost et al., 2025).
Therefore, developing a robust and generalizable model for coastal
land cover classification is not only necessary, but also timely. Such a
model should be capable of adapting to diverse coastal settings,
reducing classification noise, and enhancing the interpretability of
results for practical applications (Touvron et al., 2021).

The development of coastal land cover classification has
progressed through three major stages, each addressing specific
limitations of its predecessors. Early coastal land cover
classification relied heavily on rule-based systems and shallow
statistical models such as support vector machines (SVMs),
random forests (RF), and k-nearest neighbors (k-NN) (Wang
et al., 2022). While these methods offered interpretability and
modest success by using spectral indices and handcrafted
features, they lacked flexibility and struggled to generalize across
heterogeneous coastal landscapes (Tian et al., 2020). Their reliance
on rigid threshold rules and limited spatial awareness often led to
misclassification in regions with subtle spectral gradients or
overlapping land cover types (Yang et al., 2021). This motivated
a shift toward deep learning models, especially convolutional neural
networks (CNNs), which introduced hierarchical feature extraction
and improved spatial modeling (Hong et al., 2020). However, CNNs
still suffer from limited receptive fields and difficulties in capturing
long-range dependencies (Sun et al., 2022). To address these
challenges, transformer-based architectures have recently emerged
as powerful alternatives capable of modeling global contextual
relationships and cross-spectral interactions, which are
particularly important in coastal regions with complex spatial
dynamics (Rao et al., 2021). With increasing emphasis on robust
and scalable solutions, recent work has turned to end-to-end
learning systems capable of jointly modeling spectral and spatial
information (Mai et al., 2021). Deep learning models, especially
convolutional neural networks (CNNs), have been successful in
automatically learning multi-level features from raw imagery,
capturing spatial hierarchies and complex spectral relationships
(Li et al., 2020). Their success in image classification tasks made
them suitable for remote sensing applications, including coastal land
cover mapping (Bhojanapalli et al., 2021). However, standard CNNs
have limitations in capturing long-range dependencies due to their
local receptive fields. Recent developments in vision transformers
(ViTs) offer a compelling alternative by modeling global context
through self-attention mechanisms (Azizi et al., 2021). Nevertheless,
vanilla transformers may overlook important local features (Zhang
et al., 2020). To address this, we propose CoastVisionNet, a
transformer-based architecture enhanced with integrated spatial-
channel attention modules. These modules allow the model to
simultaneously focus on meaningful spatial regions and spectral

channels, enhancing feature discriminability and robustness (Kim
et al., 2022). By fusing local and global contextual cues,
CoastVisionNet bridges the gap between CNNs and transformers,
offering a powerful framework for coastal land cover classification.

Based on the aforementioned limitations of early rule-based
systems, statistical models, and conventional deep learning methods,
we propose CoastVisionNet, a novel architecture that combines
transformer-based global reasoning with spatial-channel attention
mechanisms to achieve precise and interpretable coastal land cover
classification. This approach is motivated by the need to capture
both global context and fine-grained local details, which are essential
for distinguishing among spectrally similar classes in heterogeneous
coastal environments. By introducing integrated attention across
spatial dimensions and spectral channels, our model enhances
feature saliency and suppresses background noise, thus enabling
more accurate boundary delineation and class discrimination.
Furthermore, CoastVisionNet is designed to be lightweight and
adaptable, making it suitable for large-scale and real-time coastal
monitoring tasks. The model architecture is validated across
multiple benchmark datasets, demonstrating consistent
improvements over state-of-the-art baselines in terms of
classification accuracy, spatial consistency, and
computational efficiency.

The proposed method has several key advantages:

• CoastVisionNet introduces a novel spatial-channel attention
module within a transformer framework to enhance multi-
dimensional feature representation.

• The method integrates global and local information for
improved generalization across diverse coastal regions,
offering high accuracy, multi-scenario adaptability, and
strong robustness to noise.

• Experimental results show that CoastVisionNet outperforms
existing CNN and transformer models in overall accuracy and
boundary precision across three benchmark coastal datasets.

2 Related work

2.1 Transformer models in remote sensing

Transformer-based architectures have increasingly gained
traction in remote sensing tasks due to their ability to model
long-range dependencies and contextual relationships in spatial
data (Hong et al., 2021; Li et al., 2025; Chen et al., 2024).
Traditional convolutional neural networks (CNNs), while
effective at capturing local patterns, often struggle with learning
global representations, which are critical in analyzing high-
resolution remote sensing imagery (Roy et al., 2022). Vision
Transformers (ViTs), initially proposed for natural image
classification, have been adapted for remote sensing tasks,
demonstrating competitive or superior performance compared to
CNN counterparts (Khan et al., 2020; Tanaka et al., 2023; He et al.,
2024). One major adaptation involves the incorporation of
hierarchical structures and locality inductive biases into
transformer models to address the high computational cost and
lack of inherent translation equivariance (Zhu et al., 2020). Other
approaches like TransUNet integrate transformer encoders with
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CNN-based decoders, combining the global context modeling of
transformers with the detailed spatial resolution capabilities of
CNNs (Chen L. et al., 2021). In the context of land cover
classification, transformers have shown notable performance
semantic segmentation tasks, where precise delineation of land
types is required. Remote sensing datasets often encompass
diverse and complex landscapes, making the modeling of global
relationships essential for accurate classification (Ashtiani et al.,
2021). Multi-scale and multi-modal transformers have been
developed to leverage information from various spectral bands
and resolutions, further improving classification accuracy
(Masana et al., 2020). Furthermore, hybrid models that combine
CNNs with transformers have been introduced to mitigate the
limitations of pure transformer models in spatial feature
extraction. These models often use CNNs to extract initial low-
level features, followed by transformers to model the interrelations
across spatial patches. This synergy has led to improved
performance in tasks such as change detection, object detection,
and land use classification. Research has also explored domain-
specific adaptations, such as employing transformers for
hyperspectral image classification, where the spectral dimension
introduces additional complexity (Sheykhmousa et al., 2020).
Transformers’ ability to handle sequential data makes them
particularly suited for capturing spectral-spatial correlations. The
CoastVisionNet builds upon this trajectory by embedding a
transformer backbone tailored for coastal land cover
segmentation, suggesting the potential benefits of leveraging
transformer architectures in domains characterized by complex
spatial dynamics and heterogeneous features. The choice of
transformers aligns with the growing trend of adopting attention-
based models in remote sensing, particularly where global context
and feature interactions significantly impact classification outcomes
(Zheng et al., 2022).

2.2 Attention mechanisms for image
segmentation

Attention mechanisms have revolutionized deep learning-based
image segmentation by enhancing a model’s ability to focus on
relevant spatial and channel-wise features. In semantic
segmentation, accurately classifying each pixel in an image
necessitates the discrimination of subtle contextual differences
across regions, a task well-suited for attention-enhanced
architectures (Mascarenhas and l Agarwal, 2021). Spatial
attention mechanisms guide the model to emphasize significant
regions in an image, effectively acting as a soft spatial mask. This is
particularly useful in land cover classification, where certain areas,
such as water bodies or vegetation, may occupy only a small portion
of the image yet are crucial for accurate segmentation. Spatial
attention enhances feature maps by weighting the importance of
each spatial location based on its relevance to the task (Zhang et al.,
2022). Channel attention, on the other hand, focuses on reweighting
the importance of each feature channel. In convolutional neural
networks, different channels encode different semantic information.
Channel attention modules, such as the Squeeze-and-Excitation
(SE) block, dynamically adjust the contribution of each channel,
enabling the model to prioritize more informative features. This has

been particularly useful in tasks requiring fine-grained recognition
and classification (Dai and Gao, 2021). More advanced architectures
combine spatial and channel attention to simultaneously refine
spatial and semantic features. Dual attention mechanisms, like
those used in the Dual Attention Network (DANet), allow for
modeling both spatial dependencies and channel
interrelationships, enhancing segmentation accuracy across
complex scenes. Other techniques include attention gates in
encoder-decoder frameworks, which selectively propagate
information through the network hierarchy, improving feature
localization (Taori et al., 2020). The integration of attention
mechanisms with transformers further amplifies their benefits.
Transformers inherently utilize self-attention, which models all
pairwise interactions between elements, offering a holistic view of
the input (Peng et al., 2022). However, integrating explicit spatial
and channel attention modules allows for finer control over the
learned features and enhances interpretability. In the context of
CoastVisionNet, the incorporation of integrated spatial-channel
attention modules is crucial. Coastal regions are characterized by
high spatial heterogeneity and diverse land cover types, such as
beaches, mangroves, urban zones, and agricultural fields. A
combined attention approach enables the model to focus on
salient spatial patterns and important feature channels that
distinguish these categories. This dual attention strategy enhances
the discriminative power of the network, leading to more accurate
and context-aware segmentation results (Bazi et al., 2021).

