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Air pollution has emerged as a pressing global environmental issue, and accurate
forecasting plays a critical role in environmental governance and public health
protection. This study proposes an enhanced air quality forecasting model based
on a hybrid CEEMDAN-GNN-Transformer architecture, and conducts an
empirical analysis using data from Chang’an Town, Dongguan, China. The
proposed model first employs Complete Ensemble Empirical Mode
Decomposition with Adaptive Noise (CEEMDAN) to extract multi-scale
temporal features and mitigate non-stationary noise in the data. Then, a
Graph Neural Network (GNN) is applied to capture the spatial dependencies
among various air pollutants. Finally, a Transformer model is utilized to model
complex temporal dependencies and improve the capture of long-term trends.
The research uses historical air quality monitoring data from 2015 to 2024,
including concentrations of PM2.5, PM10, SO2, CO, NO2, and O3 as input
features, with the Air Quality Index (AQI) as the prediction target. Model
performance is enhanced through ablation studies and hyperparameter
tuning, and is compared against several mainstream baseline models.
Experimental results demonstrate that the proposed CEEMDAN-GNN-
Transformer model outperforms traditional approaches in terms of MAE, MSE,
and R2 metrics, achieving superior prediction accuracy and robustness. This study
not only contributes to the theoretical advancement of air quality forecasting
methodologies but also provides a more precise predictive tool for
environmental management and public health risk prevention, offering
significant practical value.
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1 Introduction

Air pollution has emerged as one of the most pressing environmental issues worldwide,
significantly impacting human health, ecosystems, and economic development. According
to the World Health Organization (WHO), over seven million premature deaths annually
are attributed to diseases related to air pollution. The United Nations Environment
Programme (UNEP) further emphasizes its multifaceted consequences, ranging from
respiratory and cardiovascular disorders to ecological degradation and climate change.
Key air pollutants—such as fine particulate matter (PM2.5, PM10), sulfur dioxide (SO2),
carbonmonoxide (CO), nitrogen dioxide (NO2), and ozone (O3)—jointly determine the Air
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Quality Index (AQI), a composite metric widely used to assess
atmospheric pollution levels and associated health risks (Horn and
Dasgupta, 2024).

Although the Chinese government has implemented a series of
policies to strengthen air pollution control, such as the Air Pollution
Prevention and Control Action Plan, the Three-Year Action Plan to
Win the Blue Sky Defense Battle, and the Air Quality Improvement
Action Plan, the overall air quality in China has improved in recent
years. However, some rapidly industrializing and urbanizing regions
still face severe air pollution problems. According to the
2023 Bulletin on China’s Ecological and Environmental Status
issued by the Ministry of Ecology and Environment, 121 out of
337 cities at the prefecture-level or above still fail to meet the air
quality standards. While the PM2.5 concentration in the Pearl River
Delta region has decreased by 34% compared to 2015, the number of
days with ozone (O3) exceeding the standard has increased to 12.7%,
making it the primary pollutant.

Chang’an Town in Dongguan, a typical industrial town in the
Pearl River Delta, continues to experience significant air quality
issues due to the dual pressures of industrial clustering and high
population density. In 2022, the annual average PM2.5 concentration
in Chang’an Town was 32 μg/m3, which is below the national
secondary standard (35 μg/m3) but still significantly higher than
theWorld Health Organization’s recommended standard (5 μg/m3).
Additionally, the proportion of days with good air quality was lower
than the average for Dongguan (Guangdong Provincial Department
of Ecology and Environment, 2023). Against the backdrop of high
population density and intense industrial emissions, developing air
quality forecasting models with high accuracy and strong
generalization ability is of great practical significance for
pollution control and environmental governance decision-making.

