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Habitat quality (HQ) is recognized as a significant factor in biodiversity
maintenance and ecological conservation advancement, and the land-use
cover change (LUCC) can directly affect the spatial pattern and evolution of
HQ. Land-use datasets spanning 2010, 2015, and 2020 were analyzed through
the integrated application of the future land-use simulation (FLUS) model and the
integrated valuation of ecosystem services and trade-offs (InVEST) model,
supplemented by multiple analytical indicators, resulting in LUCC patterns and
HQ variations being investigated within the urban agglomeration along the
Yellow River in Ningxia, China. These findings demonstrate (Hall, Wiley on
behalf of the Wildlife Society, 1997, 25(1), 173–82) a reduction in ecological
land coverage during the previous period, which correlates with a decrease in the
mean HQ. The value ratings in 2010, 2015, and 2020 were 0.4919, 0.4730, and
0.4654, respectively. Moreover, the evolution characteristics exhibited distinct
divergence trends between the periods of 2010–2015 and 2015–2020. The
spatial distribution showed a pronounced periphery–core gradient (Fahrig,
Eution, and Systematics, 2017, 48(1), 1–23). The study area’s HQ was
categorized within the moderate-to-good range, with mean values
demonstrating a descending sequence: EPS (0.5348) > NDS (0.5165) > FSS
(0.4967) > EDS (0.4681). Optimal ecosystem service performance was
observed in the Helan Mountain Nature Reserve and Yellow River mainstream
(Alaniz et al., Ecological Indicators, 2021, 126). Scenario modeling revealed that
ecological conservation measures effectively enhanced biodiversity preservation
and ecosystem service capacity. Scenario optimization was determined through
the combined evaluation of ecological resource support limit and territorial
development suitability. Multi-scenario methods and environmental simulation
models were integrated in this study, enabling amore accurate assessment of the
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landscape spatiotemporal pattern. This approach provides decision-making
insights and multiple perspectives for spatial planning under different
developmental goal orientations.
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habitat quality, land-use cover change, spatiotemporal evolution, multi-scenario
simulation, ecological restoration, Yellow River Basin

1 Introduction

Habitat quality (HQ) is an ecosystem’s capability of providing
organisms with the ability for growth, development, reproduction,
and distribution under specific spatial and temporal conditions
(Hall, 1997; Fahrig, 2017; Alaniz et al., 2021). It plays a significant
role in regional biodiversity and regional protection ecological
security, as suitable HQ can maintain the ecological balance and
guarantee ecological services (Li et al., 2024a; Mortelliti et al.,
2010; Regolin et al., 2021). Currently, numerous HQ research
studies are based on land-use cover change (LUCC), and they
mainly focus on the quantitative evaluation of the spatiotemporal
features, investigation of the driving factors, and assessment of the
future scenarios within modeling and simulation (Wang et al.,
2023; M´elanie et al., 2024; You et al., 2025). The LUCC reflects
natural environmental changes and human activities, including
the proportions, structure, and intensity of land-use types (Pratzer
et al., 2025; Thomas et al., 2021). It can alter the composition and
structure of HQ by affecting matter and nutrient cycling, as well as
the energy flow among habitat patches (Xu et al., 2023; Kong et al.,
2022). However, future social and economic developments often
face various black swan events, such as COVID-19 and the Russo-
Ukrainian conflict. It could disrupt the established developmental
paths of both global and regional systems. Meanwhile, there are
differences in developmental priorities that differ between regions
and even with the same region at different stages. Thereby,
multiple scenarios should be arranged, as it can cope with
various issues and possibilities that may arise in future
development (Budnik et al., 2020; Ma et al., 2023). The future
land-use simulation model (FLUS) is universally employed to
analyze future land-use changes across various periods and
scenarios, and it shows a high level of simulation precision
(Liu et al., 2017). Additionally, the FLUS model enhanced the
capability of addressing uncertainties and complexities associated
with future developmental scenarios (Zhang et al., 2023). Current
methodologies for quantifying HQ predominantly rely on
ecological assessment frameworks, with the integrated valuation
of ecosystem services and trade-offs (InVEST) model’s HQ
module being widely adopted because of its simplified
operational stipulation and accessibility of input data. This
model enables systematic analysis of habitat sensitivity to
anthropogenic or environmental threats while simultaneously
evaluating the interrelationships and mutual influences among
such stressors (Moreira et al., 2018; Kadaverugu et al., 2020; Zhang
et al., 2022). The combination of the FLUS and the InVEST
models can establish an ecological index that can be coupled
with land-use characteristics (Babbar et al., 2021; Zhang et al.,
2025). By setting up different scenarios, it provides guidance for
the optimal development mode to improve the ecological

