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vegetation climate sensitivity
across Central Asia

Ping Jiang®, Yue Zhang'*, Tuanhui Wang? and
Keremu Guzainuer?!

!College of Geographical Science and Tourism, Xinjiang Normal University, Urumgi, Xinjiang, China,
2School of Geographical Sciences, Nanjing Normal University, Nanjing, China

As the world's largest azonal arid region, Central Asia harbors fragile ecosystems
that are highly sensitive to shifts in climate patterns. However, the spatiotemporal
dynamics of vegetation sensitivity and their underlying drivers in this region
remain poorly understood. Here, we assessed vegetation responses to climate
variability from 1982 to 2022 using the longest available time series of vegetation
indices and the Vegetation Sensitivity Index (VSI) metric. Results revealed high VSI
(>50) in humid-region forests and shrubs as well as in semi-arid rainfed croplands,
while arid zones generally exhibited low VSI values (<30). Relationship between
VSI and aridity was observed across most vegetation types, excluding rainfed
agriculture and sparse vegetation. Temporally, the VSI in Central Asia showed a
clear declining trend, with the rate of decrease accelerating after
1995 from —-0.274 to —0.476. Spatially, approximately 82% of vegetated areas
showed declining VSI trends over the past four decades, with 49% exhibiting
statistically significant decreases. Temperature and atmospheric CO,
concentration were identified as primary drivers of VSI trends, with warming
promoting and CO, largely suppressing vegetation sensitivity. Water
availability—including precipitation and soil moisture—also exerted notable
regulatory influence on VSI dynamics. These findings address critical
knowledge gaps in the understanding of vegetation—climate interactions in
Central Asia and offer valuable insights for projecting ecosystem responses
under future climate scenarios.

KEYWORDS

climate variability, vegetation sensitivity, spatiotemporal variations, potential
mechanisms, Central Asia

1 Introduction

Central Asia is the world’s largest azonal arid region, home to fragile ecosystems that are
especially vulnerable to contemporary climate variability and projected climate change (Su
et al., 2023; Gummadi et al., 2025). Vegetation dynamics in this region critically affect
agricultural systems, food security, water resources, natural environments, and
socioeconomic stability—including livelihoods, human health, and crop/livestock
production (Li et al., 2024). Consequently, understanding vegetation responses remains
a priority in ecological research in Central Asia.

Over the past few decades, Central Asia has experienced accelerated climate
transformations, with warming rates surpassing 0.3 °C per decade since the
1990s—almost double the global average (Davi et al, 2015; Fallah et al., 2023), This
warming exhibits pronounced seasonality, with winter temperatures rising 50% faster than
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summer temperatures (Peng et al, 2020), which intensifies
evaporative demand. Concurrently, precipitation regimes have
shifted toward increased spatial heterogeneity and temporal
volatility. Arid lowlands experience declining rainfall reliability,
while mountain regions face more extreme precipitation events
(Jiang et al, 2020; Su et al, 2023). This pattern is projected to
intensify under Coupled Model Intercomparison Project Phase 6
(CMIP6) scenarios, with precipitation variability expected to
increase by 15%-30% (Gummadi et al., 2025). These changes
have triggered cascading ecosystem impairments, including
intensified soil moisture deficits that frequently breach critical
plant water-stress thresholds (Fu et al., 2024), particularly in
rainfed croplands, where drought-induced productivity losses
exceed 40% (Yuan et al, 2022); rising vapor pressure deficit
(VPD) diminishes CO, fertilization benefits (Li et al., 2023); and
compound drought-heatwave events have increased in frequency by
40% since 2000, inducing nonlinear vegetation mortality (Zhou
et al., 2019; Yin et al, 2023). Furthermore, altered precipitation
seasonality disrupts phenological synchrony, manifested in delayed
spring green-up and premature autumn senescence in grasslands,
thereby reducing effective growing periods by 5-12 days per decade
(Wang et al,, 20205 Su et al,, 2023). Collectively, these disturbances
threaten the structural integrity and carbon sequestration capacity of
terrestrial ecosystems (Zeng et al, 2023). Within this context,
quantifying vegetation climate variations is
imperative for predicting ecosystem resilience amid accelerating

sensitivity to

climate change across Central Asia.

