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Introduction: Agricultural production in Türkiye is increasingly exposed to risks
stemming from climate change, environmental degradation, and economic
volatility. Effective insurance mechanisms are crucial for building resilience in
this sector.

Methods: This study analyzes agricultural insurance demand in Türkiye from
2006 to 2023 using Partial Least Squares Structural Equation Modeling (PLS-
SEM). Three latent constructs are examined: Agricultural Economy (agricultural
GDP, agricultural area, insured area), Insurance Economy (government
subsidized premium, total premiums, insured values), and Ecological-
Meteorological Risks (Load Capacity Factor and meteorological disasters count).

Results: The agricultural economy is identified as the strongest predictor of
insurance demand, followed by the insurance economy and ecological-
meteorological risks. The inclusion of Load Capacity Factor introduces a novel
ecological dimension, revealing that insurance demand increases as ecological
thresholds are approached.

Discussion: The study proposes that structural modeling outputs can be utilized
in designing index-based insurance premiums. It recommends policy
interventions such as ecological risk zoning, vulnerability-based premium
subsidies, and adaptive insurance schemes. Integrating ecological indicators
into insurance modeling offers a future-oriented approach to sustainable
agricultural risk management.
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1 Introduction

The agricultural sector is widely recognized as one of the most vulnerable components
of economic systems due to its direct dependence on climatic and environmental
conditions. This vulnerability has been exacerbated by the growing frequency and
intensity of extreme weather events and ecological degradation associated with climate
change (IPCC, 2021). Events such as droughts, hailstorms, frosts, floods, and windstorms
not only disrupt agricultural production but also pose significant threats to the income
stability of farmers (Hazell, 2001). Consequently, agricultural producers face multifaceted
risks stemming from both yield and revenue losses.
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In this context, agricultural insurance emerges as a crucial
financial instrument that enhances farmers’ resilience and
supports agricultural sustainability (Mahul and Stutley, 2010).
However, in many countries including Türkiye, the demand for
agricultural insurance remains below expectations, limiting both the
financial sustainability and inclusiveness of such systems. In
countries located in the Mediterranean basin, such as Türkiye,
which are particularly vulnerable to climate-related risks,
meteorological disasters have increased by more than 40% over
the past 2 decades (Türkeş et al., 2020). This upward trend has
heightened uncertainty in the agricultural sector and underscored
the need for robust, insurance-based risk management mechanisms.

For instance, the hail disaster that occurred in Antalya in
2021 resulted in economic losses exceeding 150 million USD and
led to a 65% surge in local insurance policy applications (TARSİM,
2023). This case demonstrates that insurance demand is sensitive to
disaster occurrences; however, the overall level of insurance
penetration remains insufficient. As of 2023, agricultural
insurance penetration in Türkiye stands at approximately 42%,
significantly below the 70%–90% levels observed in developed
countries (OECD, 2023). This disparity is not solely attributed to
economic capacity but also to factors such as environmental
awareness, policy incentives, and systemic sustainability indicators.

While the existing literature has primarily focused on the
economic determinants of agricultural insurance demand such as
farmers’ income levels, premium rates, government subsidies, and
financial literacy (Coble and Knight, 2002; Glauber, 2013) recent
research increasingly acknowledges the role of environmental and
climatic factors. Empirical evidence from Türkiye indicates that the
rising frequency of natural disasters significantly influences
insurance uptake (Hayran, 2023).

However, despite the growing recognition of climate and
environmental risks, most existing studies fail to integrate
comprehensive sustainability indicators into insurance demand
modeling. Research tends to rely on individual weather events or
general climate indices, without capturing the systemic ecological
pressures such as the overuse of natural resources or biocapacity
imbalance that may drive long-term risk behavior (Galli et al., 2014).
This gap limits the ability of traditional models to reflect the broader
environmental dynamics influencing insurance decisions.

Beyond economic and climatic variables, the demand for
agricultural insurance is also shaped by indicators of
environmental sustainability. Metrics such as the ecological
footprint, biocapacity, and the LCF offer valuable insights into a
country’s natural resource usage and its ecological balance. These
indicators reflect the interaction between human activity and the
environment, thereby enabling a more comprehensive
understanding of environmental risks and their implications for
insurance systems (Galli et al., 2014). Notably, LCF has gained
attention in recent literature as a novel and robust indicator for
assessing the environmental dimension of sustainability and its
potential links to insurance dynamics.

To date, the existing literature has not explicitly integrated the
LCF within a structural framework aimed at analyzing agricultural
insurance demand, particularly in the context of emerging
economies. This omission is significant, as LCF quantitatively
reflects the extent to which ecological consumption exceeds
biocapacity, thereby serving as a salient indicator of

environmental pressure and heightened risk perception among
agricultural stakeholders (Borucke et al., 2013). By incorporating
LCF into the analytical model, the present study addresses a notable
gap in the literature, providing a comprehensive and nuanced
understanding of insurance demand dynamics under conditions
of ecological stress and sustainability constraints.

Many previous studies have relied on micro-level datasets or
adopted a narrow focus on specific economic or meteorological
variables. Yet, agricultural insurance demand is a multidimensional
and dynamic phenomenon that intersects with economic,
environmental, and institutional domains. Therefore, it is
essential to analyze the complex interplay between these factors
using integrated and structural modeling approaches.