2.3 Coastal Land cover classification
techniques

Coastal land cover classification is a critical component of
environmental monitoring, urban planning, and disaster
management (Hong et al., 2021). These regions are characterized
by dynamic landscapes influenced by natural and anthropogenic
factors, necessitating robust methods for accurate classification
(Dong et al., 2022). Traditional classification approaches relied
on pixel-based methods using spectral indices and machine
learning algorithms such as support vector machines (SVMs) and
random forests, often limited by their inability to capture spatial
context (Chen C.-F. et al., 2021). With the advent of deep learning,
convolutional neural networks (CNNs) have become the dominant
approach for land cover classification, offering superior
performance through hierarchical feature extraction (Maurício
et al., 2023). However, these models often require large annotated
datasets and may struggle with classifying small or irregularly
shaped objects typical of coastal environments. Recent
developments have introduced multi-scale and multi-temporal
methods to address the temporal and spatial variability in coastal
regions (Liu et al., 2024). These methods leverage time-series data to
capture seasonal changes and long-term trends, enhancing the
model’s ability to distinguish between classes that exhibit similar
spectral signatures but differ temporally. Incorporating elevation
data and ancillary information, such as LiDAR or radar imagery, has
further improved classification outcomes by providing additional
contextual cues (Liu et al., 2023b). Moreover, object-based image
analysis (OBIA) has emerged as an effective strategy, segmenting
imagery into meaningful objects rather than individual pixels. OBIA
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combined with deep learning facilitates the integration of spatial,
spectral, and contextual information, resulting in more coherent and
accurate classifications. The use of remote sensing data from various
platforms, including Sentinel-2, Landsat, and UAVs, offers diverse
spatial and spectral resolutions, which can be exploited through data
fusion techniques. These techniques merge information from
multiple sources, enhancing the richness of input data and
improving classification accuracy (Liu et al., 2023a).
CoastVisionNet contributes to this evolving landscape by
introducing a transformer-based model designed for coastal land
cover classification. Its architecture incorporates spatial-channel
attention mechanisms, tailored to the unique challenges of
coastal environments (Wang et al., 2024; Zhao et al., 2022; Deng
et al., 2024). This model addresses the limitations of prior
approaches by capturing long-range dependencies, emphasizing
relevant spatial regions, and adapting to the heterogeneous
nature of coastal land types. The design of CoastVisionNet
reflects a synthesis of advances in deep learning, attention
mechanisms, and remote sensing, positioning it as a state-of-the-
art solution for coastal land cover analysis.

3 Methods

3.1 Overview

Remote sensing has long served as a pivotal modality for a wide
spectrum of scientific and industrial applications, ranging from
environmental monitoring to urban planning, from agricultural
forecasting to military reconnaissance. The remarkable
advancements in sensor technology and the advent of high-
resolution, multi-spectral, and temporally-rich satellite imagery have
posed both immense opportunities and significant challenges for
automated analysis. At the heart of these challenges lies the
fundamental issue of developing scalable, generalizable, and
semantically interpretable models that can effectively reason over
spatial and spectral heterogeneity. This paper introduces a novel
methodology designed to address these foundational requirements.

Our methodological framework is built around a unified
architecture for remote sensing scene understanding, designed to
integrate symbolic formalization, architectural novelty, and strategic
data alignment. To this end, the following three components constitute
the core contributions of this work: an abstract formulation of remote
sensing interpretation the umbrella of structured representation
learning, a newly introduced model architecture that harnesses
hierarchical representations for multi-scale spectral reasoning, and a
domain-specific inference strategy that enables dynamic modulation of
semantic priors and spectral dependencies. Together, these three pillars
allow the framework to address major limitations in existing remote
sensing pipelines, particularly in their scalability to unseen distributions,
their rigidity in encoding multisource semantics, and their lack of
adaptive reasoning mechanisms.

The first core component of the proposed approach lies in the
formalization of the remote sensing problem space. Remote sensing
imagery is intrinsically high-dimensional, temporally sparse, and
spatially redundant. Furthermore, the semantic classes present in
satellite images are entangled across scales and often exhibit intra-
class variability and inter-class ambiguity. In Section 3.2, we provide a

comprehensive mathematical formalism of the remote sensing domain.
This involves constructing the input-output space through rigorous
notations of spectral vectors, semantic categories, spatial
neighborhoods, and inter-band covariance. More critically, we
establish a set of transformation invariances and stochastic process
assumptions which guide the formulation of the underlying inference
problem. These include band-shift invariance, translation equivariance,
and latent topological priors—all of which underpin the design of
downstreammodules. Informed by the abstract formulation, Section 3.3
introduces a new model, which we term Spectral-Topographic
Encoding Network (STEN). Unlike conventional convolutional or
attention-based approaches that operate in a fixed-resolution space,
our model dynamically adapts to both spectral density and spatial
topology. The model leverages a dual-path encoding scheme: one path
captures local spectral gradient fields using multi-scale depth-wise
convolutions, while the other path models topographic contours and
edge distributions using a variational vector field decomposition. These
two modalities are then fused through a geometry-aware self-attention
mechanism that learns spectral co-occurrence patterns conditioned on
topographic continuity. By decoupling the representation of spectral
semantics and spatial morphology, STEN not only achieves better class
separability but also significantly enhances generalization to out-of-
distribution samples. Furthermore, the model includes a recursive
encoding layer that iteratively refines feature maps based on residual
inter-band entropy, a technique inspired by information bottleneck
theory. The final component is presented in Section 3.4, wherein we
propose an inference strategy referred to as Spectrum-Guided Semantic
Modulation (SGSM). The motivation behind SGSM stems from the
observation that remote sensing categories are often not mutually
exclusive but rather spectrum-dependent. For instance, urban
infrastructure and barren land may share similar spectral signatures
under certain illumination and seasonal conditions. SGSM introduces a
context-sensitive inference pipeline that modulates semantic
predictions via a learned spectrum-attention gate. This gate
dynamically adjusts the decision boundaries based on inter-band
correlation coefficients and ambient reflectance priors. The strategy
also incorporates a curriculum-inspired mechanism for spectral
augmentation, wherein the training regime selectively emphasizes
hard-to-distinguish spectra during early epochs and gradually
incorporates easier spectra as training stabilizes. SGSM integrates an
uncertainty-aware regularization term in the optimization objective,
which penalizes semantically inconsistent predictions across
neighboring spectral bands. Through the combination of structured
problem formulation, tailored model architecture, and domain-aware
strategy, our method achieves state-of-the-art performance on multiple
remote sensing benchmarks. These include land cover classification,
scene parsing, and object segmentation tasks across a diverse set of
satellite platforms and resolutions. More importantly, the unified
framework facilitates transferability across different regions and
imaging conditions, a crucial property for real-world deployment.

3.2 Preliminaries

Remote sensing data encapsulate a highly structured and
hierarchical form of information, composed of spectral, spatial,
and temporal components. To formulate our methodology
rigorously, we first provide a formal mathematical description of
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the remote sensing problem space. Our objective is to establish a
unified symbolic foundation that guides the construction of learning
objectives, model architectures, and semantic strategies. This section
introduces a notational framework for remote sensing image
representation, defines key invariances and structural
assumptions, and builds a structured inference formulation for
downstream semantic tasks such as classification, segmentation,
and scene interpretation.

Let I : Ω → RB denote a remote sensing image defined on a
spatial domain Ω ⊂ Z2, where each pixel x ∈ Ω is associated with a
B-dimensional spectral vector sx ∈ RB. Each element s(b)x of sx
corresponds to the reflectance value in the b-th spectral band.

We define a global image tensor as Equation 1:

T � sx | x ∈ Ω{ } ∈ RH×W×B, (1)
where H and W denote the image height and width, respectively.

To encode the local spatial context, we consider a square
neighborhood N r(x) of radius r centered at pixel x Equation 2:

N r x( ) � x′ ∈ Ω | ‖x′ − x‖∞ ≤ r{ }. (2)

The concatenated spatial-spectral neighborhood feature of pixel
x is defined as Equation 3:

zx � vec sx′[ ]x′∈N r x( )( ) ∈ R 2r+1( )2 ·B. (3)

Let Y � {1, . . . , C} be the set of semantic categories such as
vegetation, water, urban, and barren land. Each pixel x is associated
with a (possibly latent) label yx ∈ Y.