Vegetation climatic sensitivity is widely recognized as a crucial
indicator of ecosystem responses to climate perturbations (Seddon
et al, 2016; Wu et al, 2024). Effective sensitivity metrics must
account for both long-term climate state influences and short-term
variability impacts, as ecosystems exhibit heightened responsiveness
to discrete extremes than to chronic environmental changes (Chen
et al,, 2024). The Vegetation Sensitivity Index (VSI) pioneered by
Seddon et al. (2016) addresses this requirement through its
foundation in first- and second-order statistical moments. This
framework overcomes the limitations of single-metric approaches
by simultaneously evaluating temperature, hydrological, and
radiative drivers, enabling a more comprehensive consideration
(Chen et al, 2024). Its
robustness is evidenced through global assessments of ecosystem

of ecosystem-climate interactions

vulnerability (Seddon et al., 2016), regional drought impact analyses
(Zhu et al, 2019; Yuan et al, 2021), and quantification of CO,
fertilization effects (Ueyama et al., 2020). Recent methodological
refinements, particularly sliding-window implementations, have
enabled improved resolution of temporal dynamics across diverse
biomes (Jiang et al, 2022; Chen et al, 2024; Wu et al., 2024).
However, significant knowledge gaps remain regarding VSI patterns
in Central Asia. While Yuan et al. (2021) employed VSI to assess
vegetation vulnerability to drought stress in Central Asia, yielding
preliminary insights into spatial sensitivity patterns, temporal
changes in regional sensitivity remain unexamined. Furthermore,
the dominant natural drivers of spatiotemporal VSI
variations—particularly interactions between thermal acclimation
(Wang et al., 2024), CO, fertilization effects (Li et al., 2023), and
moisture constraints (Wang et al., 2023; Zhao et al., 2025) — remain
poorly understood. Consequently, the evolution of vegetation

sensitivity and its potential influencing factors across Central
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Asia remains unclear, impeding predictions of ecosystem tipping
points under projected warming (Tang et al., 2025).

Based on the above considerations, we employed the Vegetation
Sensitivity Index (VSI) within a 15-year moving window to quantify
spatiotemporal variations in ecosystem sensitivity to climate
variability (temperature, solar radiation, and precipitation), and
quantitatively explore the dominant natural factors across Central
Asia from 1982 to 2022. This study further quantifies the dominant
natural drivers of sensitivity variations along aridity gradients and
among vegetation types. By providing a dynamic assessment of
vegetation-climate interactions, our work elucidates ecosystem
responses to ongoing climate change and identifies vulnerable
regions, thereby informing targeted management strategies.

2 Materials and methods

2.1 Study area

Central Asia, occupying the Eurasian continental interior
(35°-55°N, 45°-90°E), constitutes the largest arid and semi-arid
region in the Northern Hemisphere. Politically, it encompasses
five nations—Kazakhstan, Uzbekistan, Turkmenistan, Kyrgyzstan,
and Tajikistan—along with China’s Xinjiang Province (Li et al,
2024). Spanning approximately 4.5 million km? the region is
bounded by the Caspian Sea to the west, the Siberian Plain to
the north, the Tibetan Plateau to the southeast, and the Iranian
Afghan highlands to the south. Its topography exhibits striking
heterogeneity, dominated by the Pamir-Tien Shan orogenic belt in
the southeast and characterized by the Turan Depression and
expansive deserts (e.g., Karakum, Kyzylkum) in the northwestern
lowlands (Gummadi et al, 2025). Shaped by pronounced
Asia
experiences a temperate continental climate marked by aridity,

continentality and topographical complexity, Central
intense evaporation, and significant temperature variability (Li
et al, 2015). As depicted in Figure 1, vegetation cover is diverse
and extensive, primarily comprising grasslands (28.8%), alongside
shrublands (14.5%), sparse vegetation (14.6%), cultivated fields
(18.3%), and forests (1.4%). Collectively, these geographical,
climatic, topographical, and vegetative characteristics constitute
the unique natural environment of Central Asia, rendering it a
focal geographical  and

significant  and subject  for

climatological research.

