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Soil Spotted Degradation (SSD) is a critical manifestation of land degradation that
poses substantial constraints on agricultural development. However, the underlying
mechanisms driving SSD and the methodologies for accurately predicting its
occurrence remain poorly understood. In recent years, SSD has become
increasingly prevalent in the tea-producing regions of the Qinling Mountains,
China, intensifying the urgency of addressing soil-related challenges in the area.
Consequently, developing accurate SSD prediction models has emerged as a pressing
priority. This study focuses on Shangnan County, Shaanxi Province, China. Authentic
SSD samples were collected through field investigations supported by remote sensing
data and processed using the QGIS platform. To overcome limitations in sample
compilation and the underutilization of feature information in SSD prediction, we
propose a novel deep learning framework that integrates Stacked Autoencoders (SAE)
with Dense Residual Networks (DRN). The performance of the proposed SAE-DRN
model was benchmarked against conventional Support Vector Machine (SVM), hybrid
Convolutional Neural Network—Random Forest (CPCNN-RF), and U-Net models.
Experimental results demonstrate that the proposed SAE-DRN model achieved
superior performance, with an overall accuracy of 0.87, an F1 score of 0.89, and
an area under the receiver operating characteristic curve (AUC) of 0.92. Compared
with the baseline models, SAE-DRN exhibited greater robustness and adaptability
under small-sample conditions, producing more precise and reliable predictions of
SSD occurrence. The findings underscore the potential of the SAE-DRN approach to
guide tea plantation site selection and inform soil disease prevention strategies,
thereby addressing key agricultural and environmental challenges in the Qinling
region. Moreover, this method holds promise for broader application beyond tea
cultivation systems, offering valuable insights for sustainable agricultural development,
ecological restoration, and resource management in diverse agroecosystems.

soil spotted degradation, deep learning, machine learning, tea-producing region,
remote sensing

1 Introduction

Land serves as the indispensable foundation for human survival and development. With
the rapid expansion of the economy and the continuous advancement of urbanization, the
proportion of land allocated for construction has steadily risen, culminating in a substantial
decline in arable land (Rukhovich et al., 2022). Concurrently, this shift has precipitated a
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range of ecological and environmental challenges. At present, soil
degradation represents one of the most critical determinants
severely impacting land resources (Yousefi et al, 2021). This
degradation is manifested through multiple and diverse processes,
such as soil erosion, salinization, contamination, and the decline in
soil fertility, all of which not only hinder agricultural productivity
but also threaten the stability of broader ecological systems (Saha
et al.,, 2022).

As one of the most populous nations globally, China has long
grappled with the scarcity of land resources. This challenge is
especially pronounced in the Qinling region of western China,
where diverse topographical features and climatic conditions,
combined with a fragile ecosystem, have resulted in frequent
degradation, further
depletion of land resources (Feng et al., 2024). Soil degradation

occurrences of soil exacerbating the
has long been recognized as a major ecological threat (Cota-Ungson
et al,, 2023). In contrast to generalized soil degradation, which may
involve erosion, salinization, or nutrient depletion at broader spatial
scales, Soil Spotted Degradation (SSD) refers to localized, patch-like
bare soil areas with strong spatial heterogeneity (Jiang et al., 2023).
SSD directly undermines surface vegetation cover, reduces soil
fertility, and critically threatens tea plantation productivity in
Qinling. Additionally, this region is a key tea-producing area,
and soil degradation has significantly impaired agricultural
development in this vital sector. Accordingly, the investigation of
soil degradation has emerged as a matter of paramount significance.

The Qinling region of China, renowned for its unique natural
conditions, climatic characteristics, and rich tea culture, is a pivotal
area in China’s tea industry (Chen et al., 2020). Its abundant hilly
terrain fosters distinctive climatic and soil conditions in hillside tea
gardens, yielding teas of outstanding quality and distinctive
character. However, the region’s unique topography and soil
attributes have limited the expansion of tea cultivation areas.
Over the past few decades, the persistent occurrence of bare soil
surfaces in tea gardens has impeded effective cultivation practices
(Xue et al, 2018). This sporadic phenomenon, identified as Soil
Spotted Degradation (SSD), challenges not only local tea production
but also the ecological environment. The random nature of SSD
occurrences has obscured their underlying causes. To strategically
plan tea cultivation and implement effective soil management
practices, it is imperative to establish large-scale SSD predictive
frameworks based on limited observational data. Such insights are
vital for optimizing tea production systems, promoting sustainable
soil management, mitigating economic losses, and preventing
ecological degradation.

At broader scales, the integration of GIS and remote sensing
technologies enables efficient SSD prediction using existing samples,
reducing the need for extensive resources while facilitating data
management. This methodology has been widely applied in fields
such as landslide susceptibility modeling (Pham et al., 2021; Arsyad
and Muhiddin, 2023), groundwater forecasting (Das and Das, 2024),
forest fire hotspot prediction (Razavi-Termeh et al., 2020). However,
SSD  prediction unexplored.  Existing predictive
methodologies can be broadly classified into two categories:

remains

statistically-based and machine learning-based classification
methods. Statistically-based methods, such as frequency ratio
(FR) (Abdo et al, 2022), certainty factor (CF) (Costache et al,