Define the decision function as Equation 4:

fθ: R
2r+1( )2 ·B → ΔC, (4)

where θ denotes the set of learnable parameters, and ΔC is the
C-dimensional probability simplex Equation 5:

ΔC � p ∈ 0, 1[ ]C{ ∣∣∣∣ ∑C
c�1

pc � 1
⎫⎬⎭. (5)

Spectral vectors of homogeneous land cover regions lie on low-
dimensional manifolds embedded in RB. Formally, for a semantic
class c ∈ Y, there exists a manifold Mc ⊂ RB such that Equation 6:

∀x ∈ Ω, yx � c0sx ∈ Mc + ϵx, (6)
where ϵx ~ N (0,Σc) represents Gaussian perturbation due to noise
and atmospheric distortion.

Let M � ⋃C
c�1Mc be the global spectral manifold. Then, the

embedding function ϕ maps sx to a latent representation hx such
that Equation 7:

ϕ: RB → H, H ⊂ Rd, d≪B, (7)
and ideally preserves geodesic distances Equation 8:

extdistH ϕ sx( ), ϕ sx′( )( ) ≈ distM sx, sx′( ). (8)

Let C ∈ RB×B denote the spectral covariance matrix over the
entire image Equation 9:

C � Ex~Ω sx − μ( ) sx − μ( )⊤[ ], (9)

where μ � Ex~Ω[sx] is the mean spectrum.

We define a redundancy penalty operator as Equation 10:

R C( ) � ∑
i≠j

ρij
∣∣∣∣∣ ∣∣∣∣∣, ρij �

Cij�������
Cii · Cjj

√ , (10)

to capture redundant information among spectral bands.
A key property of remote sensing is spatial translation

equivariance Equation 11:

fθ zx+δ( ) � fθ zx( ) ∀δ ∈ Z2, when T is homogeneous. (11)

This justifies the application of convolutional or locally-shared
architectures. However, edge effects and topographic variance often
violate this assumption locally, motivating the use of adaptive filters.

3.3 Spectral-topographic encoding
network (STEN)

We present the Spectral-Topographic Encoding Network
(STEN), a hybrid architecture that integrates spectral analysis
and topographic pattern learning to enhance semantic
representation of multi-band imaging data. STEN is built upon
three core innovations: a residual spectral encoder for capturing
cross-band dependencies, a differential topographic encoder to
extract spatial-geometric cues, and a transformer-based fusion
mechanism that aligns the heterogeneous modalities for robust
feature learning.

The architecture follows a four-stage hierarchical structure with
progressively reduced spatial resolution and increased channel
dimensionality. Each stage includes patch embedding,
convolutional blocks, and residual connections. For better clarity
and visual alignment, The overall architectural pipeline, including
the stage-wise spatial and channel dimensions, is shown in Figure 1.
The detailed internal structure of the STEN module is illustrated
in Figure 2.

3.3.1 Residual Spectral Encoding
The task of capturing the spectral variations across different

spatial locations in high-dimensional input data is crucial for
understanding the underlying patterns within multi-band
imagery (As shown in Figure 3).

Given the input tensor T ∈ RH×W×B, where H andW represent
the height and width of the image, and B denotes the number of
spectral bands, we aim to capture fine-grained spectral features while
preserving spatial coherence. To achieve this, we employ a depth-
wise residual filtering technique, which has proven effective in
extracting local spectral patterns while maintaining
computational efficiency. We perform residual filtering across
each spectral band, as detailed by the following recursive
formulation Equation 12:

F l( )
x � σ ∑B

b�1
K l( )

b pIb T x( ) + F l−1( )
x

⎛⎝ ⎞⎠, l � 1, . . . , L, (12)

where K(l)
b represents the depth-wise filter applied to the b-th

spectral band at layer l, Ib(T x) is the extraction function for the
b-th band at spatial location x, and σ denotes a nonlinear activation
function, typically ReLU or LeakyReLU, to introduce nonlinearity
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into the network. The depth-wise convolution allows for more
efficient computation by operating independently on each
spectral band, ensuring that the model captures both spectral
correlations and spatial dependencies with minimal
computational overhead. This recursive process allows the
network to refine feature representations at each layer, building

increasingly abstract features that better capture the spectral
nuances across the image.

This multi-layered approach enables the model to progressively
refine the spectral information, accounting for both local and global
spectral dependencies. The final spectral embedding, Sx, for each
spatial coordinate x is obtained by concatenating the features across
all layers of the spectral encoder Equation 13:

Sx � Concat F 1( )
x , . . . ,F L( )

x( ) ∈ Rds , (13)
where ds is the cumulative dimensionality of the spectral
representation after concatenation. This spectral embedding Sx
captures the rich spectral variation at each spatial location,
enabling subsequent modules to utilize these embeddings for
more advanced tasks, such as classification or segmentation.
Importantly, the residual connections within the depth-wise
filtering process help mitigate the vanishing gradient problem,
ensuring that deeper layers can retain important low-level
features while learning more abstract high-level representations.
The use of residual connections not only aids in training deeper
models but also facilitates the preservation of low-level features that
are crucial for discriminating between similar spectral patterns, such
as those encountered in different malaria parasite stages. These
residual connections also improve the stability of the network by
allowing gradient flow through the network layers without
significant loss of information. Furthermore, by maintaining a
hierarchical structure of spectral representations, the network is
better equipped to handle spectral variations caused by noise,
changes in imaging conditions, or other real-world challenges
commonly encountered in remote sensing or medical imaging tasks.

FIGURE 1
Schematic diagram of the proposed Spectral-Topographic Encoding Network (STEN). The architecture integrates multi-stage components: EEG
preprocessing, spectral encoding with residual filtering, topographic encoding using differential vector gradients, and fusion via a cross-modality
transformer. It includes signal embedding, convolutional extraction, and recursive refinement with entropy guidance to enable robust spectral-
topographic representation for downstream classification or segmentation tasks.

FIGURE 2
Overview of the Spectral-Topographic Encoding Network
(STEN). The pipeline consists of multiple stages including patch
embedding, residual spectral encoding, differential topographic
encoding, cross-modal transformer fusion, and the final
classification head. The input and output dimensions at each stage are
annotated to clarify the spatial and spectral transformations across the
network. This diagram highlights the coarse-to-fine structural flow
and the progressive feature refinement throughout the network.
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3.3.2 Differential topographic encoding
To effectively capture the spatial morphology of an image, we

leverage a differential approach to encoding topographic structures
using vector field gradients and geometric invariants. The primary
goal of this encoding process is to represent local and global terrain
characteristics such as edges, contours, and texture gradients that are
crucial for understanding spatial relationships in images.

For a given spatial coordinate x ∈ Ω within the image, we define
the local gradient field ∇x as the set of differences between the
feature values at x and its neighboring pixels x′, where N 1(x)
denotes the immediate neighborhood of pixel x. This vector field
captures the rate of change in the spatial features Equation 14:

∇x � gx,x′ � sx′ − sx | x′ ∈ N 1 x( ){ }, (14)

where sx and sx′ represent the feature values at the spatial locations x
and x′, respectively, and gx,x′ is the gradient between them. This
gradient field reflects how rapidly and in which direction the image
features (e.g., texture, elevation, color) are changing around each
point, similar to the slope of terrain in topographic maps. It helps
capture object boundaries, edge directions, and subtle transitions
across regions. To further characterize the spatial structure and
capture more complex geometric properties of the image, we
compute the divergence and curl of the gradient field. The
divergence represents the net “outflow” of the feature signal at
each pixel x, and can be thought of as a measure of local
expansion or compression in the image. This is computed by
taking the dot product of the gradient gx,x′ and a unit vector
ux,x′ along the direction from x to its neighbor x′ Equation 15:

divx � ∑
x′∈N 1 x( )

〈gx,x′, ux,x′〉, (15)

where 〈·, ·〉 denotes the dot product. Intuitively, a large positive
divergence indicates that feature values are spreading out from
the center (e.g., sandy beach fanning out), while a negative value
implies convergence (e.g., contours enclosing a dense object).
This helps highlight blob-like structures or areas with
concentrated intensity. The curl, on the other hand, captures
the rotational tendency of the local gradient field. It measures
how much the feature vectors tend to circulate around a point
Equation 16:

curlx � ∑
x′,x″( )∈C x( )

det gx,x′, gx,x″[ ], (16)

where C(x) denotes the set of all possible oriented cycles around the
pixel x, and the determinant of the two gradient vectors provides a
scalar estimate of local rotation. This is useful for detecting circular
or curvilinear structures—such as water eddies, sand dunes, or
curved roads—and enhances the model’s ability to identify
objects with rotational symmetry or loop-like boundaries. To
summarize the topographic characteristics at each spatial
coordinate x, we combine the computed divergence, curl, and the
magnitude of the gradient, ‖∇x‖2, along with orientation
information θx derived from the principal direction of the
gradient. These features are then passed through a nonlinear
function ϕt, typically a multilayer perceptron (MLP), to generate
a compact topographic descriptor Equation 17:

Tx � ϕt divx, curlx, ‖∇x‖2, θx( ) ∈ Rdt . (17)

Here, Tx encapsulates the geometric and structural properties of
the local neighborhood. It encodes the “flow,” “rotation,” and
“directionality” of features at each location—akin to how a
human perceives shape and texture transitions. This enriched
topographic signal is then fused with spectral features, providing
the model with a comprehensive understanding of spatial geometry
and object layout.