2.2 Datasets

2.2.1 NDVI data

The Global Inventory Modeling and Mapping Studies-3rd
Generation V1.2 (GIMMS-3G+) dataset for the Normalized
Difference Vegetation Index (NDVI) was utilized in this study.
This dataset, spanning from 1982 to 2022, has a spatial resolution of
1/12° (approximately 8 km) and a temporal resolution of 15 days
(Pinzon et al, 2023). It was assembled from multiple AVHRR
sensors and has been adjusted to account for various adverse
effects, such as calibration loss, orbital drift, and volcanic
eruptions. As one of the longest continuous records of global

vegetation productivity, the GIMMS-3G + NDVI dataset is
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The location and land cover over Central Asia.

widely used in the remote sensing community and has been
extensively applied in numerous studies. The biweekly NDVI
data were aggregated into monthly values using the maximum
value composite method. Areas dominated by barren land (with
a mean NDVI <0.1 across all months) were excluded. Additionally,
NDVI values corresponding to air temperatures below zero were
filtered out to eliminate potential influences from snow cover.

2.2.2 Climate data

Gridded climate data for monthly mean air temperature (TEM),
total precipitation (PRE), solar radiation downwards (SRD) and 2 m
dewpoint temperature (DWT) from 1982 to 2022 with a spatial
resolution of 0.1°, were obtained from the ERA-5 reanalysis dataset.
TEM, PRE, and SRD were used to calculate VSI to investigate the
response of vegetation activities to climate variability. Monthly
vapor pressure deficit (VPD) for 1982-2022 were calculated
using TEM and DWT (Yuan et al, 2019) to explore the
relationship between changes in VSI and atmospheric dryness.

2.2.3 Soil moisture data

Monthly surface soil moisture (SM), defined as the ratio of the
water volume to the unit soil volume, was also obtained from the
ERA5-Land reanalysis to characterize soil moisture conditions from
1982 to 2022. This dataset provides volumetric soil water content at
four different depths (0-7 cm, 7-28 cm, 28-100 cm, and
100-289 cm). For this study, we used layer 1 (0-7 cm) as near-
surface soil moisture (SM1) and layers 2 (7-28 cm) as sub-surface
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soil moisture (SM2) (Li et al., 2022) to analyze the water constraints
on variations of VSI.

2.2.4 CO, dataset

The global-scale monthly carbon dioxide concentration dataset
(GlobalSimulatedCO,_1992-2020), with a spatial resolution of 2° x
2.5%and spanning from 1992 to 2020, was acquired from the National
Earth System Science Data Center. This dataset facilitates the
systematic investigation of CO, spatiotemporal patterns and their
interactions with land surface processes at ecosystem-relevant scales.

2.2.5 Land cover data

The land cover product used in this study was sourced from the
European Space Agency for the Climate Change Initiative (ESA-
CCI) The ESA-CCI-LC dataset features a spatial resolution of 300 x
300 m and covers the period from 1992 to 2020, employing the Land
Cover Classification System (LCCS) framework established by the
United Nations Food and Agriculture Organization (FAO). Fixed-
type pixels corresponding to six vegetation categories—grasslands
(GL), shrublands (SL), forests (FR), sparse vegetation (SV), rainfed
croplands (RC), and irrigated croplands (CL) (Figure 1) — were
extracted to systematically investigate the effects of vegetation type
on VSI and its changes.