In addition to these interdisciplinary perspectives, actuarial
modeling plays a pivotal role in transforming complex ecological
and economic relationships into applicable insurance pricing
mechanisms. Traditional premium-setting practices often rely on
backward-looking models that focus on historical losses (Mayers
and Smith, 1990; Powers and Shubik, 2006). However, in the context
of climate volatility, there is a growing consensus that forward-
looking actuarial approaches those that incorporate environmental
indicators and latent constructs are essential for sustainable
insurance design. By utilizing latent scores derived from
structural modeling, insurers can generate composite risk indices
that feed directly into index-based or dynamic premium rate
structures, enhancing both the responsiveness and fairness of
insurance systems.

Despite the availability of powerful structural methods such as
PLS-SEM, very few studies in agricultural economics have leveraged
this technique to model latent relationships in insurance behavior.
This underutilization presents a methodological gap that limits the
explanatory power and predictive accuracy of many empirical
models (Hair et al., 2021; Sarstedt et al., 2016).

This study aims to analyze the determinants of agricultural
insurance demand in Türkiye by examining the interrelationships
between economic, environmental, and meteorological factors
through the application of the PLS-SEM technique. Utilizing
annual data spanning the period 2006–2023, we construct a
conceptual model involving three latent variables: Agricultural
Economy, Insurance Economy and Ecological and
Meteorological Risks.

The present study contributes to the literature in three
significant ways. First, it introduces environmental sustainability
indicators particularly the LCF into the analysis of agricultural
insurance demand for the first time in the Turkish context. This
integration enables a more comprehensive modeling of climate-
related risks that extend beyond short-term weather shocks and into
systemic ecological conditions. Second, by employing PLS-SEM, it
captures complex and nonlinear relationships beyond the scope of
traditional regression models. The model also accounts for potential
collinearity and measurement error, offering a more robust
estimation of latent constructs and their predictive relevance
(Henseler et al., 2015). Third, the findings are interpreted with a
focus on policy implications for Türkiye, offering actionable insights
for developing climate-resilient agricultural policies.

In this regard, the study seeks to provide both theoretical and
practical contributions. It underscores the necessity of integrating
environmental sustainability into insurance system design and offers
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a conceptual framework for understanding the role of insurance in
building climate resilience in agriculture.

By responding directly to the shortcomings of prior research
both in terms of variables used and methods applied this paper aims
to advance the scholarly understanding of agricultural risk
management and deliver meaningful value to policymakers,
insurers, and researchers alike.

2 Literature review

The agricultural sector is inherently sensitive to adverse climate
impacts due to its strong dependency on natural conditions.
Increasing temperature fluctuations, sudden droughts, floods,
hailstorms, and windstorms have amplified uncertainties in
agricultural production. Consequently, agricultural insurance has
become a strategic risk management tool for both producers and
policymakers. As highlighted by Mahul and Stutley (2010),
agricultural insurance helps ensure the sustainability of farming
activities by protecting producers’ incomes against climate-induced
yield losses. However, the effectiveness of insurance systems
depends not only on their technical design but also on economic
and environmental factors influencing demand. Recent studies, such
as Hu et al. (2024), challenge the assumption that higher premium
subsidies universally enhance welfare, demonstrating that excessive
subsidies may distort risk perceptions and reduce long-term
resilience a critical consideration for Türkiye’s TARSİM system,
where subsidies exceed 50% of premiums.

Moreover, agricultural insurance participation is not only a
financial decision but also reflects how farmers perceive and react
to environmental uncertainties. This highlights the need to explore
the behavioral, cognitive, and psychological factors that shape
farmers’ willingness to adopt insurance, including their prior
exposure to climate events, risk tolerance, and trust in the
insurance system.

Most existing studies on insurance demand emphasize socio-
economic characteristics of farmers, income levels, farm size, and
government support mechanisms. For instance, Coble and Knight
(2002) demonstrated that producer income levels and public
subsidies play a decisive role in insurance participation. Similar
results have been observed in studies focusing on Turkey, where
factors such as agricultural GDP, crop-based subsidies, and damage
compensation have shown statistically significant relationships with
farmers’ insurance preferences (Özgür, 2019). However, the
majority of these studies tend to focus on economic variables,
with limited attention to environmental and ecological
dimensions. This gap is partially addressed by Chai and Zhang
(2024), whose work in Inner Mongolia reveals that insurance
adoption significantly alters planting structures toward higher-
risk crops, suggesting that environmental risk internalization
occurs even without explicit ecological indicators in
insurance models.

However, these studies often overlook the multifaceted impact
of ecological degradation and meteorological instability on crop
patterns and farming livelihoods. Thus, incorporating region-
specific climate scenarios and landscape vulnerability assessments
can enrich insurance demand modeling by aligning it with the lived
realities of farmers under environmental stress.

In recent years, a growing body of research has emphasized that
the demand for agricultural insurance is shaped not only by
economic indicators but also by perceived climate risk,
environmental sustainability, and ecological stress factors. For
example, Boháčiková et al. (2017) argued that uncertainty caused
by climate change increases farmers’ perception of risk, thereby
enhancing interest in insurance systems. Similarly, Jin et al. (2016)
found a significant positive relationship between the frequency of
meteorological disasters and insurance uptake, suggesting that
environmental stress drives farmers toward insurance. These
findings are reinforced by Manescu et al. (2025), who quantify
how extreme weather events across Europe systematically increase
insurance demand while simultaneously straining insurer solvency a
dual dynamic directly relevant to Türkiye’s diverse
agroclimatic context.