2019), index of entropy (IOE) (Pournader et al., 2018), weight of
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evidence (WoEs) (Falah and Zeinivand, 2019), analytic hierarchy
process (AHP) (Keshavarzi et al., 2020), are predicated on linear
assumptions and exhibit sensitivity to outliers. These approaches
face limitations when dealing with high-dimensional or
unstructured data, such as images and texts. Machine learning
methods, including support vector machine (SVM) (Lixi et al,
2013; Xie et al,, 2021), decision tree (DT) (Grunwald et al., 2015;
Wu et al,, 2020), random forest (RF) (Wang et al., 2021; Rao et al,,
2023), principal component analysis (PCA) (Abdel-Fattah et al,
2021), logistic regression (LR) (Alireza et al., 2018; Gu et al., 2022),
are well-suited to address complex and nonlinear challenges.
However, traditional machine learning models face challenges
with high-dimensional data, requiring extensive datasets for
parameter estimation and being prone to overfitting. They also
depend heavily on manual feature engineering, which demands
domain expertise.

In contrast, deep learning architectures autonomously learn and
extract hierarchical representations from data, minimizing the need
for manual feature engineering. This adaptability makes them more
effective for handling high-dimensional data and improving
generalization. Given the limited research on SSD, studies on
landslides provide a useful reference. Research indicates that
simple deep learning architectures, such as convolutional neural
networks (CNNs), may not fully exploit complex variable features
(Zalidis, 2020). Additionally, limited sample sizes frequently
constrain predictive performance of deep learning models,
leading to the adoption of transfer learning to address sample
limitations (Dyson et al, 2019; Khaki et al., 2020; Kan et al,
2023). While transfer learning augments sample sizes effectively
(Yang et al,, 2023), methods focusing on feature reconstruction to
enhance feature representation remain
(Raghubanshi et al., 2023).

Existing research on SSD reveals numerous unresolved

largely ~unexplored

challenges: (1) Statistical and machine learning models have not
yet been applied to SSD prediction. (2) The performance and
generalization of predictive models for SSD are unknown,
necessitating the development of robust and cost-effective
models. (3) Strengthening feature representation and improving
prediction accuracy with limited SSD samples remain critical goals.

To address these challenges, this study focuses on predicting
SSD-prone areas in Shangnan County, Shaanxi Province, China at
the county level. It proposes a novel SSD prediction model
integrating Dense Residual Networks (DRN) with Stacked
Autoencoders (SAE). The SAE autonomously learns latent feature
representations from large amounts of unlabeled real data, enabling
data augmentation. On this basis, the DRN facilitates more effective
information reuse and mitigates gradient dispersion risks. This
approach is particularly suited to predicting SSD under complex
nonlinear relationships and small sample conditions, improving
prediction accuracy.

The study’s findings furnish valuable insights and references for
local tea plantation site selection and guidance for soil disease
SSD
contributions of this research include: (1) Introducing the

management, preemptively  mitigating risks.  Key
concept of SSD in tea-producing regions for the first time; (2)
Utilizing deep learning networks and machine learning models to
predict SSD in tea-producing regions; (3) Proposing a novel SSD

prediction model that integrates DRN with SAE for data
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FIGURE 1
The overview and SSD inventory map of study: (a) Typical SSD example in North area; (b) Typical SSD example in Central area; (c) Typical SSD

example in East area.

augmentation; (4) Demonstrating the broader applicability of these

findings for tea plantation site selection and analogous

agricultural scenarios.

2 Overview of study area

Shangnan County is located in the southeast of Shangluo City,
Shaanxi Province, China, with geographical coordinates between
108°58'-109°48' east longitude and 32°29'-33°13’ north latitude. The
county covers an area of 3,554 square kilometers, with elevations
ranging from 185 to 2,358.4 m. The region experiences a warm and
humid climate with distinct seasonal variations, characteristic of a
North Subtropical climate transitioning between southern and
northern patterns. The average annual sunshine duration in
study area is 1,755.1 h, accounting for 39% of total possible
sunshine. The mean annual temperature is 16.6 °C, accompanied
by an average frost-free period of 260 days. The region receives an
average annual rainfall of 733.4 mm, though significant geographical
disparities exist, with northern and southern mountainous areas
receiving more rainfall than shallow mountain valleys. The average
natural vegetation evaporation is 726.1 mm annually (Jiajun et al,
2017). The study area features well-developed surface water systems
and favorable irrigation conditions. The main groundwater-bearing
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rocks include stratified bedrock fissure aquifers, karst bedrock
fissure aquifers, and porous aquifers in loose cover layers. The
diverse soil types in the area exhibit distinct vertical distributions
and are characterized by thin layers, high stone content, heavy
texture, nitrogen deficiency, severe phosphorus deficiency, abundant
calcium sources, and moderate acidity (Maximilian et al., 2020).
Calcareous shale and limestone are extensively distributed due to the
region’s varied terrain and the coexistence of warm temperate and
mid-temperate mountainous climates. These natural conditions-
moderate to low sunlight, abundant heat, uneven rainfall
distribution, and pronounced regional variations-create optimal
conditions for tea cultivation.