2.2.6 Aridity index data
The Aridity Index (AL defined as precipitation/potential
evapotranspiration, p/Ep), which indicates the environmental
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water availability, was derived the Global_AI_PET (v.3) database
with high-resolution (30 arc-seconds) for the 1970-2000 period.
Based on Al the Central Asia was classified into four climate zones:
Arid (AI < 0.2), Semi-arid (0.2 < AI < 0.5), Sub-humid (0.5 < AI <
0.65), and Humid (AI > 0.65) (Supplementary Figure S1).

To ensure compatibility with the spatial resolution of NDVTI, all
the above datasets were resampled to a 1/12° spatial resolution using
a bi-linear interpolation method.

2.3 Method

2.3.1 Vegetation sensitivity index (VSI) estimation
and trend analysis

The Vegetation Sensitivity Index (VSI) is an empirical metric
designed to quantify the relative sensitivity of vegetation to short-
term climate variability (Seddon et al., 2016). This methodology
innovatively integrates monthly climate-vegetation relationships
within a multivariate framework that incorporates a 1-month
lagged Normalized Difference Vegetation Index (NDVI) value to
account for ecological memory effects. The VSI computation
comprises two elements: the climatic weight, which reflects the
relative importance of different climatic factors, and vegetation
sensitivity, which measures ecosystem response to climate
variability. The expression is as follows:

VSI = Y (TEMg x TEM s + PREg X PRE g + SRDj X SRDyey)

where VSI is vegetation sensitivity index, TEM s> PREg and SRDg
are the relative weights (importance) of temperature, precipitation
and solar radiation, respectively; and TEM g5, PREens and SRD ey
denote the standardized regression coefficients representing NDVI
sensitivity to each climate variable. The resulting VSI values were
rescaled to range from 0 to 100, with higher values indicating greater
vegetation sensitivity to climatic variations. The detailed VSI
method can be found in Seddon et al. (2016).

To track temporal changes in vegetation sensitivity, we
computed VSI using a 15-year moving window advanced
annually throughout the 1982-2022 period. This window size
was selected to balance the need for capturing decadal-scale
climate variability while maintaining sufficient sample size for
robust parameter estimation. The time series was partitioned into
27 overlapping segments (e.g., 1982-1996, 1983-1997), with each
computed VSI value assigned to the central year of the window (e.g.,
1989 for the 1982-1996 period), generating a continuous annual VSI
time series (Sys;). To ensure the robustness of trend detection
against window size selection, we repeated the entire trend
analysis using 1l-year and 19-year moving windows (see
Supplementary Figure S2). Trend analysis of the Syg was
conducted using the Theil-Sen slope estimator, a non-parametric
method resistant to outliers. Statistical significance of trends was
assessed using the two-tailed Mann-Kendall test (Mann, 1945;
Sen, 1968).

2.3.2 Attribution analysis of trends in vegetation
sensitivity

Partial correlation analysis, which can effectively eliminate the
confounding effects of collinearity among influencing factor
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variables (Zhang et al, 2024), was used at the pixel level to
quantify individual contributions of changes in climate factors
(TEM, PRE, SRD and VPD), soil moisture (SM1, SM2), and CO,
concentration to VSI variation. The partial correlation formula was:

r"}’ - rxzr)’z
— 2 )
(1-72, (1 ryz)

Txyz =

where . the partial correlation coefficient between x and y while
removing the influence of the variable z, r,, 7. and r, are the
Pearson correlation coefficients between two variables.

Due to temporal inconsistencies between the CO, concentration
dataset and other datasets, we restricted the analysis of this portion
to 1992-2020 and implemented an 11-year moving window.
Specifically, we averaged all factors within each 11-year window
to align with the Syg;. After removing long-term mean seasonal
cycles from both Sys; and all factors, we computed partial
correlation coefficients at each grid cell. The partial correlation
coefficients between the factors were then ranked and the factor
with the maximum absolute value was extracted as the dominant
factor. A two tailed Student’s t-test was used to test the significance
of the correlation (p < 0.05).