Building on these insights, it becomes increasingly important to
contextualize insurance demand within the broader framework of
climate resilience and adaptive capacity. In particular,
understanding how insurance can act as both a reactive and
proactive tool in farmers’ long-term adaptation strategies is
crucial, especially in regions facing chronic environmental
vulnerability.

Despite this emerging evidence, the integration of measurable
environmental sustainability indicators into insurance models
remains limited. In this context, ecological indicators such as the
LCF offer a valuable methodological innovation. LCF measures the
ratio between a country’s biocapacity and its ecological footprint,
thereby indicating the sustainability level of pressure placed on
nature (Galli et al., 2014). Such indicators are increasingly featured
in environment-economy-oriented academic literature and
contribute to the development of sustainability-based insurance
analyses. The predictive potential of ecological metrics is further
validated by Seamon et al. (2023), who demonstrate that climatic
damage causation patterns (e.g., drought vs hail) require distinct
insurance modeling approaches—a nuance absent in traditional
economic-centric studies.

Integrating these ecological metrics, such as LCF, provides a way
to capture the latent environmental stressors that may not be
immediately observable but have profound effects on long-term
farming viability and insurance viability. It also offers a path toward
the design of index-based insurance products tailored to ecosystem-
specific vulnerabilities.

The literature also shows that the performance of agricultural
insurance systems is generally assessed using traditional statistical
techniques such as regression and correlation. However, in recent
years, PLS-SEM has emerged as a powerful tool for analyzing
complex, multidimensional structures. As detailed by Hair et al.
(2021), PLS-SEM is capable of modeling relationships between
unobserved (latent) variables and generating robust results even
with small sample sizes. The limited use of this technique in
agricultural insurance studies presents a theoretical and
methodological research gap that this study aims to address.
Recent applications of PLS-SEM in insurance contexts, such as
Falsafian et al. (2024)’s welfare analysis of area-yield insurance,
underscore its suitability for capturing latent behavioral and
environmental drivers—a key advantage leveraged in our study.

Additionally, PLS-SEM allows for simultaneous modeling of
economic, ecological, and psychological constructs, which enhances
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the explanatory power of structural models in complex systems like
agricultural insurance. This methodological strength supports a
more integrated and realistic understanding of insurance demand
in environmentally stressed regions.

In light of these advancements, our study positions itself at the
intersection of SEMmethodology and actuarial modeling. Although
this paper does not perform direct premium estimation, it provides a
structural basis by generating composite indices through SEM,
which could be operationalized in index-based premium
formulations in future research. In doing so, we align with recent
actuarial literature that advocates for hybrid risk modeling
combining data-driven latent indicators with traditional pricing
formulas (Zhang, 2024; Zeng et al., 2025).

In conclusion, while the economic dimensions of insurance
demand have been extensively analyzed in the literature, the
number of structural models that holistically evaluate
environmental and climatic factors remains very limited. This
study’s originality lies in its integration of the LCF a globally
recognized ecological sustainability metric into a PLS-SEM
framework alongside traditional economic variables, a approach
not yet explored in the agriculture insurance literature. By doing so,
the research not only provides insights into the future of agricultural
insurance in developing countries but also offers policy
recommendations to support climate change adaptation
strategies. The work of Kurdyś-Kujawska et al. (2021) on
insurance-environment-productivity triads provides a conceptual
foundation for our model, while Rusteika and Skinulienė (2023)’s
findings on participant expectations inform our policy proposals for
enhancing TARSİM’s transparency and accessibility.

Ultimately, this study aims to contribute to a more inclusive and
sustainability-driven insurance discourse by advancing a
comprehensive analytical framework that bridges economic
reasoning with ecological accountability in the context of
agricultural risk. This also opens the door for a new generation
of actuarial models informed by latent environmental and economic
variables, moving agricultural insurance toward a more adaptive,
predictive, and data-integrated future.

3 The structure and practices of
agricultural insurance in Türkiye:
current situation and trend
analysis (2006–2023)

Agriculture is one of the most risk-prone economic sectors,
especially vulnerable to natural disasters, climate variability, market
fluctuations, and various biotic/abiotic stresses. Agricultural
insurance, therefore, stands out as a crucial risk management tool
for protecting farmers against such uncertainties. In Türkiye, the
institutional foundation of agricultural insurance was established
with the enactment of Law No. 5363 in 2005. Subsequently, in 2006,
the TARSİM was launched as a public-private partnership model,
marking the beginning of a state-subsidized insurance system.

TARSİM covers a wide range of insurance products, including
crop insurance, livestock insurance, greenhouse insurance,
aquaculture insurance, and beekeeping insurance. Particularly,
crop insurance provides coverage against meteorological events
such as frost, hail, storm, flood, and drought. Despite this wide

scope, insurance penetration in Turkish agriculture remains
relatively low compared to developed countries. This limited
coverage is largely due to factors such as low financial literacy,
insufficient risk awareness, inadequate record-keeping of
agricultural activities in some regions, and limited perception of
insurance as a preventive tool (Burhan, 2023; Zhichkin et al., 2023).

State support plays a key role in the expansion and sustainability
of Türkiye’s agricultural insurance system. Between 50% and 67% of
premium costs are subsidized by the government. As shown in
Figure 1b, this support has led to a noticeable increase in premium
volumes between 2012 and 2016. However, the 2018 economic
downturn significantly impacted the trend, although partial
recovery was observed post-2020. Notably, government subsidies
continued to maintain a stabilizing influence during this period.