High-accuracy forecasting models can provide at least a 72-h
warning window for pollution events, which is crucial for
environmental governance, public health protection, and policy
formulation. The variation in air quality is influenced by multiple
factors, exhibiting high non-linearity, non-stationarity, and spatial
correlation. Traditional statistical models and some machine
learning methods often struggle to simultaneously capture multi-
scale features, spatial dependencies, and long-term temporal
relationships in complex air quality time series data (Mishra and
Gupta, 2024).With the rapid development of deep learning and time
series modeling, forecasting methods based on advanced models
such as Transformer and Graph Neural Networks (GNN) have
demonstrated superior performance. However, single deep learning
models often fail to adequately capture the spatiotemporal
relationships and multi-scale characteristics between pollutants,
which can hinder prediction accuracy. Therefore, combining and
optimizing different models has become a key research direction for
improving air quality prediction accuracy. Furthermore, due to the
presence of significant noise and complex periodic features in air
pollution data, employing signal decomposition methods can
effectively separate the time series of pollutants, improving the
stability and generalization ability of the forecasting model
(Agbehadji and Obagbuwa, 2024).

To address these challenges, this paper proposes a hybrid air
quality forecasting framework based on Complete Ensemble
Empirical Mode Decomposition with Adaptive Noise
(CEEMDAN), GNN, and Transformer. The framework first

applies CEEMDAN to decompose the raw pollutant time series
data, reducing noise interference and extracting the primary trend
information. Next, GNN is used to model the complex
spatiotemporal dependencies among pollutants. Finally, the
Transformer model is employed to achieve precise forecasting of
AQI by leveraging its strong representation power. This study
focuses on Chang’an Town, Dongguan, using air pollution data
from 2015 to 2024, with pollutants such as PM2.5, PM10, SO2, CO,
NO2, and O3 as input features, and AQI as the target variable.
Empirical analysis is conducted to validate the effectiveness and
superiority of the proposed model.

The main contributions of this study are as follows: A hybrid
deep learning architecture integrating CEEMDAN, GNN, and
Transformer. This model effectively captures the multi-scale,
nonlinear, and spatiotemporal characteristics inherent in air
quality time series data. The model is empirically validated using
a decade-long dataset of air pollutant concentrations collected from
an industrial town with complex environmental conditions,
demonstrating its robustness in real-world scenarios. The
experimental results show that the proposed framework
significantly outperforms baseline models in terms of Mean
Absolute Error (MAE), Mean Squared Error (MSE), and the
coefficient of determination (R2), thereby confirming its superior
predictive accuracy.

The remainder of this paper is structured as follows: Section 2
presents a literature review. Section 3 introduces the model
architecture and methodology in detail. Section 4 discusses data
collection and feature processing. Section 5 presents the
experimental design and result analysis. Section 6 concludes the
study and outlines future research directions.

2 Literature review

In recent years, with the rapid advancement of data science and
artificial intelligence, numerous novel forecasting methodologies
have emerged, including deep learning models, GNN, and
Transformer-based architectures. These approaches have shown
considerable potential in air quality forecasting. This section
provides a comprehensive review of prior studies on air quality
prediction, with a particular focus on hybrid models that integrate
CEEMDAN, GNN, and Transformer techniques.

Air quality forecasting, as a crucial task in environmental
science, aims to predict future air quality conditions by
considering various influencing factors such as meteorology,
traffic, industrial emissions, and socioeconomic activities
(Abirami and Chitra, 2021). Traditional forecasting approaches
predominantly rely on statistical models such as Autoregressive
Integrated Moving Average (ARIMA) and Seasonal ARIMA
(SARIMA). These methods perform reasonably well under
stationary conditions. For example, Sharma et al. (2025) applied
ARIMA to predict PM2.5 concentrations in satellite cities around
Delhi, India, demonstrating that while ARIMA can capture
temporal trends in stationary series, it struggles with external
influencing factors and nonlinearities in the data.

To address these limitations, machine learning and deep
learning models have been increasingly adopted. Techniques such
as Support Vector Machines (SVM), Random Forests (RF),
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Adaptive Boosting (AdaBoost), and Extreme Gradient Boosting
(XGBoost) have improved predictive performance, yet often fail
to fully capture spatiotemporal dependencies in the data (Zaini et al.,
2022). Wang et al. (2023), for instance, used XGBoost to improve
PM2.5 predictions, though the model was limited in its ability to
model spatial correlations. Similarly, K-Nearest Neighbors (KNN)
and Gradient Boosted Decision Trees (GBDT) have shown flexibility
and adaptability for short-term prediction tasks, but encounter
challenges when handling long-term or spatially coupled data
(Liu et al., 2021).