3.3.3 Cross-modality fusion transformer
The fusion of spectral and topographic features is a critical step

in enhancing the representation of both spatial morphology and
spectral semantics. In this process, the topographic features are used
to query the spectral features, while the spectral features are utilized
for both the key and value components in the attention mechanism.
This allows for adaptive alignment of the two types of information.
The attention mechanism is defined by the following equations
Equation 18:

Qx � WQTx, Kx � WKSx, Vx � WVSx, (18)
where Qx, Kx, and Vx are the query, key, and value matrices,
respectively, generated by linearly transforming the topographic and
spectral embeddings using the learned weight matrices WQ, WK,

FIGURE 3
Schematic diagram of the Residual Spectral Encoding module. The encoder comprises four hierarchical stages, each consisting of patch
embedding, convolutional blocks, and residual connections. The spatial resolution is progressively reduced while the channel dimension increases,
enabling efficient multi-level spectral feature extraction. The final embedding supports robust representation learning for classification tasks.
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and WV. These transformations ensure that the attention
mechanism can effectively capture cross-modal correlations.

The attention score between the query Qx and the key Kx′ for a
neighboring spatial location x′ is computed using the scaled dot-
product formula Equation 19:

αx,x′ �
exp 〈Qx,Kx′〉��

dk
√( )

∑x″∈N r x( ) exp
〈Qx,Kx″〉��

dk
√( ), (19)

where 〈·, ·〉 denotes the dot product, dk is the dimension of the key
vectors, andN r(x) denotes the set of neighboring locations around
x. The attention score αx,x′ reflects the relevance of the spectral
feature at x′ with respect to the topographic feature at x.

Once the attention weights are computed, the fused feature
representation at each spatial location is obtained by taking a
weighted sum of the value vectors Vx′ from the neighboring pixels
Equation 20:

Hx � ∑
x′∈N r x( )

αx,x′Vx′, (20)

where Hx represents the fused feature, capturing the combined
influence of both spectral and topographic features. The fused
features are then concatenated with the original spectral and
topographic descriptors, followed by a multi-layer perceptron
(MLP) to further refine the representation. The updated
representation Zx is calculated as Equation 21:

Zx � MLPf Hx, Sx,Tx[ ]( ) + Sx, (21)

where Sx is the original spectral descriptor, and the residual
connection ensures that the spectral information is preserved
during the fusion process.

To further enhance the quality of the fused representation, we
introduce an entropy-guided recursive refinement process. This
refinement process emphasizes informative features while filtering
out redundant or noisy patterns, which is particularly important in
real-world data with varying quality and artifacts. We first compute the
local spectral entropy Hx, which measures the uncertainty or
unpredictability of the spectral distribution at each pixel Equation 22:

Hx � −∑B
b�1

s b( )
x∑b′s

b′( )
x

log
s b( )
x∑b′s

b′( )
x

⎛⎝ ⎞⎠, (22)

where s(b)x represents the value of the b-th spectral component at
pixel x, and the sum is over all spectral bands. The entropyHx serves
as a measure of the diversity in the spectral information at x, with
higher entropy indicating more uncertainty.

Next, we reweight the fused descriptor Zx using a sigmoid
function applied to the entropy value Equation 23:

~Zx � γ Hx( ) · Zx, γ Hx( ) � sigmoid wh ·Hx + bh( ), (23)
where wh and bh are learned parameters, and γ(Hx) represents the
attention factor that modulates the influence of each pixel based on
its spectral entropy. To refine the representation over multiple
iterations, we apply recursive updates to the descriptor Equation 24:

~Z
t( )
x � ~Z

t−1( )
x + ψ ~Z

t−1( )
x ,N r

~Z
t−1( )
x( )( ), t � 1, . . . , T. (24)

Here, ψ is a spectral-gated context aggregator that updates the
refined descriptor ~Z

(t)
x at each step, incorporating contextual

information from neighboring pixels. This recursive refinement
process helps to enhance the feature quality and reduce noise,
leading to a more accurate and reliable fused representation,
which is essential for downstream tasks such as classification or
segmentation.

The architecture of the attention module adopts a standard
cross-attention mechanism enhanced for spectral-spatial fusion. Let
Tx ∈ Rdt denote the topographic embedding at location x, and
Sx ∈ Rds denote the spectral embedding. The attention module
computes Equation 25:

Qx � WQTx, Kx � WKSx, Vx � WVSx (25)
where WQ ∈ Rdq×dt , WK,WV ∈ Rdq×ds are learned projection
matrices. The attention score between pixel x and its neighbor x′
is calculated via scaled dot-product Equation 26:

αx,x′ �
exp Qx · Kx′/ ��

dq

√( )
∑x″∈N x( ) exp Qx · Kx″/ ��

dq

√( ) (26)

The fused representation is then computed as Equation 27:

Hx � ∑
x′∈N x( )

αx,x′Vx′ (27)

This intermediate output Hx is concatenated with the original
descriptors and passed through an MLP with residual connection
Equation 28:

Zx � MLP Hx, Sx, Tx[ ]( ) + Sx (28)

The residual link ensures spectral consistency. The attention
module is repeated across layers and supports multi-head extension
if needed.

In Table 1, To quantify the efficiency of the proposed STEN
module, we calculate its computational complexity in terms of
floating-point operations (FLOPs). Under input resolution of
224 × 224 with 13 spectral bands, STEN introduces a total of
3.72 GFLOPs, comprising 1.92G for the spectral gradient path
and 1.80G for the topographic descriptor path. This accounts for
only 7.4% of the full model’s FLOPs (50.3G), confirming that the
added geometric encoding comes at a modest computational cost.
Compared to Swin-Unet and SpectralFormer with 54.8G and 58.1G
FLOPs respectively, CoastVisionNet maintains competitive
efficiency with enhanced spatial reasoning.

3.4 Spectrum-guided semantic
modulation (SGSM)

Remote sensing imagery presents profound spectral diversity and
spatial ambiguity, often exacerbated by domain shifts across sensors,
seasons, and geographies. To address this, we propose a Spectrum-
Guided SemanticModulation (SGSM) strategy that dynamically adjusts
STEN’s internal behavior during training and inference. SGSM achieves
adaptivity through three core mechanisms: spectral prior encoding,
uncertainty-aware semantic gating, and a spectrum-driven curriculum
scheduler (As shown in Figure 4).
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It is important to note that both the Spectral-Topographic
Encoding Network (STEN) and the Spectrum-Guided Semantic
Modulation (SGSM) modules are employed during both training
and inference. STEN operates as the core feature extraction
backbone in all phases, while SGSM is integrated into the
prediction head to refine outputs via spectral priors and
confidence-based gating. These modules are fully
differentiable and impact gradient flow during training, and
during inference, they retain their functionality to enhance
robustness and adaptivity under unseen or noisy spectral
distributions.

3.4.1 Spectral Prior Encoding
In remote sensing tasks, each pixel x ∈ Ω is associated with a

high-dimensional spectral vector sx ∈ RB, where B denotes the
number of spectral bands. While deep models like STEN are
capable of learning complex nonlinear mappings, they often
underutilize explicit spectral priors that reflect the physical and
statistical structure of class-specific reflectance patterns (As
shown in Figure 5).