3 Results

3.1 Spatial pattern of the vegetation
sensitivity

The VSI shows a high spatial heterogeneity and generally
increases with the aridity index (Figure 2; Supplementary Figure
S$3). High VSI values (>50) were predominantly observed across the
northern plains and southeastern high-altitude regions, primarily
within humid, sub-humid and partially semi-arid zones (Figures
2a,b; Supplementary Figure S1). In contrast, lower VSI values (<30)
were concentrated in arid zones, forming an east-west band through
the central study area and extending into most southwestern
regions. Latitudinal statistics (Figure 2b) revealed that VSI was
typically high in the high-latitude regions (50°-55°N), while it
oscillated around 40 in the 35°-50° regions. Furthermore,
vegetation sensitivity varied by biome type (Figure 1, 2a). Forests
and shrublands in humid/semi-humid zones, as well as rainfed
croplands in semi-arid regions, exhibited heightened sensitivity
(higher VSI), while sparse vegetation, grasslands, and shrubs in
arid zones demonstrated reduced sensitivity (typically VSI <40).
Additionally, the sensitivity of forests, shrublands, grasslands, and
irrigated agriculture followed a parabolic response to aridity,
whereas rainfed croplands and sparse vegetation displayed an
inverted V-shaped response: VSI peaked in semi-arid zones and
then declined with increasing moisture (Supplementary Figure S3).

3.2 Spatio-temporal variation of VSI

Temporal analysis using 15-year moving windows revealed a
pronounced declining trend in vegetation sensitivity (VSI) across
Central Asia throughout the study period, with a more rapid rate of
decline observed post-1995 (Figure 3, the rate of change shifting
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(a) Spatial pattern of VSI values in Central Asia from 1982 to 2022. Corresponding histogram was illustrated in subplot. (b,c) represent altitude and
longitudinal averages of the VSI values. The VSI value at 40 was highlighted as the red line and its standard deviation was marked as the shaded areas.
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Spatial pattern of VSI trend. Pixels labeled with black slash suggest significant trends (p < 0.05). The line plot depicts the use of 11-year, 15-year, and
19-year moving windows to evaluate the robustness of VSI trends to window size selection. The bar charts represent the areal proportion of regions with
increasing/decreasing VSI trends, where the slash denotes statistically significant changes.

from —0.274 to —0.476). This downward trend persisted across both
11-year and 19-year moving windows, despite variations in the
magnitude of relative values, thus confirming the robustness of the
trend (Supplementary Figure S2). Notably, this persistent decline
was also evident in the radiation-excluded VSI series, which was
derived solely from temperature and precipitation variables (solar
radiation components removed to isolate the effects of Earth
dimming; Supplementary Figure S4). Spatially, 82.0% of vegetated
areas exhibited a reduction in interannual VSI variability (with 49%
showing significant change at p < 0.05), indicating increasing
vegetation adaptation to climate variability over time. Conversely,
VSI increases were observed in approximately 18.0% of vegetated
areas, displaying sporadic distribution without significant spatial
clustering (Figure 3).

Frontiers in Environmental Science

Across all climatic zones and vegetation types, VSI exhibited
declining trends with notable spatial heterogeneity (Figure 4).
Distinct temporal patterns emerged among climatic regions:
humid zones showed VSI increases until 1995, in contrast to
other zones, followed by accelerated declines from 1995 to 2003.
After 2003, a divergence occurred, with humid and semi-humid
zones transitioning to increasing trends, while arid zones continued
to experience declines (Figure 4a). Specifically, the arid zone had the
highest proportion of decreasing VSI trends (83.6% of the area),
followed by the humid zone (83.3%), with semi-arid and sub-humid
zones showing decreases in 76.6% and 73.3% of the area, respectively
(Figure 4b). Among vegetation types, shrubs and sparse vegetation
exhibited the most pronounced decreasing trends, with over 87%
coverage for both. In contrast, forests, rainfed croplands, and
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Spatial pattern of dominant drivers of VSI change in the period of 1992-2020. Histogram on the right indicates the percentage of area occupied by
each dominant factor. The insets map in lower right represents the significance at the level of 0.05.

grasslands each exhibited increasing VSI trends in more than 20% of
pixels (Figure 4c).