In the deep learning domain, Long Short-Term Memory
(LSTM), Convolutional Neural Networks (CNN), and Gated
Recurrent Unit (GRU) models have been widely applied to tasks
like air quality prediction, where they excel in modeling long-term
sequential data. LSTM and GRU are particularly adept at capturing
temporal dependencies, though they often require large amounts of
training data and computational resources due to their high
complexity (Li et al., 2022). Kumbalaparambi et al. (2023)
proposed a BiLSTM prediction model that effectively captures
time dependencies, though the model’s interpretability is weak.
CNN, known for its powerful feature extraction ability, has also
been widely applied to air quality prediction, especially when dealing
with spatial information or extracting local temporal features. Some
studies have attempted to combine CNN with Transformer models,
using CNN to extract local pattern features and Transformer to
model long-range dependencies, thus balancing short-term feature
capture with long-term trend modeling (Chen et al., 2022).

Empirical Mode Decomposition (EMD) and its improved
version, Complete Ensemble Empirical Mode Decomposition
with Adaptive Noise (CEEMDAN), have been widely used in
time series data denoising and signal decomposition. CEEMDAN
decomposes complex time series signals intomultiple intrinsic mode
functions (IMFs), each representing a component of the data in a
specific frequency band, effectively removing noise while preserving
the key features of the signal (Ameri et al., 2023). CEEMDAN has
been applied primarily in the data preprocessing stage of air quality
prediction by decomposing different frequency components to
optimize the model inputs and enhance prediction accuracy. Wu
et al. (2024) utilized CEEMDAN to decompose PM2.5 sequences in
air quality prediction, successfully removing high-frequency noise
and improving model stability. Studies have shown that combining
CEEMDAN with deep learning models such as LSTM and GRU can
effectively remove noise and short-term fluctuations, thereby
enhancing the model’s ability to capture long-term trends and
improving prediction accuracy (Wu et al., 2022). Zhang et al.
(2023) proposed a CEEMDAN-LSTM hybrid model for air
quality prediction, demonstrating the effectiveness of this
approach in noise reduction and improving model accuracy.

The spatiotemporal distribution characteristics of air quality
pose challenges for traditional time series models in handling spatial
dependencies. Graph Neural Networks (GNN) have been widely
applied in air quality prediction due to their ability to capture spatial
dependencies by constructing graph structures and learning
relationships between nodes. GNN models in air quality
prediction typically model the propagation and diffusion of
pollutants based on the spatial correlations between monitoring
stations (Chen et al., 2023). Ge et al. (2021) employed Graph
Convolutional Networks (GCN) for urban air quality prediction,

successfully incorporating the spatial correlations between
monitoring stations to improve prediction accuracy. GNN can
learn the diffusion paths of pollutants across different regions,
providing more accurate spatial predictions.

The Transformer model, proposed in 2017, has made significant
breakthroughs in various fields due to its self-attention mechanism,
which effectively handles dependencies in long-time series data.
Unlike traditional Recurrent Neural Networks (RNN) and LSTM
models, Transformer does not rely on sequential processing and can
compute in parallel, significantly improving computational
efficiency (Zhang and Zhang, 2023). In air quality prediction,
Transformer and its variants (e.g., Informer, Longformer) have
shown their ability to capture complex dependencies in long-time
series through self-attention mechanisms. Liang et al. (2023)
proposed a Transformer-based time series prediction model
specifically for handling long-term dependencies in multivariate
time series data, achieving good predictive performance.
Transformer models, by processing large amounts of historical
data, are able to better capture the long-term trends in air quality
variations, supporting long-term air quality forecasting. He et al.
(2025) proposed a Transformer-based air pollution prediction
model that leverages the self-attention mechanism to enhance
long-term time dependency modeling.

Hybrid models that combine multiple methods have
demonstrated improved performance by leveraging the strengths
of different algorithms. CEEMDAN can be integrated with deep
learning models like LSTM and GRU to first perform noise
reduction and signal decomposition, followed by temporal
modeling, thereby enhancing both robustness and accuracy. Tang
et al. (2024) proposed a CEEMDAN-SE-GRU model for air quality
forecasting, which effectively captured AQI variations by addressing
noise and nonlinear components. Models combining GNN and
Transformers can simultaneously process temporal sequences and
spatial dependencies, enabling more accurate and context-aware
forecasts. For instance, Ban and Shen (2022) proposed a
CEEMDAN–LSTM–BP–ARIMA hybrid model that demonstrated
strong adaptability for short-term PM2.5 prediction.