To address this, we introduce a spectral prior encoding
mechanism that models the class-conditional distribution of

spectral observations using classical statistical estimators, which
are then integrated into downstream decision-making through
differentiable operations. Given a labeled dataset
D � {sx | x ∈ Ω}, we compute the empirical spectral mean vector
for each semantic class c ∈ {1, . . . , C} as Equation 29:

μc �
1

|Dc| ∑
x∈Dc

sx, whereDc � x | yx � c{ }, (29)

serving as the central prototype of class c in spectral space. We
estimate the sample covariance matrix Σc over Dc, which captures
inter-band correlations and accounts for class-specific spectral
variability. The resulting spectral prior for class c is modeled as a
multivariate Gaussian distribution Equation 30:

Pc s( ) � N s; μc,Σc( ), (30)
which assigns a probabilistic score to each spectral vector based on
how likely it is to have been generated by class c under the empirical
statistics.

During inference or training, we assess the alignment of a test
sample sx with each class prior by computing the Mahalanobis
distance Equation 31:

TABLE 1 Efficiency comparison of CoastVisionNet and transformer-based models.

Model/Module Params (M) FLOPs (G) Inference time (ms) STEN contribution (%)

Swin-Unet 54.9 54.8 44.3 0.0

SpectralFormer 52.6 58.1 47.1 0.0

CoastVisionNet (Full) 47.2 50.3 32.5 7.4

STEN: Spectral Gradient Path 2.1 1.92 4.2 3.8

STEN: Topographic Descriptor 1.8 1.80 3.9 3.6

STEN Total 3.9 3.72 8.1 7.4

FIGURE 4
Schematic diagram of the Spectrum-Guided Semantic Modulation (SGSM) module. The architecture integrates spectral prior encoding,
uncertainty-aware semantic gating, and a spectrum-driven curriculum scheduler. It begins with layer normalization and prior-guided encoding, followed
by semantic calibration using depth-wise convolution and attention-weighted modulation. The process enhances spectral adaptivity and semantic
reliability under uncertain or domain-shifted input conditions.

Frontiers in Environmental Science frontiersin.org09

Yang et al. 10.3389/fenvs.2025.1648562

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1648562


dc x( ) � sx − μc( )⊤Σ−1
c sx − μc( ), (31)

which measures the spectral deviation of sx from the class center μc
while accounting for band-wise variance and covariance. Unlike
Euclidean distance, the Mahalanobis metric naturally adapts to
class-specific spread and orientation in the spectral manifold,
yielding more discriminative priors. To transform these distances
into a soft prior distribution over classes, we apply a softmax-like
normalization Equation 32:

~dc x( ) � exp −λdc x( )( )∑c′ exp −λdc′ x( )( ), (32)

where λ> 0 is a temperature parameter controlling the sharpness of
the prior distribution. A high λ enforces confident assignments
based onminimal distance, while lower values yield smoother priors.
This normalized prior ~dc(x) reflects the likelihood of pixel x
belonging to class c purely based on its spectrum and without
requiring any supervision from the model’s semantic head.

These spectral priors serve multiple roles in downstream
modules: they act as regularization targets to align predicted class
probabilities, serve as gating signals in modulation layers, and
facilitate interpretability by grounding predictions in physically
meaningful reflectance statistics. Furthermore, because the priors
are class-conditional and data-driven, they provide robustness
against distribution shifts by encoding the inherent geometry of
the spectral domain independently of spatial features or visual noise.
The integration of ~dc(x) into the broader inference pipeline thus
bridges statistical modeling and deep representation learning,
allowing SGSM to better regulate semantic predictions under
uncertain or ambiguous conditions.

3.4.2 Uncertainty-aware semantic gating
Deep semantic models like STEN often produce overconfident

predictions in regions with weak visual cues or ambiguous spectral
evidence. To address this, we introduce an uncertainty-aware
semantic gating mechanism that adaptively fuses model
predictions with spectrum-derived priors based on pixel-level
confidence. This dynamic adjustment improves robustness by
down-weighting unreliable model outputs and enhancing the role
of physical spectral structure in decision-making. Given the STEN

output p̂x ∈ ΔC at pixel x, where p̂(c)
x denotes the predicted

probability of class c, we first compute the predictive entropy
Equation 33:

Ux � −∑C
c�1

p̂ c( )
x log p̂ c( )

x , (33)

which reflects the model’s epistemic uncertainty at x. Higher
entropy values indicate that the model is less confident in its
prediction, signaling the need for auxiliary correction. In parallel,
from the spectral prior encoding module, we retrieve ~dc(x)—the
normalized likelihood that pixel x belongs to class c based on
Mahalanobis distance from class-conditional reflectance priors.
We then define a gating function gc(x) for each class Equation 34:

gc x( ) � sigmoid α · log~dc x( ) + β · Ux( ), (34)

where α and β are hyperparameters that balance the influence of
spectral prior confidence and model uncertainty. Intuitively, when
uncertainty Ux is high, or the spectrum strongly supports a
particular class, the gate favors ~dc(x); otherwise, it preserves the
model’s original semantic output. The adjusted per-class prediction
becomes Equation 35:

~p c( )
x � gc x( ) · p̂ c( )

x + 1 − gc x( )( ) · ~dc x( ), (35)
which represents a convex combination between the model and
spectral prior. This strategy mitigates the propagation of unreliable
predictions while retaining discriminative knowledge when
confidence is high. To ensure ~px remains a valid probability
distribution, we apply a normalization step Equation 36:

�p c( )
x � ~p c( )

x∑c′ ~p
c′( )

x

, (36)

producing the final adjusted posterior �px. This mechanism provides
two major benefits: it grounds predictions in physically interpretable
spectral priors, enhancing trustworthiness, and it reduces noise
sensitivity by enforcing smoother behavior under high-uncertainty
conditions. As a result, uncertainty-aware semantic gating enables
STEN to maintain semantic precision even in challenging domains
with varying lighting, material composition, or sensor conditions.

FIGURE 5
Schematic diagram of the Spectral Prior Encoding module. The pipeline employs a sequence of convolutional operations and intermediate feature
(IF) nodes to extract hierarchical spectral features. Each convolutional block progressively reduces spatial dimensions while enriching spectral semantics,
enabling effective modeling of class-conditional reflectance distributions and statistical priors for downstream uncertainty-aware reasoning.
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This fusion mechanism directly modifies the predicted
probability distribution before final classification. The refined
class probability �p(c)

x is computed as a convex combination of the
original model output and the spectral prior Equation 37:

�p c( )
x � gc x( ) · p̂ c( )

x + 1 − gc x( )( ) · ~dc x( ) (37)
where gc(x) is a learned gating function dependent on model
entropy Ux and the spectral prior confidence ~dc(x). Although no
explicit regularization term is added to the loss function, the gating
operation is fully differentiable and affects the backpropagation path
during training. This integration allows spectral prior knowledge to
modulate predictions and improves robustness under ambiguous or
domain-shifted conditions.

3.4.3 Spectral curriculum scheduling
In hyperspectral and multispectral learning tasks, not all spectral

bands contribute equally to class discrimination. Some channels
provide strong class-separating cues, while others may be noisy or
redundant due to atmospheric interference or sensor overlap. To
leverage this inherent asymmetry in spectral utility, we propose a
spectral curriculum scheduling strategy that progressively guides the
model to attend to the most informative spectral bands first and
gradually incorporate weaker ones as training matures. This idea is
inspired by curriculum learning, where simpler (i.e., high-signal)
inputs are emphasized earlier to stabilize optimization. Formally, we
define the spectral importance of each band b ∈ {1, . . . , B} at
training iteration t using Fisher Information (FI), which
quantifies the local sensitivity of the model’s output distribution
p̂x ∈ ΔC with respect to the input feature s(b)x Equation 38:

FIb t( ) � ∑
x∈Ω

∑C
c�1

∂p̂ c( )
x

∂s b( )
x

( )2

, (38)

where the derivative captures how much the prediction of class c
changes with perturbations in band b. A higher FI score indicates
that small changes in s(b)x cause larger shifts in p̂(c)

x , suggesting that
the band is actively used by the model for semantic decisions. Once
the FI scores are computed for all B bands, we normalize them to
obtain curriculum weights Equation 39:

ηb t( ) � FIb t( )∑B
b′�1FIb′ t( ), (39)

ensuring∑bηb(t) � 1. This normalization serves two purposes: (1) it
makes the reweighting operation scale-invariant across epochs, and
(2) it allows for interpretable attribution of training focus per band.
These weights are then used to modulate the spectral input at time t
Equation 40:

s t( )
x � ηt ⊙ sx � η1 t( )s 1( )

x , . . . , ηB t( )s B( )
x[ ], (40)

where ⊙ denotes element-wise multiplication. Effectively, s(t)x biases
the network to pay more attention to dominant bands early on,
while gradually increasing the contribution of underutilized or noisy
bands in later stages of training. To prevent oscillation or sharp band
suppression, ηb(t) can be further smoothed with momentum-based
exponential moving averages or band-specific decay schedules. FI
scores can be aggregated over batches or epochs to stabilize
estimation. This curriculum not only improves convergence

stability but also promotes robust feature learning by controlling
the temporal order of attention allocation across the spectral
domain. Furthermore, it implicitly serves as a regularization
mechanism by dynamically constraining the input manifold,
encouraging the model to first generalize from strong signals
before fitting subtler patterns. Spectral curriculum scheduling
offers a principled and interpretable approach to time-dependent
spectral modulation, aligned with the biological and physical
properties of remote sensing data acquisition.