The effectiveness and uptake of the agricultural insurance
system are strongly tied to government interventions. As shown
in Figure 1a, although the total agricultural area in Türkiye has
remained relatively stable between 2006 and 2023, the insured area
has remained significantly low. This suggests that large portions of
agricultural production are not adequately protected against
environmental and climatic risks.

Correspondingly, Figure 1b illustrates the temporal evolution of
premium volumes. While total and state-supported premium values
increased sharply between 2012 and 2016 due to active subsidy
policies, a decline occurred during the 2018 financial crisis.
Nevertheless, a partial recovery followed after 2020, indicating
the stabilizing role of government support.

Figures 2a highlights long-term changes in the LCF a proxy for
ecological sustainability. LCF declined steadily from 0.36 in 2006 to
0.30 in 2014, spiked to 0.48 in 2016, and then gradually decreased to
0.40 by 2022. Despite temporary improvements, the overall
decreasing trend signals weaknesses in environmental
sustainability and the need for integrating ecological indicators
into risk modeling for agriculture.

Moreover, Figures 2b presents the annual number of
meteorological disasters in Türkiye, showing a marked increase
since 2012, with record highs observed between 2016 and 2020.
This rise underscores the intensifying impacts of climate change and
the increasing urgency for adaptive insurance models.

When compared to global practices, Türkiye’s agricultural
insurance model shows both strengths and areas for
development. Countries like the United States and Spain have
long-established systems where coverage rates exceed 70% of
arable land and include advanced risk modeling approaches that
integrate satellite data, climate scenarios, and yield indices (Mahul
and Stutley, 2010). Türkiye’s system, while institutionalized, has yet
to fully integrate such predictive environmental variables and faces
persistent challenges in expanding coverage to smallholder farmers.

Moreover, the increasing frequency and severity of climate-related
events call for a paradigm shift in Türkiye’s insurance modeling. The
inclusion of environmental variables such as temperature anomalies,
precipitation variability, and LCF into actuarial models and insurance
pricing strategies is imperative. Recent studies emphasize that climate-
adaptive insurance policies, particularly index-based products, can
significantly improve resilience in rural economies (Hazell et al., 2017;
Carter et al., 2017).

Türkiye’s agricultural insurance system has made significant
progress over the past 2 decades, driven largely by institutional
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reforms and public subsidies. However, the system still faces
structural limitations in terms of coverage rates, regional
disparities, and the integration of environmental risks into
pricing and design mechanisms. In particular, the increasing
frequency and severity of meteorological events call for a
paradigm shift in risk assessment and insurance planning.

In light of global climate change and Türkiye’s specific
environmental vulnerabilities, enhancing insurance penetration,
targeting smallholder farmers, and embedding climate-adaptive
mechanisms in TARSİM policies are crucial for achieving long-
term agricultural sustainability.

4 Methodology

Structural Equation Modeling (SEM) is a widely used
multivariate statistical approach that enables the simultaneous
estimation of both measurement models, which link latent
constructs to their observable indicators, and structural models,
which define relationships among latent constructs (Hair
et al., 2019).

There are two primary SEM approaches: covariance-based SEM
(CB-SEM) and variance-based SEM, commonly referred to as PLS-
SEM. This study adopts PLS-SEM due to several advantages: it does
not require multivariate normality assumptions, it handles complex
models with a limited sample size, and it emphasizes prediction and
theory development rather than confirmation. Moreover, PLS-SEM
accommodates both reflective and formative measurement models
and performs well even when the theoretical foundation is not yet
fully established (Hair et al., 2011; Henseler et al., 2015).

Mathematically, in reflective measurement models, each
observed indicator is modeled as:

xij � λjξi + εij

where xij denotes the jth observed indicator for the ith individual, λj
is the factor loading, ξi is the latent construct score, and εij represents the
measurement error. For formative models, the latent variable is
expressed as a weighted linear combination of observed indicators:

ξi � ∑
p

j�1
ωjxij + δi

FIGURE 1
(a,b) Changes in Agricultural and Insured Land and Premium Levels Over Time.

FIGURE 2
(a,b) LCF and Meteorological Disaster Trends.
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where ωj are the weights assigned to each indicator and δi is the
error term. The structural model is specified as:

η � Bη + Γξ + ζ

Here, η and ξ represent endogenous and exogenous latent
constructs, respectively; B and Γ are path coefficient matrices;
and ζ denotes the residual errors (Chin, 1998).

Before proceeding with the estimation of the structural model,
diagnostic tests for multicollinearity were conducted using the
Variance Inflation Factor (VIF). VIF values exceeding 10 are
generally indicative of problematic multicollinearity, which may
inflate standard errors and bias parameter estimates (Hair et al.,
2019; O’Brien, 2007). The presence of high collinearity among
predictors serves as an important justification for the application
of PLS-SEM, which is recognized for its robustness under such
conditions (Ringle et al., 2015; Hair et al., 2021).