Shangnan County was selected because it is (1) a representative
tea-producing area in the Qinling Mountains, (2) frequently affected
by SSD due to unique soil and topographic conditions, and (3) an
appropriate case for small-sample modeling. Despite the favorable
conditions, tea cultivation in study area faces challenges due to the
frequent occurrence of Soil Spotted Degradation (SSD) in tea
gardens. SSD is primarily manifested in the following forms: (1)
In large-scale tea gardens, tea trees fail to thrive in certain areas,
resulting in extensive patches of non-viable plants; (2) In some
regions, tea tree seedlings planted in the second or third year exhibit
signs of mortality, and replanting efforts often fail to ensure their
survival; (3) On sloping terrain, SSD areas show a trend of gradual
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TABLE 1 Summary of data sources.

Data name

10.3389/fenvs.2025.1649528

Extracted data

Digital Elevation Model Aster GDEM Grid. slope, aspect, plan curvature, profile curvature, elevation
Landsat 8 OLI remote sensing Google engine Img. normalized difference vegetation index
images
Mean annual precipitation data Shp. mean annual precipitation
Soil factor data Field sampling in the wilderness, Shp. soil texture, soil clay content, soil organic matter content, soil sand content, soil
indoor analysis powder content, soil pH
Other vector data Shp. land use type, soil type

migration and expansion towards the lower regions of the slopes
(Figure 1). These challenges underscore the need for targeted
interventions to mitigate SSD and enhance the sustainability of
tea cultivation in the region.

In response to these challenges, a county-level SSD prediction
study was conducted to mitigate the risk of soil disease in
the study area.

3 Data resources
3.1 Sample inventory

A comprehensive understanding of
distribution, morphological characteristics,

the geographical
and fundamental
information of SSD is indispensable for accurate SSD prediction
in the study area (Liu and Hao, 2018). This study identified 415 SSD
samples through a combination of field surveys, historical data
analysis, and remote sensing interpretation, subsequently
vectorizing them into polygon files on the GIS platform.
Although the dataset contains only 415 SSD samples, their
sufficiency is ensured by integrating multi-source data (remote
sensing, field validation, soil survey), and by applying balanced
sampling and data augmentation. This approach enhances the
representativeness of the dataset despite the limited size. Small or
early SSD may be difficult to identify in remote sensing images and
field surveys, resulting in insufficient representativeness, which may
consequently lead to conservative estimations of SSD occurrence.

Statistical analysis revealed that the maximum planar area of
SSD samples in the study area is 609 m?, the minimum is 18 m? and
the average is 95 m’ with irregular shapes. The characteristic
attributes of SSD samples, including length, width, and planar
area, were assigned to the plots. A total of 281,756 pixels were
identified as representing SSD samples, accounting for 0.76% of the
study area’s total area. To support subsequent modeling, an equal
number (415) of non-SSD samples were randomly selected from
non-SSD areas as negative samples, completing the sample database
for SSD prediction in the study area (Figure 1).

Equal sampling was employed to balance the dataset under
small-sample conditions, but this may not reflect the true
distribution of SSD versus non-SSD areas. Future research can
adopt more advanced sampling methods, such as SMOTE or

weighted loss functions, to address the issue of class imbalance.
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3.2 Conditioning factors

At present, research on SSD remains scant, yet this study,
informed by field observations and historical data examination,
considers three major categories of influencing factors:
topographic factors, encompassing slope, aspect, plan
curvature, profile curvature, and elevation; environmental
factors, including normalized difference vegetation index
(NDVI), mean annual precipitation (MAP), and land use type
(LUT); and soil factors, comprising soil type, soil texture (ST),
soil clay content (SCC), soil organic matter content (SOMC), soil
sand content (SSC), soil powder content (SPC), and soil
pH (PH), all serving as contributing factors to the onset of
SSD. The original data sources utilized in this study are detailed

in Table 1.

3.2.1 Topographic factors

The influence of slope on the occurrence of SSD is complex and
multifaceted, closely associated with water distribution and
vegetation growth dynamics (Figure 2a). On steep slopes, rainfall
is more likely to generate surface runoff, which can exacerbate soil
erosion and lead to the onset of SSD (Yuan et al., 2024).

Aspect significantly impacts water distribution, sunlight
exposure, and vegetation cover, thereby affecting SSD occurrence
(Figure 2b). Sun-exposed slopes are more susceptible to water loss
due to higher temperatures, while shaded slopes retain moisture,
promoting vegetation growth. Additionally, east-facing and west-
facing slopes differ in their solar radiation reception, influencing soil
moisture  distribution (Baiamonte
et al.,, 2019).

Plan curvature (Figure 2c) and profile curvature (Figure 2d)

and vegetation patterns

serve as indicators of terrain undulation. In areas with pronounced
undulation, uneven water distribution can result in increased soil
dryness at higher elevations, heightening SSD risk (Wu
et al., 2022).

Elevation also plays a critical role in SSD occurrence. As
elevation increases, temperature and atmospheric pressure
decrease, leading to lower soil temperatures that can hinder
vegetation growth (Amonil et al., 2023). Changes in atmospheric
pressure impact evaporation and precipitation, further affecting soil
moisture levels. Additionally, variations in elevation can alter soil
types, with some high-altitude regions experiencing permafrost

conditions that significantly influence soil properties (Figure 2e).
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3.2.2 Environmental factors

The Normalized Difference Vegetation Index (NDVI) provides
a clear indicator of regional vegetation coverage, making it a key

Frontiers in Environmental Science

factor influencing SSD (Figure 2f). Higher NDVI values generally

05

indicate healthier vegetation, which can mitigate SSD risk.
Conversely, increased precipitation levels can intensify runoff and
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FIGURE 3
Flowchat of the study.

soil erosion, elevating the likelihood of SSD (Sholagberu et al., 2019).
Rainfall plays an essential role in supporting plant growth, and the
absence or degradation of vegetation exacerbates SSD occurrences
(Figure 2g) (Ke and Zhang, 2022).