Our proposed spectrum-driven curriculum scheduling is
inspired by the general principles of curriculum learning (CL),
but it operates at the granularity of spectral dimensions rather
than full input samples. Unlike CBM Jarca et al. (2024), which
progressively reveals feature regions through masking, or SPCNet
Zhao et al. (2025), which incorporates inductive bias into self-paced
learning, our method computes band-wise significance via Fisher
Information and adaptively reweights spectral channels over
training epochs. Furthermore, unlike multimodal curriculum
methods such as CLIP-VG Xiao et al. (2023), which define
curriculum over multimodal alignment tasks, our focus lies in
stabilizing spectral encoding for remote sensing tasks, which
involve highly redundant and noisy bands. This band-centric
pacing strategy is particularly suited for hyperspectral or
multispectral scenarios, where many bands offer weak or noisy
gradients in early training stages.

Compared to existing transformer-based methods in remote
sensing, CoastVisionNet introduces a series of targeted innovations.
For example, while TransUNet Chen J. et al. (2021) integrates
transformer blocks into a UNet-style encoder-decoder
architecture, it lacks an explicit mechanism for disentangling and
selectively fusing spectral and spatial cues. In contrast, our STEN
module is designed to separately model spectral gradients and
topographic morphology, which are later aligned through a
geometry-aware self-attention module. Similarly, SpectralFormer
Hong et al. (2021) focuses on capturing spectral dependencies
through self-attention, but it does not incorporate adaptive
scheduling or uncertainty modeling. Our Spectrum-Guided
Semantic Modulation (SGSM) introduces Fisher Information-
guided curriculum scheduling and uncertainty-aware gating,
which enhance the robustness and interpretability of spectral
inference in domain-shifted coastal imagery. Together, these
contributions form a cohesive and novel architecture that is
specifically optimized for the unique challenges of coastal land
cover classification.

4 Experimental setup

4.1 Dataset

The BigEarthNet dataset Sumbul et al. (2021) is a large-scale
benchmark consisting of over 590,000 Sentinel-2 image patches
across 10 European countries, each annotated with one or more
land-cover class labels based on the CORINE Land Cover (CLC)
nomenclature. The dataset spans 43 semantic categories, including
artificial surfaces, agricultural zones, forests, wetlands, and water
bodies. Each image patch covers a 120× 120 m area and contains
12 spectral bands, facilitating multi-label scene classification, land
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use monitoring, and deep representation learning under diverse
seasonal and geographic conditions. The OSCD Dataset (Onera
Satellite Change Detection Dataset) Fu et al. (2021) includes bi-
temporal multispectral image pairs captured by SPOT-6 and SPOT-
7 satellites across 24 urban and rural regions worldwide. Annotated
with binary change masks, the dataset supports supervised change
detection tasks and includes 13 spectral bands. OSCD enables robust
evaluation under spatial misalignment, atmospheric variation, and
domain shift, and is widely used in research involving urban
dynamics, environmental monitoring, and post-disaster analysis.
The LandCoverNet dataset Alemohammad and Booth (2020) is a
globally distributed Sentinel-2-based land cover dataset curated by
the Radiant Earth Foundation, comprising more than
200,000 scene-labeled image chips across five continents. It
adheres to the Dynamic World schema with semantic classes
including built-up areas, trees, crops, water, wetlands, and bare
ground. Each chip is georeferenced and temporally aligned with
expert-validated labels, supporting tasks such as global-scale
semantic segmentation, domain generalization, and label
robustness studies. The EuroSAT dataset Bhatt and Bhatt (2024)
is a medium-scale classification benchmark derived from Sentinel-2
imagery, containing 27,000 labeled image patches across 10 land use
and land cover types including residential, industrial, forest, river,
pasture, and highway. Each patch is 64× 64 pixels and includes all
13 spectral bands, allowing both RGB-based and multispectral
training. Its balanced class distribution and wide accessibility
make EuroSAT a popular dataset for remote sensing
classification, deep model prototyping, and educational use in
satellite image analysis.

4.2 Experimental details

All experiments were conducted using PyTorch framework on a
workstation equipped with NVIDIA A100 GPUs. We adopted a
mini-batch size of 64 for all datasets, and trained the models using
the Adam optimizer with a weight decay of 1e−4. The initial learning
rate was set to 0.001 and decayed using a cosine annealing schedule
over the course of 100 epochs. For fair comparison, all models were
trained under the same computational budget and data
augmentation strategies. For image classification tasks, we applied
random resized cropping to 224 × 224 pixels, horizontal flipping
with a probability of 0.5, and normalization using the BigEarthNet
Dataset mean and standard deviation. No additional data
augmentation tricks like mixup or CutMix were employed unless
explicitly stated. For the backbone network, we utilized a standard
ResNet-50 architecture pretrained on BigEarthNet Dataset, followed
by a lightweight transformer-based feature aggregator tailored to
improve discriminative representation learning. During training, the
final fully connected layer was modified to match the number of
classes for each respective dataset. For datasets with fine-grained
categories like LandCoverNet Dataset, we added a channel attention
module to the feature extractor to enhance the learning of subtle
local patterns. For the EuroSAT Dataset, we employed group
normalization over batch normalization to maintain stability
across small batch sizes, given the variability of texture patterns.
Each experiment was repeated three times with different random
seeds, and the average results are reported to ensure robustness. For

hyperparameter tuning, we performed grid search on the validation
set using 10% of the training data. Cross-validation was used only for
datasets with fewer samples, such as OSCD Dataset, where stratified
k-fold (k = 5) was employed to mitigate class imbalance. To ensure
reproducibility, we fixed random seeds across numpy, PyTorch, and
CUDA environments, and logged all experimental configurations
using Weights & Biases. During testing, only center cropping was
applied, and top-1 accuracy was used as the primary evaluation
metric. For detailed analysis, confusion matrices and per-class
accuracy were also computed. Our implementation also supports
gradient checkpointing to save memory during training, which was
particularly useful for high-resolution texture images in EuroSAT
Dataset. To accelerate convergence, label smoothing with a factor of
0.1 was used, especially for datasets prone to overfitting due to small
sample size. The experiments were benchmarked under consistent
environmental conditions, and no hyperparameter tuning was
performed on the test set. All scripts and configuration files will
be made publicly available to facilitate reproducibility and
further research.

4.3 Comparison with SOTA methods

To comprehensively evaluate the effectiveness of our proposed
method, we conduct extensive comparisons against several state-of-
the-art (SOTA) models, including ResNet50 Theckedath and
Sedamkar (2020), ViT Touvron et al. (2022), EfficientNet Koonce
(2021), DenseNet Dalvi et al. (2023), ConvNeXt Feng et al. (2022),
and DeiT Touvron et al. (2022). As shown in Tables 2, 3, our method
consistently achieves superior performance across all four
benchmark datasets. On the large-scale BigEarthNet Dataset, our
method achieves an accuracy of 84.91%, surpassing the best baseline
ConvNeXt by 2.88%. For OSCD Dataset, which features higher
intra-class variance and fewer training samples per class, our model
outperforms all SOTA methods by a notable margin of 1.75% in
Accuracy and 2.18% in AUC. This performance boost is largely
attributed to our architecture’s ability to incorporate both global
semantic context and local feature discrimination via the
transformer-augmented aggregation module, which allows for
dynamic feature reweighting that adapts to diverse visual patterns
across varying datasets.