indicators in the study area (Kunwar et al., 2018; Wu et al.,
2025a). Moreover, it allows for an understanding of the
evolution of habitats in light of the present circumstances
(Xiao et al., 2022). The Ningxia section of the Yellow River
Basin (YRB) urban agglomeration represents a significant
desert-oasis area, with the important task of guaranteeing
ecological stability in northwestern China. However, as HQ is
located in an ecologically fragile region, it is facing destruction and
degradation issues, and the human–land-use conflict has emerged
as a major challenge (Wang et al., 2019). Hence, there is an
inevitable need to establish and enhance the HQ within the
research region. Therefore, we systematically characterized the
HQ on the basis of LUCC, presenting the differentiated needs of
future multiple developmental scenarios (Wu et al., 2025a).
Meanwhile, we aimed to analyze the possible trends and
evolution laws of HQ and formulate scientific and reasonable
ecological protection strategies. The key goals of this study were to
(Hall, 1997) explore the evolution characteristics of LUCC and
HQ in the past years (Fahrig, 2017), simulate the multi-scenario
patterns of LUCC and HQ in 2035 (Alaniz et al., 2021), and plan
the optimization strategies of HQ.

2 Materials and methods

2.1 Study area and data processing

2.1.1 Study area
Situated within the upper reaches of the YRB in China, the

Ningxia YRB urban agglomeration is characterized by continental
arid to semi-arid climate (Figure 1). This region encompasses
13 county-level administrative units, spanning 22,700 km2. The
area accommodates 70.10% of Ningxia’s permanent population
and generates 81.23% of the GDP. The Yellow River flows in the
southwest–northeast direction through the territory, sustaining
biodiverse wetland ecosystems while supplying irrigation water
for agricultural activities and industrial operations.
Developmental strategies emphasizing the economic growth and
ecological conservation have been prioritized in alignment with
national directives (Guan et al., 2023; Wang et al., 2022; Cheng et al.,
2024). Functioning as a transitional desert-oasis system,
agglomeration borders three major deserts, including the Ulan
Buh, Mu Us, and Tengger deserts (Liu et al., 2020), along its
northern, eastern, and western peripheries, respectively (Liu
et al., 2020). Land cover analysis reveals grassland (45.8%) and
cropland (24.4%) as the predominant categories, followed by
ecological reserves comprising forest (5.6%) and aquatic systems
(5.1%). The remaining territories are classified as unused land
(10.6%) and developed urban areas (8.4%).
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2.1.2 Data sources
Essential datasets including formats, sources, and

methodological parameters are systematically summarized in
Table 1. Land-use classification involved six distinct categories:
cropland, forest land, grassland, water body, construction land,
and unused land. Spatial data processing incorporated grid
standardization to 90 m × 90 m resolution prior to analytical
computations.

2.2 Methods

The study’s progression flowchart is illustrated in Figure 2, and it
comprises two primary stages: predicting the land demands using
the FLUS model (see Section 2.2.1) and simulating HQ based on the
land-use pattern using the InVEST model (see Section 2.2.2).

2.2.1 Multi-scenario land-use prediction
The simulations of land-use patterns were executed through the

FLUS model, which integrates three functional components through
hierarchical coupling (Hall, 1997), namely, transition probability
estimation via artificial neural network (ANN)-based computational
algorithm (Fahrig, 2017); spatial allocation optimization through self-
adaptive mechanisms resolving inter-category competition,
implemented via a conversion matrix framework (Alaniz et al.,
2021); and demand-driven pattern projection combining cellular
automata and Markov chain principles, enabling precise
quantification of landscape evolution drivers and high-accuracy
spatial simulations (Li et al., 2023; Liang et al., 2018a).