Land use type (LUT) significantly affects SSD by influencing soil
coverage and conservation. Different land use practices, such as
agriculture, forestry, and urbanization, exert varied impacts on soil
stability and susceptibility to SSD (Figure 2h).

3.2.3 Soil factors

Soil types vary in their capacities for moisture retention,
resistance to weathering, and compatibility with vegetation, all of
which directly impact SSD occurrence (Figure 2i). Soil attributes
such as texture, organic matter content, and pH play critical roles.
Soil texture affects water infiltration and root growth (Figure 2j).
Clay content enhances water retention and fertility (Figure 2k),
while organic matter stabilizes soil structure and improves fertility
(Figure 2I) (Yan and Gao, 2021). Soil pH influences nutrient
availability and plant growth, with extremes in acidity or

Frontiers in Environmental Science

alkalinity potentially hindering vegetation and increasing SSD
risk (Figure 2m). Sandy soils are more prone to drying,
heightening SSD risk (Figure 2n), whereas higher silt content
helps retain moisture, reducing water loss and the likelihood of
SSD (Figure 20) (Moriaque et al., 2019).

3.3 Preparation of input datasets

To reconcile the diverse dimensions and scales of various datasets
and avoid data redundancy, the t-Distributed Stochastic Neighbor
Embedding (t-SNE) method was
reduction (Horrocks et al, 2018). Following this, all layers of

applied for dimensionality

influencing factors were standardized to a uniform resolution of
30x30 m, resulting in the development of a comprehensive dataset
required for model analysis. Subsequently, the dataset underwent K-fold
Cross Validation (K-CV) to ensure robustness and reliability. After
validation, the data was split into training and validation sets in a 7:
3 ratio, with 70% (724 samples) allocated for training the model and

06 frontiersin.org
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30% (310 samples) reserved for validating the predictive performance of
the results (Zafar and Salahuddin, 2009).

4 Methodologies

This study proposes an innovative method for SSD prediction by
integrating the Stacked Autoencoder (SAE) with the Dense Residual
Network (DRN). Using Shangnan County, Shaanxi Province, China
as the study area, the overall technical process is divided into four
primary steps: (1) Construction of the SSD-related dataset; (2)
Design of the SSD prediction network; (3) Implementation of
SSD prediction mapping using the SVM model, CPCNN-RF
model, U-Net model, and SAE-DRN model; (4) Evaluation of
prediction accuracy, comparing the performance of deep learning
networks with traditional machine learning models. The detailed
workflow is illustrated in Figure 3.

4.1 Multicollinearity detection method

Machine learning models often operate under the assumption
that independent variables are mutually independent. However, as
this study adopts a comprehensive approach to selecting factors
influencing SSD, it inevitably introduces correlations among these
variables. When these correlations become sufficiently strong, the
regression coefficient of one variable may increase substantially due
to the presence of another, potentially resulting in overfitting or
under fitting during model training. This issue, commonly referred
to as multicollinearity, can undermine model performance.

To address this, the study employs Pearson correlation coefficients
(Pr) and variance inflation factors (VIF) to detect autocorrelation
among the influencing factors. The Pearson correlation coefficient
(Pr) quantifies the strength of the linear relationship between two
factors influencing SSD. Its value ranges from —1 to 1, with values closer
to 1 indicating stronger positive correlations, and values closer
to -1 indicating stronger negative correlations (Leonenko et al,
2013). The variance inflation factor (VIF) is a statistical measure
used to identify the degree of multicollinearity among predictors
(Garcia et al, 2015). For each factor X; influencing SSD, the VIF is
calculated as shown in Equation 1.

1

i

(1)

In this context, R represents the coefficient of determination for
the regression model in which X; serves as the dependent variable,
while the remaining factors act as independent variables. An
elevated VIF value denotes a stronger correlation among the
factors influencing SSD. When the VIF exceeds 10, it is
indicative of significant multicollinearity among these factors. To
address this issue, this study adopts an elimination strategy to
exclude SSD influencing factors with substantial multicollinearity.

4.2 Contribution calculation of each factors

In prior studies, the use of singular conventional models such as
Information Gain Ratio (IGR), Support Vector Machine (SVM), and
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Random Forest (RF) often overlooked the intrinsic connections
between influencing factors and real-world scenarios. Furthermore,
these models demonstrated sensitivity to noise and outliers. To
address these limitations and align factor selection results more
closely with real-world conditions, this study combines RF and SVM
to construct the RF-SVM ensemble learning model for factor
selection. The principles underlying RF and SVM can be
referenced in the literature (Castro-Franco et al., 2015; Borthakur
and Dey, 2020). The integration of RF’s ensemble capability with
SVM’s robust performance enhances the overall model robustness,
reducing susceptibility to noise and outliers while improving
performance in high-dimensional data. Using the RF-SVM
data
classification. The model leverages the voting mechanism of
multiple trees to bolster robustness, facilitating the calculation of

model, undergo feature selection and preliminary

the contribution degree (Cd) of each SSD influencing factor. This
process provides a comprehensive assessment of feature importance,
offering a more reliable basis for SSD prediction.