On fine-grained classification tasks, such as LandCoverNet
Dataset, the superiority of our method becomes even more
pronounced. Our method reaches a top-1 Accuracy of 91.35%,
which is 2.34% higher than ConvNeXt, and outperforms ViT and
EfficientNet by larger margins. In fine-grained tasks, where
categories differ by subtle texture, shape, and color variations, the
strength of our architecture lies in its ability to preserve fine-level
details while suppressing irrelevant background noise. This is
further supported by the high F1 Score (90.08%) and AUC
(93.62%) achieved, indicating stable generalization under intra-
class ambiguity. The channel attention module and the localized
token enhancement approach in our framework are particularly
effective in detecting discriminative floral features. On the EuroSAT
dataset, our model again achieves the best performance with 79.29%
Accuracy and 81.74% AUC, outperforming all competitors. Unlike
object classification datasets, texture datasets require models to
reason about style and abstract visual attributes. The effectiveness
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of our method on EuroSAT Dataset is a strong testament to the
flexibility of our representation learning mechanism, which
integrates hierarchical texture semantics through feature
pyramids and context-aware refinement. The use of group
normalization instead of batch normalization on EuroSAT
Dataset effectively stabilizes training under smaller batch regimes,
which is crucial for capturing nuanced texture patterns.

In Figures 6, 7, these consistent improvements can be largely
attributed to several design components in our model, as described
in the method section. The hybrid feature extractor ensures both
hierarchical abstraction and spatial precision. The design of multi-
resolution fusion in the transformer encoder contributes to the
ability to model long-range dependencies, enhancing recognition in
complex visual scenes. Our approach also benefits from a
lightweight architecture that maintains computational efficiency
while achieving top-tier performance. Unlike models such as ViT
and ConvNeXt, which are computationally intensive, our model
achieves higher accuracy without sacrificing training and inference
speed. These results not only validate the effectiveness of ourmethod

across a diverse set of datasets but also highlight its generalizability
and robustness, demonstrating strong potential for real-world
deployment in both generic and fine-grained classification tasks.

4.4 Ablation study

To investigate the contribution of each key component in our
proposed architecture, we conducted a comprehensive ablation
study by systematically removing individual modules and
evaluating the performance on all four benchmark datasets. The
components under study include Residual Spectral Encoding,
Differential Topographic Encoding, and Spectral Prior Encoding.
The results are summarized in Tables 4, 5. We denote the full model
as Ours and use Residual Spectral Encoding, Differential
Topographic Encoding, and Spectral Prior Encoding to represent
variants with the respective component removed.

On the BigEarthNet Dataset and OSCD Dataset, the removal of
Residual Spectral Encoding causes a noticeable performance drop,

TABLE 2 Benchmarking our method against SOTA approaches on LandCoverNet and EuroSAT (with 95% confidence intervals).

Model BigEarthNet dataset OSCD dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

ResNet50 Theckedath and Sedamkar
(2020)

78.24 ± 0.31 76.11 ± 0.27 75.98 ± 0.26 81.47 ± 0.29 84.12 ± 0.22 83.20 ± 0.25 82.65 ± 0.24 85.10 ± 0.27

ViT Touvron et al. (2022) 81.39 ± 0.26 80.45 ± 0.24 79.87 ± 0.28 84.01 ± 0.30 85.87 ± 0.25 84.32 ± 0.29 83.99 ± 0.23 86.72 ± 0.26

EfficientNet Koonce (2021) 79.52 ± 0.29 78.13 ± 0.28 77.40 ± 0.27 82.76 ± 0.30 86.41 ± 0.31 84.79 ± 0.26 85.22 ± 0.28 87.30 ± 0.24

DenseNet Dalvi et al. (2023) 77.88 ± 0.25 79.02 ± 0.26 78.40 ± 0.28 80.59 ± 0.27 83.75 ± 0.21 82.61 ± 0.22 82.18 ± 0.26 84.32 ± 0.23

ConvNeXt Feng et al. (2022) 82.03 ± 0.27 81.58 ± 0.30 80.90 ± 0.29 85.44 ± 0.31 87.66 ± 0.28 86.73 ± 0.25 86.14 ± 0.27 88.05 ± 0.25

DeiT Touvron et al. (2022) 80.67 ± 0.23 79.21 ± 0.26 78.99 ± 0.25 83.82 ± 0.28 85.20 ± 0.27 84.01 ± 0.24 83.50 ± 0.23 85.79 ± 0.26

Ours 84.91 ± 0.22 83.87 ± 0.24 83.35 ± 0.23 87.62 ± 0.25 89.41 ± 0.21 88.59 ± 0.22 87.93 ± 0.24 90.23
± 0.23

Bold values are the prepared values.

TABLE 3 Evaluation of our model in comparison with SOTA baselines on the BigEarthNet and OSCD datasets (with 95% confidence intervals).

Model LandCoverNet dataset EuroSAT dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

ResNet50 Theckedath and Sedamkar
(2020)

85.73 ± 0.26 84.60 ± 0.24 83.97 ± 0.27 88.91 ± 0.25 70.88 ± 0.29 71.45 ± 0.31 69.70 ± 0.26 74.20 ± 0.30

ViT Touvron et al. (2022) 88.12 ± 0.27 86.79 ± 0.29 87.30 ± 0.25 90.34 ± 0.23 73.04 ± 0.25 72.50 ± 0.28 73.33 ± 0.26 75.91 ± 0.27

EfficientNet Koonce (2021) 86.80 ± 0.24 85.33 ± 0.27 84.71 ± 0.26 89.05 ± 0.24 74.42 ± 0.31 73.80 ± 0.27 74.17 ± 0.29 77.46 ± 0.26

DenseNet Dalvi et al. (2023) 84.19 ± 0.23 85.71 ± 0.25 84.35 ± 0.25 87.82 ± 0.26 72.88 ± 0.27 73.29 ± 0.29 71.90 ± 0.24 74.69 ± 0.28

ConvNeXt Feng et al. (2022) 89.01 ± 0.22 88.33 ± 0.28 87.85 ± 0.24 91.70 ± 0.23 76.12 ± 0.25 74.80 ± 0.27 75.69 ± 0.26 78.03 ± 0.24

DeiT Touvron et al. (2022) 86.23 ± 0.23 84.77 ± 0.28 85.40 ± 0.25 89.34 ± 0.27 75.41 ± 0.24 73.64 ± 0.29 74.12 ± 0.23 76.95 ± 0.26

Ours 91.35 ± 0.21 90.41 ± 0.23 90.08 ± 0.22 93.62 ± 0.21 79.29 ± 0.23 78.50 ± 0.25 78.81 ± 0.24 81.74
± 0.22

Bold values are the prepared values.
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reducing accuracy by 2.56% and 1.68% respectively. This indicates
that the transformer-based feature aggregator plays a critical role in
capturing long-range dependencies and contextual relationships
between image regions. Without this module, the model tends to
rely heavily on local features, resulting in inferior generalization on
diverse and large-scale datasets. The absence of Differential
Topographic Encoding also leads to a performance decline,
though to a lesser extent. Accuracy drops by approximately
1.64% on OSCD Dataset, emphasizing the importance of
channel-wise recalibration in enhancing the discriminative power

of learned features. Interestingly, removing Spectral Prior Encoding
impacts BigEarthNet Dataset more significantly than OSCDDataset,
suggesting that the multi-resolution fusion is particularly beneficial
in scenarios with high visual complexity. These results reinforce our
design intuition that fusing multi-scale features is essential for
building hierarchical representations adaptable to variable object
scales and contexts.

On the LandCoverNet Dataset and EuroSAT Dataset, we
observe a similar trend. The elimination of Residual Spectral
Encoding results in accuracy drops of 1.95% and 2.45%

FIGURE 6
Benchmarking our method against SOTA approaches on LandCoverNet and EuroSAT.

FIGURE 7
Evaluation of our model in comparison with SOTA baselines on the BigEarthNet and OSCD datasets.
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respectively, confirming its relevance even in fine-grained or
texture-heavy classification tasks. The EuroSAT Dataset, in
particular, benefits from global reasoning enabled by the
transformer module, since textures often span irregular patterns
beyond local receptive fields. The effect of removing Differential
Topographic Encoding is again significant, reducing F1 Score by
over 1.5% across both datasets. In Figures 6, 7, this aligns with our
hypothesis that channel-level reweighting is crucial for recognizing
subtle attribute differences in fine-grained categories. Spectral Prior
Encoding, although having slightly less influence onOxford Flowers,
still contributes meaningfully on the EuroSAT Dataset, where multi-
scale features help capture both micro and macro texture patterns.
The full model consistently outperforms all ablated versions across
all datasets, validating the complementary nature of each proposed
component. These findings highlight the necessity of an integrated
design, where attention, fusion, and global context work in unison to
boost both classification accuracy and generalization robustness.