Model evaluation in PLS-SEM is conducted in two primary
stages: the assessment of the measurement model and the
assessment of the structural model. In the measurement model,
internal consistency reliability is assessed through Composite
Reliability (CR), with acceptable values typically above 0.70.
Convergent validity is evaluated via the Average Variance
Extracted (AVE), which should exceed the 0.50 threshold to
indicate that a construct explains more than half of the variance
in its indicators (Fornell and Larcker, 1981). Discriminant validity is
established using the Fornell–Larcker criterion and the Heterotrait-
Monotrait ratio (HTMT), with HTMT values below 0.85 suggesting
sufficient distinction between constructs (Henseler et al., 2015).

For the structural model, the significance of path coefficients is
examined through non-parametric bootstrapping procedures,
typically employing 5,000 resamples. The model’s explanatory
power is evaluated using R2 values, where higher values indicate
stronger predictive accuracy. Effect size (f2) is also computed to
assess the relative impact of each exogenous construct. Additionally,
predictive relevance (Q2) is calculated using the blindfolding
technique, and out-of-sample predictive performance can be
validated through the PLS Predict procedure (Shmueli et al.,
2019). Collinearity among constructs in the inner model is re-
checked via inner VIF values, ensuring they remain within
acceptable limits (typically <5) to preserve the interpretability of
the structural paths (Hair et al., 2019).

This methodological approach ensures a rigorous assessment of
both measurement quality and theoretical relationships, while
simultaneously addressing key statistical concerns such as
multicollinearity and measurement validity. By leveraging the
strengths of PLS-SEM, this study provides a robust framework
for examining complex structural relationships within the
proposed conceptual model.

5 Data and finding

This study examines the determinants of agricultural insurance
demand in Turkey using an annual national-level dataset for the
period 2006–2023. By combining economic, insurance, and climatic
indicators, the dataset aims to analyze agricultural insurance
dynamics at the macro level. The study is not spatially
subdivided but is conducted solely across Turkey. This approach

allows for assessments at the national policy level and aligns with the
study’s objectives.

The variables used in the study are defined in Table 1. The
dependent variable is the number of agricultural insurance policies
issued annually. Independent variables are represented by indicators
such as government-supported premium production, insurance
amount, agricultural GDP, agricultural area, insured area, total
premium production, number of meteorological disasters, and
load capacity factor (LCF). Data for the variables were obtained
from institutional and reliable sources such as the Turkish Statistical
Institute (TÜİK), the Agricultural Insurance Pool (TARSİM), the
General Directorate of Meteorology, and the Global
Footprint Network.

The inclusion of LCF and MDC reflects a broader effort to
embed environmental performance and climate extremes into the
modeling of economic behavior. In this context, agriculture is not
merely treated as an economic activity, but also as a system highly
sensitive to ecological limits and meteorological volatility. By
examining the interlinkages between these domains, the analysis
aims to offer insights that are both policy-relevant and theoretically
grounded. A descriptive summary of the dataset is provided
in Table 2.

Descriptive statistics presented in the Table 2 provide an
overview of the central tendency and dispersion characteristics of
the key variables used in the study. The results indicate considerable
variation across all variables, suggesting heterogeneity in agricultural
economic indicators, insurance dynamics, and ecological conditions
over the observed period. Such diversity highlights the importance
of capturing both economic and environmental dimensions when
analyzing the determinants of agricultural insurance demand.

Correlation analysis, presented in Table 3, reveals strong and
statistically significant relationships between the number of issued
policies and several independent variables. For instance, insured area
(r = 0.984), total premium income (r = 0.792), and the number of
meteorological disasters (r = 0.925) exhibit strong positive correlations
with policy numbers. Conversely, the LCF shows a strong negative
association (r = −0.872), suggesting that ecological degradation is
associated with increased insurance uptake. This supports the
theoretical expectation that heightened environmental stress leads
to greater risk awareness and thus higher insurance demand.

Methodologically, the study employs both Multiple Regression
Analysis and PLS-SEM. While regression analysis enables the
identification of statistically significant direct relationships, PLS-
SEM is used to explore latent constructs and multidimensional
pathways influencing insurance demand. This dual approach
enhances the explanatory depth of the study and aligns with the
interdisciplinary ethos of sustainability research.

The use of PLS-SEM is particularly valuable for integrating
diverse variables ranging from financial incentives to ecological
degradation into a coherent analytical framework. Moreover,
PLS-SEM accommodates the relatively small sample size (annual
data over 18 years) and is well-suited for theory-building in complex,
multi-factor systems. This methodological strategy supports a more
nuanced understanding of how environmental stressors and
institutional mechanisms jointly affect risk perception and
adaptive financial behavior in agriculture.

In the multiple regression model (Table 4), the overall model is
statistically significant (F (8,9) = 185.60, p < 0.001), with a high
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explanatory power (R2 = 98.86%). Among the predictors, insured area
(IA, β = 55.753, p = 0.002), insured value (IV, β = −0.018, p = 0.007),
and meteorological disaster count (MDC, β = 66, p = 0.047) emerged
as statistically significant. However, the model suffered from severe
multicollinearity, with VIF values exceeding the commonly accepted
threshold of 10 (Hair et al., 2019; O’Brien, 2007). Notably, VIF scores

for total premium income (TP = 296.33), government subsidized
premium (GSP = 270.40), and insured value (IV = 107.15) indicate a
problematic degree of collinearity, which can distort coefficient
estimates and reduce the reliability of inferential statistics.

Due to the presence of multicollinearity, the analysis proceeded
with PLS-SEM, a variance-based SEM approach suitable for small to

TABLE 1 Description of variables and data sources.