2.2.1.1 Driving factors of LUCC
Driver variables were systematically categorized through

synthesized analysis of established methodologies and regional

FIGURE 1
Geographic position of the research region.

TABLE 1 Key datasets utilized for the study.

Data Format Source

Land-use type Vector data in 2010, 2015, and 2020 Nature Resource Bureau of Ningxia

Digital elevation model (DEM) Grid at 30 m in 2020 http://www.gscloud.cn/

Slope Grid at 90 m in 2020 http://www.gscloud.cn/

Normalized difference vegetation index (NDVI) Grid at 1,000 m in 2020 http://www.resdc.cn

Road and railway Line in 2020 http://openstreetmap.org/

GDP density Grid at 1,000 m in 2020 http://www.resdc.cn

Population density Grid at 1,000 m in 2020 http://www.worldpop.org/

Administrative boundary Polygons http://www.hydrosheds.org/
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biophysical characteristics, comprising two principal domains (Hall,
1997), namely, natural parameters including the digital elevation
model (DEM), slope, and normalized difference vegetation Index
(NDVI) (Fahrig, 2017), and socioeconomic indicators involving
transportation network proximity, GDP, and population density.
Land-use conversion probabilities were subsequently derived
through analytical synthesis of these determinants. Occurrence
likelihoods for distinct land categories were quantified within the
output architecture of the ANN using stochastic sampling-calibrated
algorithms, with the computational framework implementing the
following mathematical formula (Liang et al., 2018b):

p p, k, t( ) � ∑
j

wjk × sigmoid netj p, t( )( ),
sigmoid netj p, t( )( ) � 1/1 + e−netj p,t( ),

netj p, t( ) � ∑
i

wij × xj p, t( )( ).

The parametric formulation was structured as follows: p (p, k, t)
mathematically defined the occurrence likelihood of land category k
within temporal interval p at spatial coordinate t. Weighting coefficients
were parameterized through adjacency relationships, with wjk
representing hidden-output layer connections and wij characterizing
hidden-input layer linkages. Signal transformation employed a sigmoid
nonlinear operator, where netj (p, t) quantified the aggregated synaptic

inputs to processing node j. Here, xi (p, t) symbolized input neuron i as
its activation state at the spatiotemporal position.

2.2.1.2 Conversion matrices and neighborhood effects
A self-adaptive optimization framework combining intrinsic

competition mechanisms was established through synergistic
incorporation of conversion matrices and neighborhood effects
within the CA architecture. Land-use transition logic was
formalized via binary conversion rulesets, where permissible
transformations were governed by dichotomous coding principles
(1: authorized type conversion and 0: transition prohibition) as per
established methodological precedents (Mondal et al., 2016). The
structured interoperability between land categories under these
constraints was tabulated as shown in Table 2.

The neighborhood influences indicate the land-use types’ expansion
intensity, and they reveal how external factors influence the expansion
capability of each land-use type. Within the 0–1 threshold range, higher
values represent a stronger capacity for expansion (Cheng et al., 2024;
Lin et al., 2022). Table 3 shows this effects’ value.

2.2.1.3 Land-use demand in multiple scenarios
TheMarkov chain predicts future trends by evaluating the initial

probabilities of various land-use conditions and the probabilities of
transitions between different land-use states. The formula for this
calculation (Jokar Arsanjani et al., 2013) is

FIGURE 2
Research framework.
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S t+1( ) � Pij × S t( ),

where S(t) represents the state matrix at time t and S(t+1) represents
the state matrix at time t+1, whereas Pij denotes the transfer
probability matrix from type i to j.