4.3 Rough set

Given the unique characteristics of Soil Spotted Degradation
(SSD), which involve complex influencing factors and region-
specific uncertainties in causative mechanisms, it is essential to
construct an objective and reasonable indicator system. This
approach enhances the overall framework and methodology of
SSD prediction. In predictive assessment, scholars often rely on
the empirical knowledge of predecessors to analyze sample
characteristics and environmental contexts. Techniques such as
collinearity analysis and importance analysis are frequently
employed to screen evaluation factors, thereby reducing errors
that could affect model predictive accuracy. The Rough Set (RS)
method offers a robust approach for addressing the uncertainties in
SSD prediction. RS uncovers potential rules within uncertain data,
enabling attribute reduction while preserving the classification
accuracy of the knowledge base. By leveraging the information in
SSD decision tables, RS isolates core attributes critical to prediction,
simplifying the cognitive complexity of SSD prediction systems.
Additionally, RS minimizes the impact of subjective biases, making
it a powerful tool for constructing reliable and efficient SSD
predictive models (Swiniarski and Skowron, 2003).

Assuming the domain of discourse is denoted by
., Xn»}, Where its Attribute Decision Table (ADT) S
can be represented by Equation 2.

U= {xl,xz,. .

S =(U,A,V,f) (2)

Herein: A ={aj,a,,...,a,} is a non-empty finite set of
attributes; A = C U D; C is the conditional attribute set; D is the
decision attribute set; V = U,eaV, is the collection of attribute
values; V, represents the range of values for attribute a € A; f is
the information function, which can be expressed as f: U x A — V,
then f(x,a) € V.

The dependency calculation of conditional attribute C on
decision attribute D is seen in Equation 3.

POS. (D)
K= Yo = # (3)
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Herein: y ) represents the ratio of objects that can be classified
into decision class U|D under the condition attribute C; POSc (D)
represents the positive threshold for D with respect to C.

Not all conditional ADT structures exert a significant impact on
the classification results. It is necessary to obtain the minimal
relevant attribute set by eliminating redundant attributes.
Assuming that the set of all reductions of attribute set A is
denoted as Red (A), then the intersection of all reductions core
(A) can be represented by Equation 4.

core(A) =N Red(A) (4)

Due to the differing contributions of conditional attributes to the
classification results, it is typically necessary to assess the changes in
classification performance before and after attribute selection.

By calculating the difference in dependency between decision
attribute D and its subset conditional attribute B’ € B, the extent of
impact Ak on the positive threshold U|D after removing attribute
subset B’ can be expressed as Equation 5.

Ak =rg(D) ~rpp (D) (5)

when the value of Ak is too small or equals 0, the corresponding
attribute is redundant, and it usually needs to be eliminated (Liu
et al., 2022).

4.4 Stacked autoencoder (SAE)

Unlike supervised Convolutional Neural Networks (CNNs),
autoencoders (AEs), as unsupervised learning artificial neural
networks, can learn automatically from large amounts of
unlabeled data. By performing nonlinear mappings of input
evaluation factors, AEs generate reconstructed data that reveal
more intrinsic representations of the input. This process aims to
enhance the quality and utility of the data, enabling more effective
analysis and predictions (Vincent, 2011).

During the encoding process, the activation function f (-) maps
L xpttoh ={hy, hy, ...

the input feature data x = {x1, x5, . . s s}, as

shown in Equation 6.
h=f(W,x+b,) (6)

Here, W, represents the weight matrix for mapping x =
{x1, %2, ..., X} to h={h,hy,..., hy,}, and by denotes the bias
between the input and hidden layers.

In the decoding process, the hidden layer output h =
{hi,hyy ooy} s through g(-) to obtain the
reconstructed output y = {y1, y2, ..., ¥}, as shown in Equation 7.

mapped

y=9(W:h+b,) 7)

Here, W, represents the weight matrix for mapping h =

{hi,ha, .. Byt to Yy ={y1, ¥2, -
between the output and hidden layers.

.» ¥}, and b, denotes the bias

The occurrence of SSD is influenced by the impregnating
environment and various inducing factors, exhibiting a distinct
nonlinear relationship among the characteristic data. A single-
layer autoencoder network, however, is insufficient to achieve
satisfactory feature extraction. To address this limitation, multiple
autoencoders are stacked to form a stacked autoencoder (SAE), as
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illustrated in Figure 4. SAEs enhance feature representation by
leveraging unsupervised learning to extract features from the
This
feature

original training samples. strengthened representation

facilitates more efficient fitting in  subsequent

predictive models.

4.5 Dense residual network (DRN)

Increasing the depth of CNN networks enables the model to
extract deeper data features. However, deepening the network layers
often introduces challenges such as gradient explosion and gradient
vanishing, which can limit model accuracy. To address these issues,
this study incorporates skip connections into the model structure.
Skip connections facilitate the explicit fitting of residual mappings
rather than the original identity mappings, thereby preserving input
information and enhancing gradient propagation efficiency (Cai
et al,, 2020). The relationship between model input E and output
F(E) in residual units can be expressed as Equation 8.

F(E) = l//(WzRelu (V/(Wl + %))) + 9> (8)

In the equation, W; and W, represent the weights of the
convolutional layers, q; and q, denote biases, and y signifies
batch normalization.