3.3 Drivers of trend shifts in VSI

Partial correlation analysis revealed distinct spatial heterogeneity
in dominant natural factors influencing VSI variations (Figure 5).
Statistically, atmospheric CO, concentration and temperature
emerged as primary determinants, each with divergent ecological
effects. Elevated CO, was associated with reduced VSI, likely through
enhanced photosynthetic efficiency and water-use optimization under
fertilization effects. In contrast, temperature exhibited positive
correlations with VSI, suggesting that warming exacerbates
vegetation vulnerability to climatic perturbations. This pattern held
consistently across climate zones and vegetation types, with
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exceptions in sub-humid regions and irrigated croplands (Table 1).
Specifically, temperature-driven VSI variation accounted for 19.6% of
vegetated areas, showing a homogeneous spatial distribution
concentrated in north-central Kazakhstan. CO,-dominated areas
(172% of the domain) were primarily found in grasslands and
sparse vegetation in Kazakhstan’s arid and semi-arid regions
(Figure 5; Table 1). Hydrological factors also played a strong
regional role: surface soil moisture (SM1) and deep soil moisture
(SM2) explained VSI variations in 23.1% of cases, particularly along
the fluvial corridors of the Irtysh, Syr Darya, and Ural Rivers, which
serve as transition zones between vegetation types. Precipitation
influenced 14.6% of vegetated areas, mainly affecting grasslands.
Notably, spatial coupling was observed between vapor pressure
deficit (VPD) and temperature dominance zones, reflecting
thermodynamic interactions where warming increases saturated
vapor pressure and amplifies atmospheric water demand.
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TABLE 1 The area proportion of the driving factors that dominate VSI changes in different climate zones and vegetation types (%). Bold numbers indicate the

maximum area proportion.

Potential factors Positive correlation

SM1 SM2 PRE TEM SRD VPD CO,

Negative correlation

SM1 SM2 PRE TEM SRD VPD CO,;

Climate Zone Arid 3.26 3.30 3.70 6.46 3.24 2.28 2.94 2.95 2.79 4.12 3.73 443 3.06 6.62
Semi-arid 3.34 1.89 2.72 4.80 2.79 2.47 1.84 2.45 2.25 3.55 3.92 3.04 2.98 5.19

Sub-humid 0.17 0.12 0.19 0.25 0.27 0.12 0.15 0.18 0.13 0.17 0.20 0.26 0.15 0.28

humid 0.09 0.09 0.07 0.12 0.08 0.05 0.07 0.08 0.05 0.12 0.08 0.11 0.08 0.13

Vegetation Type = FR 0.17 0.14 0.17 0.18 0.16 0.10 0.08 0.10 0.11 0.19 0.16 0.18 0.15 0.24
SL 0.61 0.73 0.99 1.43 0.80 0.42 0.35 0.66 0.74 0.90 0.77 0.84 0.75 1.36