In summary, current research in air quality prediction exhibits
the following trends: (1)Traditional statistical models such as
ARIMA and SARIMA remain valuable for stationary, univariate
prediction tasks but underperform in nonlinear, multivariate
contexts; (2) Machine learning models outperform statistical
methods in feature interaction modeling but struggle to jointly
capture spatial dependencies and multi-scale temporal features;
(3) Deep learning models each possess distinct strengths but
often cannot simultaneously address multi-scale temporal
structures and spatial correlations within a single architecture; (4)
CEEMDAN–deep learning hybrids enhance noise reduction and
trend extraction but are typically confined to single prediction
frameworks, lacking integration of spatial and long-range
temporal modeling; (5) GNN–Transformer integrations have
been applied in other fields but remain underexplored for highly
volatile industrial air pollution scenarios.

Accordingly, three major research gaps can be identified: (1) The
absence of a unified framework integrating multi-scale signal
decomposition, spatial dependency modeling, and long-range
temporal dependency capture; (2) Limited empirical validation in
typical high-pollution, highly non-stationary industrial zones,
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restricting the assessment of model stability and generalization; (3)
Insufficient fusion between long-range temporal and spatial
diffusion modeling, hindering comprehensive characterization of
pollutant evolution mechanisms.

Air quality forecasting is a highly complex, multi-factor task
involving the nonlinear nature of time series data, spatial
dependencies, and the integration of heterogeneous data sources.
Although substantial progress has been made in recent years,
existing predictive models often struggle to simultaneously
capture the nonlinearities, multi-scale temporal structures, and
spatial correlations inherent in pollution data. This limitation
becomes particularly pronounced in densely populated, heavily
industrialized regions such as Chang’an Town in Dongguan,
China, where pollutant emissions exhibit strong source
heterogeneity, abrupt fluctuations, and pronounced
spatiotemporal coupling—posing considerable challenges to
conventional forecasting approaches.

To address these challenges, this study proposes a novel hybrid
deep learning framework that integrates CEEMDAN, GNN, and
Transformer architectures to jointly model multi-scale structures,
spatial diffusion patterns, and long-term temporal dependencies in
air quality data. CEEMDAN effectively handles the non-stationarity
of pollution time series by decomposing them into intrinsic mode
functions across multiple frequency bands, thereby enhancing noise
reduction and feature representation. GNN is employed to capture
the spatial propagation of pollutants among monitoring stations,
uncovering complex regional diffusion relationships. Meanwhile,
the Transformer model leverages self-attention mechanisms to
strengthen the representation of long-range dependencies and
complex temporal dynamics.

This integrated framework overcomes the limitations of single-
model approaches in jointly modeling spatial and temporal features,
and is particularly well-suited to real-world conditions in industrial
zones like Chang’an Town, where pollutant concentrations are
highly volatile and data are frequently contaminated by noise. By
introducing this innovative architecture, the study offers a more
adaptive and robust solution for air quality forecasting in
environments characterized by strong nonlinearity and
spatiotemporal heterogeneity. It provides a scientifically
grounded, data-driven tool to support environmental monitoring,
early warning systems, and policy-making in complex
industrial settings.

3 Methods

3.1 CEEMDAN for signal decomposition

The Complete Ensemble Empirical Mode Decomposition with
Adaptive Noise (CEEMDAN) is an advanced signal processing
method designed for analyzing nonlinear and non-stationary
time series. It extends the original Empirical Mode
Decomposition (EMD) by improving the decomposition stability
and mitigating mode mixing—an issue in traditional EMD where
intrinsic mode functions (IMFs) with overlapping frequency content
compromise the interpretability of results (Guo et al., 2023).