Given the typically limited sample sizes in SSD prediction
studies, which can constrain the training accuracy of traditional
residual networks, this study constructs a Dense Residual Network
(DRN). By employing dense connections that link feature maps
from different convolutional layers, the DRN enhances the reuse of
SSD feature information within the network. This approach
increases the network’s sensitivity to input data and improves
model fitting performance. The specific network architecture is
depicted in Figure 5.

4.6 Evaluation methods for results

This study evaluates the precision of SSD prediction using two
metrics: Overall Accuracy (OA) and F1 score (Zhou et al,, 2024).
Additionally, the model’s generalization capability is assessed
through the Area Under the Receiver Operating Characteristic
Curve (AUC) (Hanley and Mcneil, 1982).

5 Results

5.1 Optimization results of
influencing factors

Through multicollinearity analysis and contribution analysis,
the suitability of each SSD influencing factor as a variable can be
quantitatively assessed. In the multicollinearity analysis (Figure 6),
the Pearson correlation coefficients (Pr) between planar curvature,
profile curvature, and slope are relatively high, reaching 0.89 and
0.92, respectively, while the Pr values of all other factors are below
0.5. According to the variance inflation factor (VIF) analysis
(Table 2), the VIF values of planar curvature and profile
curvature are 13.54 and 12.79, respectively, exceeding the
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SAE network structure diagram.
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data

FIGURE 5
DRN network structure diagram.

threshold of 10, indicating significant multicollinearity. In contrast,
the VIF values of all other influencing factors are below 10, and the
tolerance (TOL) values are all greater than 0.1, suggesting no
multicollinearity issues. The results of the contribution analysis
(Figure 7) show that the contribution degrees of all influencing
factors are positive, with the soil pH factor having the highest
contribution degree at —0.93, followed by the aspect factor (0.85),
while the land use type factor has the lowest contribution
degree at —0.37.

Considering the comprehensive results of the factor selection
process, it is evident that all factors contribute to the model.
However, due to the multicollinearity between planar curvature
and profile curvature, these two factors will be excluded, and the
remaining factors will be retained as input variables for the SSD
prediction model.

5.2 Prediction results of SSD

5.2.1 Prediction results of SSD based on machine
learning methods

To mitigate the risks of overfitting or underfitting in machine
learning model classification due to dataset variations, we employ a
10-fold cross-validation approach to train the SVM model. The
posterior probabilities of SSD are normalized to a range between

Frontiers in Environmental Science
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0 and 1, where a probability close to 1 indicates a higher likelihood of
SSD within the assessed unit area. These normalized probabilities
are then rasterized in ArcGIS. Using the natural breaks classification
method, the predicted outcomes are categorized into five levels:
extremely high occurrence area (0.749-0.967), high occurrence area
(0.561-0.749),
occurrence area (0.241-0.393), and extremely low occurrence
area (0.001-0.241). This process results in the creation of the
SSD  Susceptibility Map (SSDSM) based on the SVM
model (Figure 8a).

medium occurrence area (0.393-0.561), low

5.2.2 Prediction results of SSD based on deep
learning methods

The deep learning network model eliminates the need for cross-
validation by directly utilizing multi-channel pooling layers to
extract feature data from the input layers. The model comprises
the following four main steps:

1. Shallow Feature Extraction: The first layer, labeled C1, utilizes
8 convolutional kernels of size 3 to filter the reconstructed SSD
features, extracting shallow feature information from
environmental factors.

2. Residual learning: @ Batch Normalization: This technique is
used to restrict output results within a specific range,

minimizing the impact of data distribution changes in
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Calculation results of Pr for SSD influencing factor.

hidden layers on model performance, thus enhancing stability.
@ Dropout Regularization: With a probability of 0.5, this
regularization randomly discards hidden layer units, helping to
prevent overfitting. Given the complexity of the evaluation
factors, the number of convolutional kernels increases with
layer depth. Convolutional layers C2, C3, and C4 employ 8, 16,
and 32 convolutional kernels, respectively, each with a size of 3.
Zero-padding convolution mode (“padding = same”) is applied
during training to maintain consistent feature map sizes
across layers.

3. Deep Feature Extraction: The feature maps produced by the
residual learning module are input into convolutional layers
C5, C6, and C7, each with 64 convolutional kernels of size 3,
using a valid convolution mode. To reduce computational load,
a max-pooling layer P1 with a size of 2 follows C7. The output
feature maps from P1 are transformed into one-dimensional
vectors and sequentially passed through fully connected layers
FC1 (512 neurons) and FC2 (256 neurons), converting the
feature data into a 1 x 256 dimensional vector.

. Softmax Classification: The output layer of the network utilizes
a Softmax classifier to classify the data, selecting the category
with the highest probability value as the final prediction result
and determining the membership of the SSD susceptibility.
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This model architecture ensures efficient and precise feature
extraction while optimizing performance for SSD prediction. SAE
employed three hidden layers (128, 64, 32 neurons), ReLU
activation, 0.001; DRN of
7 convolutional layers (3 x 3 kernels), batch normalization,

learning  rate consisted
dropout rate 0.5, Adam optimizer, and learning rate 0.0005.
After rough set analysis, the final retained predictors included
slope, NDVI, soil pH, soil organic matter content, and land use
type, while highly collinear factors such as elevation and
precipitation were excluded.