Four developmental frameworks were formulated through the
synthesis of regional policy directives and biogeographical
characteristics (Hall, 1997), namely, the natural development
scenario (NDS): a framework where historical land-use transition
patterns were extrapolated without anthropogenic intervention
(Fahrig, 2017); the economic development scenario (EDS): an
anthropogenically prioritized framework inducing 40% expansion in
urban–rural interface zones and concurrently implementing 10%
reduction coefficients for non-construction land transitions (Alaniz
et al., 2021); the food security scenario (FSS): an agro-centric
developmental paradigm applying 30% weighting premium on
cultivated land retention with a parallel 10% diminishment of
competing land conversion probabilities (Li et al., 2024a); and the
ecological protection scenario (EPS): an ecological optimization
framework mandating 40% conversion intensification toward
vegetated matrices alongside 10% transition suppression for non-
ecological land classes. This policy-constrained scenario modeling
integrated spatial governance schemata with ecological conservation
imperatives through differential transition elasticity parameters.

2.2.1.4 Model validation
Model validation protocols were executed through the integration

of Kappa concordance metrics and categorical accuracy assessments in
alignment with established methodological frameworks. A Kappa value
exceeding the 0.80 benchmark threshold demonstrated robust model
performance (Lin et al., 2020).

2.2.2 The InVEST model
The HQ reflects the intensity of human activities. Currently, the

higher the intensity of human activities, the stronger the intimidation to
HQ (Gashaw et al., 2021). The assessment within the HQmodule of the

InVEST framework was executed through dual analytical dimensions,
namely, synergistic stressors interactions between land cover typologies
(as specified in Table 4) and multi-parameter ecological determinant
integration. Habitat suitability coefficients, spatial stressor sensitivity,
proximity decay gradients, and anthropogenic impact weights were
methodically synthesized for comprehensive degradation index
derivation, with all model parameters systematically weighted, as
shown in Table 5. The calculation is as follows:

Qxj � H j 1 − DZ
xj

DZ
xj + k2

( )( ).
The optimized version with reduced similarity is as follows: Qxj

represents the HQ score of grid x for land-use category j, Hj denotes
the suitability of habitat for land-use type j, Dxj

z reflects the habitat
degradation level that occurs in grid x in land-use type j, z denotes a
predefined coefficient in the model, and k is a half-saturation
coefficient, which is commonly assigned a value of 0.5 (Han
et al., 2024).

Dxj � ∑R
r�1

∑Yr

y�1

wr

∑R
r�1wr

( )ryirxyβxSjr.

Habitat degradation indices Dxj were computed through the
integrative assessment of anthropogenic stressors, where r denoted
categorized land-use pressures and R indicated their cumulative
count. Spatial influence matrices yweighted threat propagation from
source grids, where Yr referred to the total grid number for threat
source r, wr denotes the threat source weight, and ry denoted grid
threat value y. Additionally, irxy reflected the impact from the threat
source within grid x, and βx represented the susceptibility to threat
factor. Sjr represented the rapid ecological encroachment drivers,
including cultivated zones, urbanized areas, and
nonproductive terrains.

HQ values were calibrated on a 0–1 continuum and stratified
into four discrete tiers: 0–0.1 (poor), 0.1–0.5 (medium), 0.5–0.8
(good), and 0.8–1 (excellent), corresponding proportionally to the

TABLE 2 Land-use transition matrices for the four scenarios.

NDS EDS FSS EPS

a b c d e a b c d e a b c d e a b c d e

a 1 1 0 1 1 1 1 0 1 1 1 0 0 0 0 1 1 0 1 1

b 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 0 1 0 1 0

c 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0

d 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 0 1 0 1 0

e 1 1 0 1 1 0 0 0 0 1 1 0 0 0 1 0 1 0 1 1

Note: a–e refer to six different land-use types: cropland, forest land, grassland, water body, construction land, and unused land, respectively (Cheng et al., 2024).

TABLE 3 Neighborhood effects of each land-use type.

Type Cropland Forest land Grassland Water body Construction land Unused land

Coefficient 0.5 0.5 0.2 0.3 0.8 0.1
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ecosystem service capacity and biodiversity conservation potential.
Elevated HQ metrics indicated enhanced ecological integrity and
species preservation viability.