GL 2.45 1.83 2.70 4.13 2.37 1.82 1.98 2.07 2.05 3.15 2.81 2.61 2.28 4.52

NY% 1.62 141 1.23 2.39 1.27 1.03 1.40 1.26 1.06 1.70 1.48 2.01 1.25 2.95

RC 0.87 0.41 0.47 1.42 0.63 0.91 0.44 0.68 0.40 0.85 1.39 0.88 0.96 1.32

CL 112 0.90 1.12 2.09 1.16 0.64 0.75 0.91 0.87 1.16 1.33 1.32 0.90 1.82

4 Discussion

Using VSI as a metric, we observed pronounced spatial
heterogeneity in vegetation sensitivity to short-term climate
variability across Central Asia, with VSI positively correlated with
the aridity index (Figure 2; Supplementary Figure S3). This finding
aligns with regional studies (Yuan et al., 2021) and global patterns
where Central Asia exhibits characteristic sensitivity profiles
(Seddon et al, 2016; Chen et al, 2024). Forests and shrubs in
humid environments showed the highest VSI values, followed by
rainfed croplands in semi-arid regions, while the lowest sensitivity
was observed in arid areas dominated by grasslands and sparse
vegetation. This gradient reflects greater climate sensitivity in woody
communities compared to herbaceous ones—a pattern that has been
consistently documented (Zhu et al., 2019; Chen et al,, 2024; Wu
et al, 2024). Such patterns are likely the result of evolutionary
adaptations in herbaceous plants to arid and semi-arid conditions,
including low canopy structures and deep root systems that enable
these species to withstand environmental extremes (Lindh et al,
2014; Chen et al, 2024). Forests, however, exhibit heightened
to both and anthropogenic
pressures, as has been widely reported (Chen et al, 2024; Wu
et al., 2024).

Our analysis revealed a widespread decline in vegetation
sensitivity (VSI) across Central Asia from 1982 to 2022, with 82%
of vegetated areas exhibiting significant desensitization (Figure 3;

vulnerability climate change

Supplementary Figure S2). This pattern remained robust under
multiple methodological validations, including modified moving-
window sizes (11- and 19-year) and exclusion of radiation
variables (Supplementary Figures S2, S4), reinforcing the reliability
of the observed trend. Although this declining trend may appear
counterintuitive given the documented intensification of climatic
extremes, it aligns with emerging global-scale studies reporting a
decoupling between vegetation growth and aridity in drylands (Zeng
et al,, 2022; Zhang et al., 2023), suggesting that declining sensitivity
may reflect complex ecosystem adjustments rather than solely
degradation or resilience. The observed widespread desensitization
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may be largely attributed to the CO, fertilization effect, which
enhances plant water-use efficiency and alleviates moisture
limitation, thereby reducing climatic constraints on vegetation
growth (Ueyama et al., 2020; Zhang et al., 2023; Zhou et al., 2024).
In addition, long-term evolutionary adaptations in dryland
flora—such as adjustments in root architecture, phenological shifts,
and physiological acclimation—may have further strengthened their
capacity to cope with concurrent heat and water stress (Peguero-Pina
etal,, 2020). Human interventions, including cropland expansion and
could

desensitization by altering local water availability and vegetation

water management practices, also contribute to this
composition (Tripathi et al., 2024; Rodriguez-Lozano et al,, 2025).
It is important to note that these mechanisms are not mutually
exclusive and may operate concurrently across different regions. It
is noteworthy that our findings contrast with those of Chen et al.
(2024), who reported increasing sensitivity in some arid regions. This
discrepancy may arise from differences in study periods, spatial
resolutions, or methodological frameworks, highlighting the
context-dependent nature of vegetation-climate feedbacks and the
need for region-specific analyses. Additionally, increased climate
detected in in high-altitude
mountainous areas, suggesting that rapid hydrothermal changes

sensitivity  was some forests
could threaten forest sustainability under continued warming (Wu
et al, 2024). Rainfed croplands also exhibited greater VSI increases
compared to irrigated systems, pointing to heightened climate
vulnerability in key agricultural zones. This disparity emphasizes
how management interventions, such as hybridization, irrigation,
and fertilization, can attenuate climatic impacts on croplands,
thereby reducing threats to food security (Wang et al., 2020; Yu
et al, 2022). Nonetheless, the VSI is fundamentally a statistical
measure of climate-vegetation coupling strength. Therefore, this
observed decline in sensitivity does not universally signify
enhanced ecosystem resilience; it could also indicate diminished
responsiveness due to a loss of reactive biomass, and this duality
warrants careful consideration.