The SSD index was normalized to a range of 0-1 and
subsequently rasterized using ArcGIS. Based on the natural
breakpoint classification method, the prediction results from the
CPCNN-RF, U-Net, and SAE-DRN models were divided into five
susceptibility levels: extremely high, high, medium, low, and
extremely low occurrence areas. The classification thresholds
varied across the models, ranging from 0.089 to 0.998. These
classifications facilitated the creation of SSD susceptibility maps
for each model (Figures 8b-d), providing a comprehensive visual
representation of SSD risk areas. The final statistical analysis of SSD
areas, categorized by susceptibility levels, is presented in Figure 11,
offering valuable insights into the spatial distribution and extent
of SSD risk.
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TABLE 2 VIF and TOL values of influencing factors affecting SSD.

Categories Influencing factors VIF TOL
Topographic factors Evelation 1.294 0.773
Slope 1.028 0.973

Aspect 1.126 0.888

Plan curvature 13.540 0.074

Profile curvature 12.790 0.078

Environment factors NDVI 1.041 0.961
MAP 1.035 0.966

LUT 1.044 0.958

Soil factors Soil type 1.104 0.906

ST 1.049 0.953

SCC 1.148 0.871

SOMC 1.133 0.883

SSC 1.078 0.928

SPC 1.560 0.641

Soil PH 1.117 0.895

5.3 Evaluation of prediction accuracy

This study assessed the prediction accuracy of SSD models,
including SVM, CPCNN-RF, U-Net, and SAE-DRN, using the
training dataset alongside Overall Accuracy (OA) and F1 score
metrics. As shown in the accuracy evaluation results (Table 3),
the SAE-DRN model outperformed the others, achieving the highest

Aspect |

10.3389/fenvs.2025.1649528

OA and F1 values of 0.87 and 0.89, respectively. The CPCNN-RF
and U-Net models also demonstrated robust performance, with OA
and F1 values exceeding 0.75, reflecting their reliable prediction
accuracy. In contrast, the SVM model exhibited lower OA and
F1 scores, indicating suboptimal predictive performance.

Receiver operating characteristic (ROC) curves were generated
for the four models using the test dataset (Figure 9). The SAE-DRN
model achieved the highest AUC value of 0.92, followed by the
CPCNN-RF model (AUC = 0.88) and the U-Net model (AUC =
0.86). In contrast, the SVM model recorded the lowest AUC value.
These findings underscore that the SAE-DRN model demonstrates
the most robust generalization capacity and delivers superior
performance, as confirmed by the comprehensive accuracy
evaluation results.

6 Discussion

6.1 Model parameter settings and
comparative analysis

During the network training process, fine-tuning the weights by
setting appropriate iteration counts is crucial for enhancing the
model’s generalization capability. CPCNN-RF and U-Net models
were used as baselines. For fairness, CPCCNN-RF and U-Net models
were re-trained on the same dataset under identical training/testing
splits, and hyperparameters were tuned via five-fold cross-validation
(Yan et al, 2014; Andrade et al, 2025). Figure 10 presents the
training loss and test accuracy curves of the SAE-DRN model across
different iterations. When the iteration count was below 500, the
classification accuracy remained approximately 0.78. However, the
loss value decreased sharply, reflecting continuous model updates.

Slop 1

Profile curvature|
Evelation
Plan curvature

Soil type |

SCC |

Group

SOMC

» Natural condition factor

SSC
ST
SPC |
Soil PH | &
MAP |
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FIGURE 7
Calculation results of influencing factors affecting SSD.
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SSDSMs of the study area: (a) SVM; (b) CPCNN-RF; (c) U-net; (d) SAE-DRN.
At 600 iterations, the loss value dropped significantly from 0.08 to The SAE-DRN model was trained on an NVIDIA RTX

0.016 and subsequently stabilized, achieving an optimal 3090 GPU, requiring approximately 2.8 h for 600 iterations. For
classification accuracy of 0.87. comparison, U-Net required 1.9 h and CPCNN-RF required 2.1 h.
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Although  SAE-DRN  has slightly higher computational

requirements, it is still feasible in practical applications.

We also performed hyper parameter tuning for the CNN-RF and
U-Net models. The results revealed that, under the same number of
iterations, their classification accuracies were lower than that of the
SAE-DRN model. This highlights the superior generalization
capability of the SAE-DRN model compared to other deep
learning models.

The accuracy assessment of prediction results demonstrated
relatively low precision for the SVM model, underscoring the
advantage of deep learning in handling nonlinear spatial data for
SSD. Both the SAE-DRN and U-Net models achieved higher
accuracy, reflecting the efficacy of skip connections in preserving
information integrity and mitigating the degradation of accuracy
caused by deepening network layers. Building on this, the proposed
SAE-DRN model integrates dense connections to enhance data
reuse and employs SAE for unsupervised training, thereby
strengthening information representation and uncovering deeper
This
compensates for the limitations of small sample sizes and yields

insights into influencing factors. approach partially
the best model accuracy.

Moreover, deep learning networks offer distinct advantages:
the dataset

multicollinearity ~detection, internal

they eliminate need for preparation

channels inherently

or
as
address these issues. However, it is important to note that deep
learning networks are often sensitive to the sequence of channel
inputs. Variations in variable combinations can lead to differences in
prediction accuracy and potential overfitting (Muruganantham
et al., 2022). Therefore, future research will explore how different
combinations of soil spot degradation influencing factors affect
prediction accuracy.