3 Results

3.1 Historical land-use cover change and
habitat quality evolution

3.1.1 Spatiotemporal evolution of historical land-
use types

From 2010, 2015, and 2020, cropland and construction land
showed an expansion trend, whereas other land-use categories
experienced a reduction during this period (Figures 3, 4), and it
exhibited distinct divergence between the first 5 years and the

following 5 years. Cropland was distributed in the Yingchuan
Plain and Weining Plain, which were irrigated by the Yellow
River. The proportion of cropland increased from 23.86% to
24.33% during the 10 years due to the implementation of a
permanent basic farmland protection policy. However, the
cropland area slightly decreased from 23.86% to 23.73% during
2010–2015. Cropland was mainly transformed from grassland,
construction land, and unused land. Due to rapid urbanization,
the proportion of construction land increased from 6.52% to 8.40%.
Construction land comprised urban construction, rural
construction, and transportation land, which was converted from
cropland, grassland, and pre-existing construction land, and the
transformation rate in 2010–2015 was approximately twice that of
the 2015–2020 period. Ecological land, including forest land and
water bodies, declined and was converted into cropland and
construction land. Therefore, conducting ecological restoration in

TABLE 4 Habitat suitability and threat sensitivity for various land-use types.

Land-use type Habitat suitability Threat sensitivity

Cropland Construction land Unused land

Cropland 0.3 0.0 0.9 0.5

Forest land 1.0 0.6 0.8 0.2

Grassland 0.8 0.8 0.55 0.3

Water body 0.9 0.5 0.4 0.5

Construction land 0.0 0.0 0.0 0.0

Unused land 0.1 0.1 0.3 0.0

TABLE 5 Maximum impact distance and weight of threat factors.

Threat factor Maximum influence distance/km Weight Spatial decay type

Cropland 1 0.6 Linear

Construction land 8 0.4 Exponential

Unused land 3 0.5 Linear

FIGURE 3
Schematic diagram of land-use types from 2010, 2015, and 2020.
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the research regions was an urgent task. The area of water body
remained stable in the first 5 years, but its proportional coverage in
the total area exhibited a 0.11% decline during the following 5 years.
The forest land conversion rates experienced nearly identical trends
in the two distinct time periods.

3.1.2 Spatiotemporal evolution of historical
habitat quality

Across 2010, 2015, and 2020, the mean HQ of the study area
showed a downward trend, with values of 0.4919, 0.4730, and
0.4654 in the corresponding years, respectively. It exhibited
obvious spatial differences, which contain two categories, namely,
medium HQ and good HQ (Figure 5). The spatial pattern with the
superior HQ was located in the periphery of the study area,
especially in the Helan Mountain Nature Reserve and the Yellow
River mainstream. The spatial pattern with inferior HQ was located
in the central region, particularly in cities and farm zones. The
distribution of HQ levels in various zones was improved due to
ecological restoration. At the same time, other zones were degraded
as a consequence of social and economic advancement. These two
zones were interspersed with each other. The quantitative evaluation
of HQ was based on the change between each pair of land-use types.
The results indicated that the HQ in the study area exhibited a

declining trend for 2010, 2015, and 2020, with significant differences
observed between the first 5 years and the following 5 years
(Figure 6). Unfortunately, the ratio of areas with excellent HQ
diminished from 5.27% to 4.60% during the 10 years, and the
diminishment rate in 2010–2015 was more than twice that of
2015–2020. The ratio of areas with poor HQ increased from
17.68% to 18.85%, and the expansion rate showed a significant
deceleration during the following 5 years. The ratio of areas with
good HQ dropped from 47.79% to 46.35%, and the ratio of areas
with medium HQ ascended from 29.24% to 30.20%. Both types
demonstrated a trend in which the change rates during the following
5 years surpassed those of the first 5 years.

3.2 Future habitat quality pattern under
multiple scenarios

3.2.1 Land-use types across multiple scenarios
in 2035

Simulation-output consistency was empirically verified
against 2010–2020 observational datasets, yielding superior
agreement levels quantified by a Kappa coefficient of
0.8652 accompanied by 90.47% overall accuracy. Based on the

FIGURE 4
Land-use types conversion from 2010, 2015, and 2020.