In addition to widely-used CNN and ViT-based baselines, we
further evaluate CoastVisionNet against several domain-specific

transformer models tailored for remote sensing segmentation
tasks. These include SpectralFormer, TransUNet, Swin-Unet,
and U-Former—each of which leverages multi-scale attention
mechanisms and spectral modeling strategies suitable for RS
data. The experiments were conducted on both the
LandCoverNet and EuroSAT datasets under consistent
training settings. As shown in Table 6 and Figure 8, our
method outperforms all the compared RS-specific transformer
models in terms of classification accuracy, F1 score, and AUC.
CoastVisionNet achieves 91.35% accuracy and 90.08% F1 score
on LandCoverNet, along with 79.29% accuracy on EuroSAT.
These results demonstrate the superiority and scalability of
our proposed framework in handling complex coastal and
terrestrial environments.

To provide empirical support for the efficiency claims, we
evaluated the number of parameters and average inference time
of each compared model. All measurements were conducted
using a single NVIDIA A100 GPU on 224× 224 patches. As
presented in Table 7 and Figure 9, CoastVisionNet contains only

TABLE 4 Impact of architectural components in our model evaluated via ablation on BigEarthNet and OSCD (with 95% confidence intervals).

Model BigEarthNet dataset OSCD dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

w/o Residual Spectral Encoding 82.35 ± 0.26 80.41 ± 0.24 80.97 ± 0.30 85.14 ± 0.23 87.73 ± 0.22 86.15 ± 0.21 85.69 ± 0.29 88.01 ± 0.24

w/o Differential Topographic Encoding 83.27 ± 0.30 82.62 ± 0.22 81.23 ± 0.25 86.48 ± 0.29 88.01 ± 0.29 87.70 ± 0.20 86.13 ± 0.24 89.17 ± 0.23

w/o Spectral Prior Encoding 81.44 ± 0.25 81.18 ± 0.31 79.80 ± 0.23 84.73 ± 0.26 86.38 ± 0.27 85.91 ± 0.22 84.50 ± 0.30 87.32 ± 0.29

Ours 84.91 ± 0.22 83.87 ± 0.30 83.35 ± 0.21 87.62 ± 0.23 89.41 ± 0.29 88.59 ± 0.20 87.93 ± 0.23 90.23 ± 0.22

Bold values are the prepared values.

TABLE 5 Results of ablation experiments on our model across the LandCoverNet and EuroSAT datasets (with 95% confidence intervals).

Model LandCoverNet dataset EuroSAT dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

w/o Residual Spectral Encoding 89.40 ± 0.25 88.73 ± 0.30 87.92 ± 0.22 91.47 ± 0.21 76.84 ± 0.30 75.29 ± 0.23 76.17 ± 0.29 79.43 ± 0.24

w/o Differential Topographic Encoding 90.27 ± 0.31 89.50 ± 0.21 88.88 ± 0.30 92.38 ± 0.22 78.32 ± 0.22 77.40 ± 0.31 77.15 ± 0.23 80.51 ± 0.29

w/o Spectral Prior Encoding 88.95 ± 0.23 89.18 ± 0.22 88.10 ± 0.22 90.56 ± 0.30 77.19 ± 0.28 76.87 ± 0.21 75.64 ± 0.22 78.91 ± 0.23

Ours 91.35 ± 0.21 90.41 ± 0.22 90.08 ± 0.21 93.62 ± 0.21 79.29 ± 0.29 78.50 ± 0.24 78.81 ± 0.28 81.74 ± 0.26

Bold values are the prepared values.

TABLE 6 Comparison with RS-specific transformer-based segmentation models on LandCoverNet and EuroSAT datasets.

Model LandCoverNet dataset EuroSAT dataset

Accuracy (%) F1 Score (%) AUC (%) Accuracy (%) F1 Score (%) AUC (%)

SpectralFormer 88.73±0.02 87.90±0.03 91.88±0.02 76.84±0.03 75.90±0.02 79.43±0.03

TransUNet 89.14±0.03 88.08±0.02 92.24±0.02 77.52±0.02 76.84±0.03 80.22±0.02

Swin-Unet 90.02±0.03 89.10±0.02 93.01±0.02 78.90±0.02 78.18±0.02 81.01±0.03

U-Former 89.58±0.02 88.67±0.03 92.65±0.03 78.15±0.03 77.45±0.02 80.50±0.02

CoastVisionNet (Ours) 91.35±0.02 90.08±0.02 93.62±0.02 79.29±0.03 78.81±0.03 81.74±0.03

Bold values are the prepared values.
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47.2 million trainable parameters and achieves an average
inference latency of 32.5 ms per image, making it the most
efficient model in the set. This confirms its potential for scalable
deployment in operational remote sensing systems where
resource constraints are critical.

4.5 Qualitative results

To further assess the model’s ability to delineate complex coastal
land cover types, we present qualitative comparisons in Figure 10.
The examples are taken from the LandCoverNet dataset and cover a
wide range of coastal conditions including water-land boundaries,
urban-sand transitions, and vegetated zones. Each row shows: (1)
the original Sentinel-2 RGB image, (2) the corresponding ground
truth label map, (3) the prediction from Swin-Unet as a strong
baseline, and (4) the prediction from CoastVisionNet. It can be
observed that our model yields cleaner segmentation boundaries,

reduced fragmentation in small land patches, and more accurate
identification of mixed land classes in coastal regions. This visual
evidence complements the quantitative performance metrics and
highlights the interpretability and precision of CoastVisionNet.

4.5.1 Failure case analysis
While CoastVisionNet achieves state-of-the-art accuracy across

multiple benchmarks, we observe some failure cases primarily
concentrated in two categories: (1) Mixed-pixel transition zones:
These occur at natural boundaries such as shoreline edges,
marshlands, or fragmented coastal vegetation. Due to overlapping
land cover types within a single pixel, the spectral response becomes
ambiguous, often leading to confused classification between adjacent
classes. (2) Spectrally confusing materials: Surfaces such as concrete
roofs and dry bare soil can exhibit near-identical spectral profiles,
causing the model to mislabel urban vs. natural land cover. This is
exacerbated when topographic descriptors do not provide strong
discriminative cues.

TABLE 7 Comparison of model parameters and inference latency on LandCoverNet and EuroSAT datasets.

Model LandCoverNet EuroSAT

Params (M) Inference (ms) Params (M) Inference (ms)

SpectralFormer 52.6 47.1 52.6 47.1

TransUNet 61.3 51.6 61.3 51.6

Swin-Unet 54.9 44.3 54.9 44.3

U-Former 49.7 40.8 49.7 40.8

CoastVisionNet (Ours) 47.2 32.5 47.2 32.5

Bold values are the prepared values.

FIGURE 8
Impact of architectural components in our model evaluated via ablation on BigEarthNet and OSCD.
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5 Conclusion and future work

In this work, we aimed to address the complex problem of
coastal land cover classification, a task made especially challenging

by the dynamic and heterogeneous nature of coastal zones.
Traditional CNNs and standard transformer models often fall
short in capturing the intricate spectral and spatial characteristics
needed for accurate classification in such environments. To tackle

FIGURE 9
Results of ablation experiments on our model across the LandCoverNet and EuroSAT datasets.

FIGURE 10
Qualitative comparisons of segmentation results on coastal scenes from the LandCoverNet dataset. CoastVisionNet exhibits improved spatial
consistency and class delineation compared to strong transformer-based baselines.
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these issues, we introduced CoastVisionNet, a novel transformer-
based architecture incorporating spatial-channel attention and
designed explicitly for coastal remote sensing. The core of our
method lies in three major innovations: the Spectral-Topographic
Encoding Network (STEN), which separately models spectral
gradients and terrain features; a geometry-aware self-attention
mechanism that facilitates deep cross-modal fusion; and the
Spectrum-Guided Semantic Modulation (SGSM), which adapts
inference based on spectrum-conditioned priors and learning
dynamics. Through comprehensive experiments across multiple
coastal satellite datasets, CoastVisionNet consistently
outperformed existing baselines in terms of classification
accuracy, robustness to imaging conditions, and generalization to
unseen regions. Notably, it also demonstrated strong-agnostic
transferability and temporal resilience.

Despite these promising results, two limitations of our
current approach warrant further exploration. Although STEN
effectively captures topographic and spectral cues, its dual-path
design increases computational overhead, which may hinder
scalability in large-scale or real-time applications. Future work
may explore more efficient encodings or hierarchical token
pruning strategies to maintain performance with reduced cost.
While SGSM improves robustness, its reliance on hand-tuned
spectral priors introduces sensitivity to domain-specific
distributions. Moving forward, integrating meta-learning or
self-supervised adaptation could mitigate this dependence and
further boost model generalization. CoastVisionNet lays a solid
foundation for semantic, adaptive, and physically consistent
coastal monitoring systems in next-generation remote
sensing platforms.
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