6.2 Comparative analysis of SSDSM
The SSD susceptibility maps (SSDSMs) were overlaid with SSD

sample data from study area for comparative analysis. Overall, the
predictions from the four models exhibited notable similarities.
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TABLE 3 Precision analysis table.

Metrics SVM  CPCNN-RF  U-net  SAE-DRN
OA 0.72 0.81 0.82 0.87
Fl1 0.74 0.83 0.83 0.89

High-risk SSD zones were primarily concentrated in the central-
western region, characterized by complex land use patterns,
abundant water systems, and heavy rainfall. Recent human
engineering activities in this area have further heightened the
propensity for SSD. Additionally, this region is near human
settlements, with soil predominantly comprising yellow-brown
soil exhibiting higher pH levels, indicating a tendency toward
alkalinity. This soil condition adversely affects vegetation growth,
particularly tea plants (Durdu et al,, 2023). As a result, heightened
vigilance and proactive SSD control measures are essential in
this region.

In the eastern part of study area, SSD occurrences are densely
clustered, with all models designating this area as high-risk. The
phenomenon follows a horizontal distribution from west to east,
influenced by high soil pH, frequent human activity leading to
complex land use, and low soil organic matter content. The
ecological interpretation of predictors indicates that slope
strongly regulates erosion susceptibility, soil pH controls
nutrient availability and root development, NDVI reflects
vegetation resilience and ground cover, and land use type
These
creating

embodies  anthropogenic  disturbance. factors

collectively reduce soil fertility, conditions

conducive to SSD.

6.3 Statistical analysis of SSDSM

The analysis and statistics of the SSD susceptibility maps
(SSDSM) include the proportion of different risk zones, the
proportion of SSD samples, and the density of SSD samples
(Figure 11). Among the predictions from the four models, higher
SSD risk correlates with a greater density of SSD samples, with the
highest density observed in the high-risk zones. This pattern mirrors
the distribution of SSD samples, thereby yielding favorable
evaluative outcomes.

Compared to the SVM model, the deep learning models
identified a higher density of SSD samples in high-risk zones,
effectively pinpointing target areas for SSD occurrence. Although
the CPCNN-RF model classified larger areas as low-risk, it
misclassified many SSD samples within these zones. In practical
applications, such misclassification may reduce attention to
potential disaster areas, potentially misleading disaster prevention
strategies (Hosseinpour-Zarnaq et al.,, 2023).

In contrast, the SAE-DRN model showed a sparser presence
of SSD samples in low-risk zones while significantly increasing
the density of samples in high-risk zones by 0.1159 pieces/km?,
0.0759 pieces/km?, and 0.0531 pieces/km’. This deep learning
model delineated larger low-risk zones and effectively excluded
high-risk Additionally, the SAE-DRN model
demonstrated higher precision in its coverage of SSD in high-

areas.

risk zones.
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SSDSM statistical analysis chart.

We also selected 30% of the SSD patches from the prediction
results for field validation. On-site validation confirmed that all
patches predicted as SSD within the study area exhibited soil
degradation, that the
performance meets users’ needs and provides highly reliable results.

demonstrating predictive  model’s

In summary, the partitioning results of the SAE-DRN model
align closely with actual conditions, contributing positively to soil
disease prevention and control efforts. This achievement provides
not only valuable guidance for combating soil diseases in tea
plantations of the Qinling Mountains in China but also serves as

a reference for promoting sustainable agricultural development and
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ecosystem health management globally. By employing this method,
regions facing similar soil degradation challenges can implement
predictions and interventions more efficiently.

The study focuses solely on Shangnan County, Shaanxi
Province. The model’s performance in regions with differing
climatic, topographic, or soil conditions (e.g., tropical or arid
zones) remains unverified, noting that further validation is
required in different climatic and geomorphic settings (e.g.,
tropical or arid zones). Meanwhile, the SAE-DRN framework has
the potential for transfer learning and promotion applications, but
further empirical research is still needed.
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7 Conclusion

This study focuses on Shangnan County, Shaanxi Province,
China, where SSD influencing factors undergo attribute reduction
to select key attributes for constructing an evaluation factor dataset.
A SSD susceptibility assessment model, SAE-DRN, which integrates
a stacked autoencoder and a dense residual network, is proposed.

A comparative analysis of the SAE-DRN model with the
CPCNN-RF model, U-Net model, and SVM model is conducted
from the perspectives of SSDSMs, statistical analysis of susceptible
regions, and model evaluation accuracy. The experimental results
indicate that the SAE-DRN model achieved the highest overall
accuracy (OA = 0.87), FI score (F1 = 0.89), and AUC value
(AUC = 0.92), demonstrating superior predictive accuracy and
robust performance.

The SAE-DRN model enhances sample feature representation
through stacked autoencoders and increases information reuse
between convolution layers via a dense residual network. This
approach partially mitigates the challenges posed by small sample
sizes in SSD prediction. The model effectively captures the nonlinear
relationship between SSD occurrences and evaluation factors,
improving the accuracy and reliability of SSD predictions.

The study’s SSD prediction results for the study area reveal that
land use types, soil types, soil pH, and organic matter content
significantly influence SSD occurrence. This provides valuable
data to support future tea plantation site selection and soil
the The
methodology demonstrates exceptional predictive accuracy and

disease prevention efforts in region. research
reliability, offering a scalable and adaptable solution for soil

health management globally.
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