FIGURE 5
Schematic diagram of habitat quality from 2010 to 2020.
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result of model validation, we simulated multiple scenarios in
2035 and found that the land cover configurations across all
scenarios demonstrated sustained dominance by grassland and
cropland systems, mirroring the spatial patterns of 2020, as
demonstrated in Figure 7. Under the NDS, grassland
ecosystems (44.17%) exhibited concentrated distribution
clusters across central–southern sectors, whereas cropland
formations (25.73%) were distributed along the Yellow River’s
agricultural axial belt, particularly within intensive cultivation
zones of the Yinchuan andWeining Plains. Marginal proportions
were maintained by forest land (5.32%) and water body (5.04%),
with arboreal concentrations restricted to protected highland
preserves, Zhongwei Forest Farm, and the south foot of
Xiangshan and Baijitan nature reserves. The water bodies
included the Yellow River, Yuehai Lake, Sha Lake, Xinghai
Lake, and other lakes. Construction land accounted for 9.82%
of all land-use types, indicating typical characteristics of the
response to human activity. Urban land was located in
prefecture-level cities and county-level towns, and rural land
was scattered in patches across the area. Transportation land
sprawled in strips, extending from the north to the south across

the plain. Unused land accounted for 10.35% of all land-use
types. Spatial analysis revealed predominant concentrations
across three aeolian geomorphic zones: the Shapotou sand-
drift region, transitional edges of the Mu Us sandy land, and
low vegetation coverage areas exemplified by the Shitanjin
mining district. Under the EDS, rapid industrialization and
urbanization drove the significant ectasia of construction land,
expanding it by 888 km2 (a 23.6% increase) relative to that under
the NDS. Under the FSS, the cropland area increased by
1,399 km2 (an 8.4% increase) through the enforcement of
national cropland preservation mandates, whereas the EPS
achieved concurrent gains in forest land (485 km2; a 5.2%
increase) and water body (458 km2; a 12.7% increase) via
strategic ecological barrier construction and water-system
restoration projects, respectively.

3.2.2 Multi-scenario simulation and Anselin Local
Moran Ⅰ analysis of habitat quality in 2035

As depicted in Figure 8, it can be observed that the HQ spatial
pattern exhibited notable convergence across different scenarios,
with the dominant pattern of HQ levels being medium and good.

FIGURE 6
Habitat quality conversion from 2010 to 2020.

FIGURE 7
Schematic diagram of land-use types under various scenarios in 2035.
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Additionally, a strong spatial coupling relationship existed
between HQ levels and land cover types. The average HQ
followed the order EPS (0.5348)> NDS (0.5165)> FSS (0.4967)
> EDS (0.4681). Under the NDS, the proportion of area with good
HQ accounted for 65.00% of the total HQ, showing high
similarity to the geographic distribution of grassland coverage.
The proportion of area with mediumHQ accounted for 37.96% of
the total, demonstrating a spatial distribution coupling
relationship of the cropland cover area. The proportion of
area with excellent HQ accounted for 13.88% of the total,
which also shows a coupling relationship with the region of
ecological lands, which were located in the nature reserves,
major rivers, and lakes. The area with poor HQ constituted
27.90% of the total, exhibiting that the distribution pattern
was analogous to construction land and unused land, such as
cities, villages, and deserts, among others. Under the EDS, the
area with excellent HQ decreased by 80.28% due to the rapid
urban expansion compared to that under NDS. Simultaneously,
the area with poor HQ increased by 16.36%, reaching an area of

88,032 km2. The HQ level in the Yellow River transformed from
excellent to second grade. The area with medium HQ expanded
rapidly, and the area with good HQ was shown as the opposite of
the former under the FSS, driven by the cropland protection
policy. The policy also contributed to the restoration of the land-
use types with poor HQ. On the contrary to EDS, the area with
excellent HQ increased significantly under the EPS.