Variable (Abbreviation) Unit Data source

Agricultural GDP (AGDP) Billion US Dollars Turkish Statistical Institute Database (2025)

Agricultural Area (AA) Thousand Hectares TARSİM (2025)

Insured Area (IA) Thousand Hectares TARSİM (2025)

Policies Number (PN) Thousand Policies TARSİM (2025)

Insured Value (IV) Million TRY TARSİM (2025)

Total Premium Income (TP) Thousand TRY TARSİM (2025)

Government Subsidized Premium (GSP) Thousand TRY TARSİM (2025)

Meteorological Disasters Count (MDC) Event Count Turkish State Meteorological Service (2025)

Load Capacity Factor (LCF) Unitless Index Global Footprint Network (2025)

TABLE 2 Descriptive statistics.

Variable n Mean Std Min Q1 Median Q3 Max

AGDP 18 56,53 8,71 44,70 48,22 55,75 64,80 69,70

AA 18 38553 686 37716 38058 38462 38937 40493

IA 18 16,95 10,15 2,21 6,35 17,70 25,50 33,37

PN 18 1314475 983284 12330 355030 1231001 2124802 3086697

IV 18 75700444 157465175 211000 3716250 16136500 62161000 638338000

TP 18 2516012 4318301 44509 169163 824654 2634984 17349600

GSP 18 1338235 2300856 22045 114857 444094 1371305 9244510

MDC 18 666,7 317,3 240,0 378,8 624,0 948,0 1385,0

LCF 18 0,47727 0,03889 0,41176 0,44420 0,47389 0,50086 0,56090

TABLE 3 Pearson correlation matrix showing the relationships among all observed variables.

PN AGDP IA IV TP GSP AA LCF

AGDP −0.111 1

IA 0.984* −0.122 1

IV 0.732* 0.249 0.652* 1

TP 0.792* 0.195 0.718* 0.995* 1

GSP 0.790* 0.198 0.715* 0.996* 1.000* 1

AA −0.618 0.013 −0.702* −0.118 −0.186 −0.182 1

LCF −0.872* −0.057 −0.896* −0.602* −0.657* −0.654* 0.744* 1

MDC 0.925* −0.094 0.905* 0.765* 0.812* 0.811* −0.515* −0.749*

Note: *p <0.05.
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medium-sized datasets and highly collinear data (Hair et al., 2021;
Ringle et al., 2015). In the structural model, variables were grouped
into three latent constructs: Insurance Economy (IV, TP, GSP),
Agricultural Economy (AGDP, AA, IA), and Ecological and
Meteorological Risks (LCF, MDC). The PLS-SEM analysis was
conducted using SmartPLS 4.0 software, allowing for robust
estimations even under conditions of multicollinearity.

The measurement model demonstrates robust validity and
reliability across all constructs. As presented in Table 5.

All outer loadings exceed the 0.70 threshold (Hair et al., 2021),
confirming that ≥49% of each indicator’s variance is explained by its
latent construct. Notably, Insurance Economy indicators show near-
perfect loadings (0.991–0.999), suggesting exceptional item
representation.

CR values (0.744–0.999) surpass the 0.70 benchmark, indicating
high construct reliability (Fornell and Larcker, 1981). The Insurance
Economy construct achieves CR = 0.999, reflecting minimal
measurement error.

All AVE values exceed 0.50 (range: 0.655–0.998), verifying that
latent constructs explain >50% of their indicators’ variance. The
Ecological-Meteorological Risks construct shows particularly strong
convergent validity (AVE = 0.874).

These results satisfy all PLS-SEM criteria for measurement
model adequacy, as per contemporary standards in agricultural

economics research (Henseler et al., 2015; Sarstedt et al., 2016).
The high AVE/CR values for Insurance Economy variables may
reflect Turkey’s standardized premium calculation system, while
slightly lower Agricultural Economy loadings (0.766–0.919) could
indicate regional heterogeneity in reporting practices
(TARSİM, 2025).

As presented in Table 6, the HTMT ratios demonstrate strong
discriminant validity, with all values significantly below the
0.85 threshold (Insurance Economy-Agricultural Economy: 0.612;
Insurance Economy-Ecological-Meteorological Risks: 0.558;
Agricultural Economy-Ecological-Meteorological Risks: 0.631),
satisfying Henseler et al.’s (2015) criterion.

The results of the structural model evaluation, as summarized in
Table 7 and visualized in Figure 3, indicate statistically significant
relationships between all latent constructs and agricultural
insurance policy numbers (PN). The Agricultural Economy
construct demonstrated the strongest positive effect on PN (β =
0.528, t = 4.876, p = 0.001), highlighting the influence of sector-
specific variables such as agricultural GDP, total cultivated area, and
insured area. This finding is consistent with the view that insurance
uptake is closely tied to the scale and productivity of agricultural
activity (Hazell, 2001; Mahul and Stutley, 2010).

Similarly, Insurance Economy comprising government-
supported premium subsidies, insured values, and total premium
income was positively associated with policy numbers (β = 0.287, t =
2.942, p = 0.003). This result supports previous findings that
financial incentives and support mechanisms significantly
influence farmers’ willingness to insure (Glauber, 2013; Goodwin
and Smith, 2013).

In addition, Ecological and Meteorological Risks also had a
statistically significant impact (β = 0.268, t = 2.315, p = 0.021),
suggesting that both climatic stress (as measured by LCF) and
disaster frequency increase risk perception, thus stimulating insurance
participation (Jin et al., 2016; Surminski and Oramas-Dorta, 2014).