Relative importance analysis indicated that the primary drivers
of the observed VSI declines were elevated atmospheric CO,
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concentrations and improvements in water availability (e.g.,
precipitation and soil moisture), although ongoing warming
continued to constrain vegetation responses (Figure 5). Rising
CO, levels enhance photosynthesis activity and improve drought
resistance through fertilization effects, contributing significantly to
the widespread greening observed after 2000 (Guo et al., 2023; Li
etal, 2023; Yin et al,, 2023; Zeng et al., 2023). Conversely, warming
increases evapotranspiration and exacerbates water stress, reducing
climate resilience (Zhou et al, 2019; Wang et al, 2024).
Furthermore, higher temperatures intensify vegetation sensitivity
to soil moisture, compounding water and energy stress and
destabilizing ecosystems (Wang et al, 2023). Despite this,
declines in VSI in temperature-sensitive regions suggest that CO,
fertilization and plant acclimatization may mitigate some of the
thermal stress (Chen et al., 2024). Water availability emerged as the
dominant driver of VSI trends across 37.8% of Central Asia’s
vegetated area, where variations in water inputs strongly
influenced drought stress and vegetation-climate coupling (Zeng
etal,, 2022; Wang et al., 2023). Vapor pressure deficit (VPD) showed
limited influence, likely due to counteracting interactions among its
indirect effects, CO,-induced stomatal closure, and warming-related
stress. Collectively, these drivers influence vegetation sensitivity
through multiple pathways: CO,-mediated photosynthetic
regulation, plant water demand management, and heat stress
amplification under warming (Chen et al., 2024).

These findings enhance our understanding of vegetation-climate
interactions and provide valuable insights for conservation
prioritization in Central Asia. However, several limitations should
be considered. First, the temporal scope of this study (1982-2022)
may not fully capture the temporal evolution of vegetation—climate
sensitivity across different historical periods (Tang et al, 2025).
Second, while partial correlation analysis helps isolate individual
drivers, high collinearity among climatic variables remains a
challenge for unequivocal attribution. Third, the analysis focused
primarily on climatic and CO, influences, and did not explicitly
account for other potential modulating factors such as soil properties,
plant functional traits, and detailed land-use history, all of which may
interact to shape vegetation responses to climate variability (Gessner
etal, 2013; Yuan et al., 2022). Future studies incorporating dynamic
vegetation models and higher-resolution anthropogenic data could
help disentangle these complex interactions.

5 Conclusion

This study investigated the spatio-temporal dynamics of vegetation
sensitivity to climate variability—quantified using the Vegetation
Sensitivity Index (VSI) — across Central Asia and identified the
underlying driving mechanisms. Overall, our results demonstrated a
widespread decline in vegetation sensitivity (VSI) throughout the
region between 1982 and 2022, with the most pronounced
decreases observed in moisture-limited (arid) and energy-limited
(humid) systems. The dominant drivers exhibited considerable
spatial heterogeneity: elevated CO, exerted a dampening effect on
sensitivity in 17.2% of vegetated areas, whereas warming enhanced VSI
in 19.6% of the region. Soil moisture was critical in watersheds and
ecotones, while precipitation primarily governed the sensitivity of
grasslands. Notably, forests and shrubs in high-altitude humid
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zones, along with rainfed croplands in semi-arid regions, showed
heightened sensitivity, highlighting the vulnerability of these
The decline in VSI that
vegetation—climate coupling has not intensified under global

ecosystems. overall suggests
warming, likely attributable to compensatory mechanisms such as
CO, fertilization, climate adaptation strategies, and region-specific
land management. These findings highlight the importance of
integrating natural and anthropogenic factors into ecosystem
resilience strategies in this climate-sensitive region. Future work
should focus on quantifying the
interventions and projecting how these compensatory mechanisms

contribution of human

might evolve under more severe climate scenarios.
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