The Anselin Local Moran Ⅰ was computed through ArcGIS 10.8.
As depicted in Figure 9, the HQ levels of the study area were strongly
associated with altitude, land-use types, and human activities. The
HelanMountain Nature Reserve was the largest area among the four
scenarios that could provide ecological service functions to
humanity and other species. However, its alluvial fan was an
ecologically fragile area. Due to the spatial proximity effect, the
area covered by grassland differed significantly from the
surrounding areas. It exhibited a situation of a high–low outlier.
Under the EPS, the mainstream served as an overall ecological
safeguard. Meanwhile, the HQ of construction land, especially in
Yinchuan city and the Ningdong industrial base, improved under

FIGURE 8
Schematic diagram of habitat quality under different scenarios in 2035.

FIGURE 9
LISA aggregation of the habitat quality spatial distribution by scenarios in 2035.
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EPS but had a low value under EDS. In contrast to NDS, the HQ of
construction land became comparable under the FSS because of the
increasing cropland area. Cropland HQ was identified as a primary
determinant influencing the Yellow River ecosystem integrity within
the Yingchuan Plain, with intensifying effects observed during
agricultural expansion phases under FSS scenarios. Conversely,
limited hydrological impacts were recorded in the Weining Plain
system, where progressive cropland quality deterioration occurred
despite similar cultivation area increases. The HQ of cropland had a
low value under NDS, and it showed the same situation with EPS. A
series of HQ patches had a high value under the EDS due to the
reduction of cropland.

4 Discussion

4.1 The necessity and advantage of multi-
scenario methods

The multi-scenario analysis is of great necessity and
advantageous for studying HQ. It can not only trade-off and
coordinate the contradictions and heterogeneity but also reflect
the uncertainties and complexities of the future more
scientifically and objectively. Generally, the higher the vegetation
coverage is, the better the HQ is, and the decline of HQ is
exacerbated by human activities and continuous urban expansion
(Walfrido et al., 2019). The same results were also shown in the cases
of the Hexi region and the whole YRB (Li et al., 2024b; Tang et al.,
2023). The mean HQ in the Hexi region under the EPS was higher
than that under the NDS. Meanwhile, the mean HQ of each region
among the whole YRB was closely related to the natural
environment, exhibiting the following order: Xi,-T > HBOY >
Yin-C > Lan-X. Moreover, HQ embodies a highly intricate and
systematic ecosystem as its spatial and temporal patterns were
shaped by a combination of natural and artificial factors. Natural
disasters and resource shortages, such as floods, droughts, and
energy crises, would have an impact on the uncertainty and
complexity of the social and economic development. The natural
environment changes, the technological advances, and the social and
economic transformation would continue to increase progressively.
For example, the mean HQ degeneracy value decreased in the
following order: EDS (0.2231) > FSS (0.1971) > NDS (0.1911) >
EPS (0.1771). This value was exactly the opposite of the mean HQ
value, indicating the impact caused by policy difference and the
importance of protecting the HQ. However, it also revealed that the
spatial relationships and HQ quality did not align consistently; for
example, under the EPS, the HQ exhibited the highest value but
lacked the most concentrated spatial clustering. This highlights the
distinctions in landscape patterns between arid and semi-arid
regions compared to others, such as the humid areas in
southeastern China and Malaysia’s tropical rainforest climate
zones (Wu et al., 2024; Zhang et al., 2024). Moreover, the HQ
interacts with other regional characteristics, such as ecological
security pattern, carbon storage, urban cooling, and seasonal
water yield. It is not easy to accurately calculate the
characteristics of each index, and the reasons for the differences
in regional characteristics under each scenario should be explored
(Ma et al., 2023; Wu et al., 2025b).