Overall, the model demonstrated excellent explanatory power
with an R2 of 0.965, far exceeding the threshold of
0.10 recommended by Falk and Miller (1992), and confirming
the model’s robustness. As illustrated in Figure 3, the final PLS-
SEM model captures both the economic and environmental
determinants of agricultural insurance uptake in an
integrated framework.

TABLE 4 Regression coefficients.

Term Coef t-Value p-Value VIF

Constant −899896 −0,24 0.812

AGDP 3938 1,85 0.076 3,28

IV −0,01839 −2,90 0.007 107,15

TP 0,33 2,05 0.051 296,33

GSP 0,81 1,92 0.065 270,40

AA −4,8 −1,93 0.061 6,62

LCF −155602 −2,22 0.037 8,96

MDC 66 2,10 0.047 10,65

IA 55753 3,40 0.002 27,85

TABLE 5 Measurement model assessment.

Construct Indicator Outer loading CR AVE

Insurance Economy TP 0.991 0.999 0.998

GSP 0.999

IV 0.998

Agricultural Economy AGDP 0.766 0.744 0.655

AA 0.919

IA 0.780

Ecological -Meteorological Risks LCF −0.931 0.859 0.874

MDC 0.939

Note: AVE, Average Variance Explained>.50; CR, Composite Reliability. Outer loadings ≥.70 are considered satisfactory (Hair et al., 2021).

Frontiers in Environmental Science frontiersin.org08

Yörübulut 10.3389/fenvs.2025.1651603

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1651603


6 Integration of SEM-Derived latent
scores into actuarial index-based
premium calculations

In this section, the integration of latent variable scores derived
through PLS-SEM into actuarial computations is discussed.
Particularly in the context of agricultural insurance, the
assessment of risk and the determination of corresponding
premium rates should not be constrained to deterministic
methods based solely on historical loss data. Instead, there is a
growing need for holistic, data-driven approaches that account for

the complex interdependencies among environmental, economic,
and climatic factors. Within this framework, latent variable scores
extracted from the PLS-SEM model can be incorporated into
traditional actuarial methods, allowing for the development of a
more dynamic and predictive risk assessment structure.

The PLS-SEM approach reveals the underlying latent constructs
by modeling the complex relationships among observed variables
(Hair et al., 2019). In this study, latent structures are modeled
around three thematic dimensions: climatic factors, economic
indicators and ecological risk variables. The latent scores
associated with each construct serve as quantitative proxies for

TABLE 6 HTMT ratios between latent constructs indicating discriminant validity.

Insurance economy Agricultural economy

Agricultural Economy 0.612 —

Eco-Met. Risks 0.558 0.631

Note: HTMT, ratios <0.85, satisfying Henseler et al.’s (2015) criterion.

TABLE 7 PLS-SEM Structural Model Results: Path Coefficients, t-values, and Significance.

Path β t-value p-value

Insurance Economy → Policy Numbers 0.287 2.942 0.003

Agricultural Economy → Policy Numbers 0.528 4.876 0.001

Ecological-Meteorological Risks → Policy Numbers 0.268 2.315 0.021

Note. Analysis conducted with 5,000 bootstrap samples. Significant at t > 1.96, p < .05 (Hair et al., 2021).

FIGURE 3
PLS-SEM structural model diagram.
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the underlying determinants of insurance demand. These scores can
be transformed into index values for each year and region, capturing
localized risk levels and enabling more equitable and risk-sensitive
premium calculations.

For example, let It denote the climate-economic risk index for
year t, which can be defined as follows:

It � ∑
k

j�1
ωjZij

where Zjt represents the standardized score of the j th latent
variable derived from the PLS-SEM model, and wj is the path
coefficient indicating the influence of that latent construct on
agricultural insurance. This formulation enables a shift from
conventional loss-based pricing models toward a more proactive
and explanatory risk assessment strategy (Zhang, 2024).

Based on the calculated index, the actuarial premium rate can be
defined dynamically using a parametric expression such as:

Pt � α + βIt + ϵt

where Pt denotes the proposed premium rate for year t α, is the
intercept term, β captures the sensitivity of the premium to the
composite index, and ϵt represents the stochastic error term. This
specification links premium estimation not only to past losses but
also to forward-looking risk indicators captured by latent
dimensions.

This methodological approach offers a significant innovation in
the actuarial modeling of agricultural insurance, particularly as the
impacts of climate change become increasingly pronounced. The
integration of multidimensional structural models into insurance
pricing has been widely advocated in recent literature as a necessary
step toward building adaptive and resilient insurance systems (Zeng
et al., 2025; Mahul and Stutley, 2010). This study, therefore, not only
offers an empirical example of such integration but also
demonstrates the direct applicability of SEM-based results in
insurance mathematics and premium estimation.

In conclusion, the use of latent variable scores derived from PLS-
SEM as indices in actuarial applications represents a valuable
methodological advancement for both academic and professional
contexts. This hybrid modeling approach may serve as a
foundational step toward developing future-oriented premium
systems that simultaneously consider climatic risk profiles and
economic indicators in a unified framework.