4.2 Future development of urban
agglomeration along the Yellow River
in Ningxia

The Territorial Space Plan of the Ningxia Hui Autonomous
Region (2021–2035) announces building a solid spatial foundation
for safe developmental foundations through integrated
resource–environmental carrying capacity assessments. Scenario
simulations derived mandatory land allocation thresholds for
2035, which included ecological conservation zones
requiring ≥4,568.96 km2, urban development capped at
≤ 2,970.78 km2, and the cropland area should be no less than
approximately 3,564.45 km2. All modeled scenarios satisfied the
statutory cropland preservation and urban expansion requirements;
however, ecological integrity optimization necessitated further
comparative analysis. Current water resource management under
the city–land–population–industry water quota system imposes
absolute consumption limits (≤51.81 billion m3), fundamentally
constraining demographic distribution, socioeconomic
development intensity, and infrastructure expansion patterns
(Wang et al., 2024). Therefore, it was necessary to determine the
future developmental model of the Ningxia Yellow River-adjacent
urban cluster according to the characteristics of water resources
while taking policy constraints into account (Li et al., 2025). In this
study, the DEM, slope, NDVI, transportation network proximity,
GDP density, and population density were seen as the contributing
factors or limiting factors for the urban agglomeration along the
YRB in Ningxia. The DEM and slope were the foundation of
regional ecological security, directly affecting the mesoscale
environment and microenvironment of the study area. NDVI
was an important ecological indicator of different areas because it
was formed by temperature, precipitation, and other regional
characteristics. GDP increase, population growth, and
construction land encroachment exacerbated pressure on
ecological carrying capacity, especially in ecologically fragile
zones. The priority zones for ecological restoration should
reconcile conflicts among ecosystem services, human preferences,
and future development aims, which were based on the natural and
artificial environment by optimizing land-use functions and zoning
identification strategies (Wu et al., 2025b; Lai et al., 2025). The Helan
Mountain Nature Reserve and the Yellow River mainstream were
regarded as the most critical regions for ecological protection and
restoration. In other regions such as the Ulan Buh, Mu Us, and
Tengger deserts and the Baijitan Nature Reserve, measures of sand
fixation should be strengthened. Additionally, high-pollution and
high-energy-consuming industries should be reduced in the
intensive human activity zones.

4.3 Limitations and prospects

Although the FLUS–InVESTmodel was capable of reflecting the
HQ within its spatiotemporal process and dynamics in the past/
future periods, there were still many limitations. The selection of
parameters and weights may be uncertain and inevitable due to the
author’s subjectivity. In addition, HQ simulation using the
FLUS–InVEST models relies on the LUCC predictions.
Therefore, the LUCC was greatly affected by the natural
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environment and human activity, and quantifying these factors was
challenging (Wang et al., 2025). Future studies should emphasize the
interaction between HQ and other region characteristics, as the
regional development was an organic whole. Meanwhile, multi-
source data and a large language model (LLM) should be utilized to
replicate the alterations in regional characteristics (Zheng et al.,
2024; Liu et al., 2024). This approach could improve simulation
accuracy and present realistic scenarios.

5 Conclusion

This study utilized the FLUS and InVEST integrated modeling to
assess LUCC and HQ within the urban agglomeration along the YRB
in Ningxia across 2010, 2015, and 2020, with supplementary scenario
projections extending to 2035. The results showed that (Hall, 1997)
the areas of ecological land decreased during the period.
Correspondingly, the mean HQ demonstrated a successive decline
from 0.4919 to 0.4730, and further to 0.4654, characterized by
centrifugal degradation gradients from the peripheral to central
regions (Fahrig, 2017). Multi-scenario analysis for 2035 revealed
consistent land-use proportions across developmental frameworks
and similar to the historical periods, with medium-to-good HQ levels
predominating and demonstrating significant spatial coupling with
LUCC. Scenario-specific HQ performance followed the hierarchy EPS
(0.5348) > NDS (0.5165)> FSS (0.4967) > EDS (0.4681). The Helan
Mountain Nature Reserve showed sustained ecological integrity
across the four scenarios. The Yellow River mainstream exhibited
continuum-scale ecosystem functionality under EPS, contrasting with
fragmented conservation patterns observed in alternative scenarios.
Moreover, the HQ of the Yellow River showed spatial differences
between the Weining and Yinchuan plains (Alaniz et al., 2021). The
HQ was a complex and dynamic synthesis, and the multi-scenario
simulation could effectively address its idiosyncrasies. The HQ was
guided by natural factors and government policies, coordinating the
man–land relations.
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