7 Conclusion and policy implications

This study presents a comprehensive macro-level analysis of the
determinants influencing agricultural insurance demand in Türkiye
from 2006 to 2023. By integrating Multiple Regression Analysis and
PLS-SEM, the research introduces a three-dimensional latent
structure (Agricultural Economy, Insurance Economy and
Ecological-Meteorological Risks) to explain the factors driving
insurance policy uptake. This hybrid methodological approach
not only enhances model robustness under multicollinearity but
also offers valuable empirical insights for the design of sustainable
insurance systems in the face of growing climate variability.

The most significant determinant identified was the Agricultural
Economy construct (β = 0.528, p < 0.01), underscoring the central
role of production dynamics in shaping insurance behavior.
Specifically, the insured area exhibited the strongest correlation
with the number of policies issued (r = 0.984, p < 0.05),
reflecting the increased risk awareness and coverage needs of
large-scale producers. This finding is consistent with previous
literature, which highlights farm size and market integration as
crucial predictors of insurance adoption (Hazell, 2001; Mahul and
Stutley, 2010; Jin et al., 2016). Moreover, the positive interaction
between insured areas and climatic uncertainty reaffirms the
importance of scale in navigating ecological risk exposure
(Azahra et al., 2024).

The second major construct, Insurance Economy, had a
moderate but significant effect (β = 0.287, p = 0.003). Variables
such as premium subsidies, total insured value, and policyholder
contributions proved influential in incentivizing uptake. These
results validate earlier studies that emphasize the catalytic role of
financial incentives (Iturrioz, 2009; Glauber, 2013), especially in
middle-income economies. However, the presence of diminishing
marginal returns under increasing ecological stress conditions, as
revealed in our model, signals the need for a more differentiated
subsidy regime an argument echoed in recent critiques of flat-rate
systems (Chen and Zhao, 2024; OECD, 2023).

Perhaps most critically, Ecological-Meteorological Risks were
shown to exert a statistically significant influence (β = 0.268, p =
0.021) on insurance demand. The inclusion of the LCF and
Meteorological Disaster Count as observable variables adds a
crucial ecological dimension to our framework. The strong
negative correlation between LCF and insurance demand
(r = −0.872) suggests that as ecological resilience deteriorates,
farmers increasingly seek financial instruments as buffers. This
finding aligns with prior studies that highlight the behavioral
impact of environmental volatility on insurance participation
(Surminski and Oramas-Dorta, 2014; Hu et al., 2024). The result
also supports arguments for embedding environmental stress
indicators into actuarial models to better capture climate-induced
risk salience.

Methodologically, the application of PLS-SEM enabled the
consolidation of highly correlated variables into latent constructs,
resulting in a model with high explanatory power (R2 = 0.965). This
exceeds the explanatory benchmarks observed in comparable SEM
applications (Hair et al., 2021; Sarstedt et al., 2016) and
demonstrates the utility of integrating macroeconomic and
ecological metrics within a unified insurance modeling
framework. Compared to traditional regression models (e.g., Giné
et al., 2008), our approach offers deeper insight into the
interdependencies between environmental degradation, policy
incentives, and behavioral responses.

Given the layered nature of the findings, several policy
recommendations emerge. First, the current uniform subsidy
structure should be replaced with tiered and geographically
differentiated subsidy schemes that incorporate ecological
vulnerability and farm scale. A “one-size-fits-all” subsidy design,
while administratively convenient, risks inefficiency and
maladaptation, particularly under heightened environmental
stress (OECD, 2023).
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Second, real time ecological indicators such as LCF and MDC
should be integrated into insurance product design and pricing
models. The demonstrated impact of environmental factors on
insurance behavior suggests that ecological stress must be treated
not as an exogenous background variable but as a primary design
input. As shown by Iwahashi et al. (2022), the use of remote sensing
and UAV-based technologies can significantly improve the
ecological responsiveness and actuarial soundness of
insurance systems.

Third, behavioral interventions and financial literacy programs
must complement financial mechanisms. As noted by Giné et al.
(2008), structural barriers such as low risk awareness andmistrust in
insurance systems persist, especially among smallholder farmers.
Awareness campaigns, localized training programs, and digital
access tools should be implemented to bridge this informational gap.

Fourth, technological innovation in index-based insurance
offers a promising frontier. Our findings support the transition
from static financial instruments to climate-responsive, technology-
driven platforms. The incorporation of IoT sensors and blockchain
for real-time data validation, as proposed by Makkithaya and VG
(2024) and Dalhaus and Finger (2023), could foster transparency
and adaptability in index insurance models especially in regions
prone to rapidly evolving climate risks.

While this study delivers valuable insights at the national level,
future research should explore spatial and household-level
disaggregation to address heterogeneity in risk perception,
adaptation capacity, and institutional trust. Combining the
macro-latent structure identified here with micro-analytic
frameworks such as the Insurance–Environment–Productivity
model (Kurdyś-Kujawska et al., 2021) could yield more granular
insights for targeting and evaluating insurance interventions.

By demonstrating the joint influence of economic structure,
insurance systems and ecological stress on agricultural insurance
demand, this study bridges critical gaps in the literature on climate
resilience and risk finance. The integration of ecological metrics into
structural equation modeling constitutes a novel contribution with
practical implications for emerging economies navigating the dual
pressures of agricultural transformation and climate disruption. In
challenging the dominance of subsidy-centric paradigms, our findings
advocate for a holistic, sustainability aligned insurance strategy one
that is adaptable, ecologically informed, and behaviorally sensitive.
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