CEEMDAN enhances EMD by introducing Gaussian white
noise into the decomposition process. Initially, Gaussian noise is

added to the original signal to generate multiple noisy versions. Each
noisy signal is decomposed using EMD to extract its IMFs.
Subsequently, the corresponding IMFs from each realization are
averaged to obtain a more robust and stable decomposition. The
incorporation of adaptive noise further ensures that each IMF
retains high independence and spectral purity, thereby improving
decomposition accuracy. This process enables effective noise
reduction while preserving the underlying characteristics of the
original signal (Hu et al., 2021). In this study, the IMFs and
residual components extracted via CEEMDAN serve as refined
input features for subsequent spatial-temporal modeling.

3.2 GNN for spatial feature extraction

Figure 1 illustrates the basic workflow of Graph Neural
Networks (GNN), whose main objective is to extract spatial
features from multivariate data at each time step and model the
dependencies between variables. Specifically, a graph structure is
used to represent the relationships between variables:

Nodes represent the 18 variables, including AQI and major
pollutant concentrations (e.g., PM2.5, PM10, SO2, CO, NO2, O3_8 h),
as well as the IMFs (IMF_1 to IMF_10) and Residue from
CEEMDAN decomposition.

Edges define the connections between the variables through an
adjacency matrix.

Graph Convolutional Networks (GCN), a common variant of
GNN, are used to update the spatial features, and the update process
can be represented by the following equations, as shown in
Equations 1–3 (Zhou et al., 2020):

Ht � σ ~AXtW + b( ) (1)

Where Xt ∈ RN×F represents the input feature at time t,
~A∈ RN×N is the normalized adjacency matrix. W ∈ RF×D is the
learnable weight matrix, where D is the hidden layer dimension.
b ∈ RD represents the bias term. σ is the activation function,
representing spatial features at time t.

To enhance expressiveness, multiple layers can be stacked,
allowing the network to capture more complex relationships.

H l( )
t � σ ~AH l−1( )

t W l( ) + b l( )( ) (2)

FIGURE 1
Graph neural network workflow.
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H(l)
t � Xt is the initial input, andH

(l)
t is the output of the L th layer,

serving as the final spatial feature. The GNN is applied across all
time steps, producing the output as:

H � H1, H2, . . . , HT[ ] ∈ RT×N×F (3)

This process is applied at every time step, yielding spatial
features across time.

3.3 Feature fusion mechanism

The spatial features extracted by GNN need to be fused with the
original input features to generate a unified input for the
Transformer model.

To fully leverage the spatial feature extraction capabilities of
GNN, the spatial features are fused with the original input features to
form a combined feature suitable for Transformer modeling. The
fusion process is carried out as shown in Equations 4–6:

Concatenation: The features are concatenated.

Zt � Xt,Ht[ ] ∈ RN× F+D( ) (4)

Linear Transformation: A linear transformation is applied.

Zt � Wf Xt,Ht[ ] + bf (5)

Attention Fusion: Multi-head attention mechanisms
dynamically fuse the features.

Zt � MultiHeadAttention Q � Xt, K � Ht, V � Ht( ) (6)
Where Q (queries) are derived from original features, and K

((keys) and V (values) are obtained from GNN features. The output
Zt ∈ RN×D‘

is reshaped into Z ∈ RT×N×D‘

, facilitating dynamic
weighted fusion and improving sensitivity to key variables.

3.4 Transformer for temporal modeling

Figure 2 illustrates the main structure of the Transformer model.
The Transformer model receives the fused feature Z, which is used to
model the temporal dependencies in the time series for future
prediction. The input processing first reshapes Z to match the
input format required by the Transformer. Then, position

FIGURE 2
Architecture of the transformer model.
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encoding is applied to add temporal information to the input
sequence, as Transformer models do not inherently account for
sequence order (Vaswani et al., 2017). Position encoding typically
uses sinusoidal functions, as shown in Equations 7, 8:

PE t,2i( ) � sin
t

1000
2i

dmodel

( ) (7)

PE t,2i+1( ) � cos
t

1000
2i

dmodel

( ) (8)

In the attention mechanism, the input sequence is projected into
queries (Q), keys (K), and values (V), where WQ, WK , and WV are
trainable projection matrices. The attention score is computed by
taking the dot product of the query and key, followed by scaling and
applying the Softmax function, as shown in Equation 9:

Attention Q,K,V( ) � Softmax
Q · Kt��

dk
√( ) · V (9)

Multi-head attention involves parallelizing multiple self-
attention heads to capture different feature subspaces. For each
head h, the computation can be represented as shown in
Equation 10:

headh � Attention Qh,Kh,Vh( ) (10)
The outputs of all heads are concatenated and passed through a

linear transformation, as shown in Equation 11:

MultiHead Q,K,V( ) � Concat head1, . . . , headh( ) ·WO (11)

The attention output is then passed through a Feed-Forward
Network (FFN) consisting of two linear layers with a ReLU
activation, as shown in Equation 12:

FFN x( ) � max 0, x ·W1 + b1( ) ·W2 + b2 (12)

Residual connections and Layer Normalization are used after
each sub-layer to ensure training stability, as shown in Equation 13:

LayerNorm x + SubLayer x( )( ) (13)

For time series forecasting, the output of the final Transformer
layer is typically the predicted sequence, representing future values
at each time step. If Zout is the output of the final Transformer layer,
it can be mapped to the desired prediction dimensions through a
linear layer, as shown in Equation 14:

ŷ � Zout ·Wy + by (14)

3.5 Overall model workflow and design logic

Figure 3 presents the overall architecture of the proposed
CEEMDAN-GNN-Transformer hybrid framework. The process
begins with data collection and preprocessing. The target air
quality variable (AQI) is decomposed using CEEMDAN into
IMFs and a residual component to reduce non-stationarity
and noise.

An ablation study is conducted to verify the effectiveness of each
model component, and hyperparameters are tuned to achieve
optimal performance.

Step 1. The GNN component extracts spatial dependencies among
multiple pollutants and decomposed features at each time step,
revealing inter-variable relationships.

Step 2. These spatial features are fused with the original features
through a designed fusion mechanism, yielding representations
suitable for sequence modeling.

FIGURE 3
Overall technical framework of the proposed model.
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Step 3. The Transformer module captures long-term temporal
dependencies and nonlinear patterns within the air
quality time series, ultimately producing forecasts of future
AQI values.

This hybrid framework effectively combines multi-scale
signal decomposition, spatial graph modeling, and temporal
sequence learning, offering a robust and interpretable approach
to air quality forecasting, particularly under the complex
conditions present in industrialized urban environments like
Chang’an Town.

4 Materials

4.1 Study area and temporal scope

This study selects Chang’an Town in Dongguan City as
the research area, as shown in Figure 4, for the empirical
analysis of air quality time series forecasting. Chang’an Town
is one of the most economically developed areas in Dongguan,
covering a wide range of industries, including manufacturing,
technology, and others. The area has a high concentration of
manufacturing enterprises, which results in significant air
pollution, thus necessitating precise air quality prediction
methods to support environmental management and
pollution control.

The dataset spans from 2015 to 2024 and includes 3,647 daily
records of major air pollutants: PM2.5, PM10, NO2, SO2, CO, and O3,
alongside the AQI. PM2.5, PM10, NO2, SO2, CO, and O3 are used as
predictor variables, while AQI serves as the target variable. The data
are sourced from official environmental monitoring platforms with
high reliability and accuracy, ensuring the robustness of subsequent
modeling tasks.

Situated in the core of the Greater Bay Area, Chang’an is
surrounded by several industrial cities, and its air quality is
influenced by both local emissions and regional pollutant
transport, making it highly representative for studying
industrial pollution dynamics. The results obtained here
are expected to be generalizable to similar urban-
industrial zones.

4.2 Descriptive statistics and feature analysis

4.2.1 Summary statistics
Descriptive statistics of AQI and major pollutant concentrations

are presented in Table 1. The data show significant variability,
especially in PM2.5, PM10, and O3. The mean AQI is 66,
indicating a moderate air quality level. However, its maximum
value reaches 207, suggesting occasional severe pollution events.
PM2.5 and PM10 exhibit high standard deviations, reflecting strong
fluctuations in particulate matter concentrations. Although SO2 and
CO concentrations are generally low, CO values are relatively high
during certain periods. NO2 and O3 also show considerable
variability, revealing the complexity of air pollution in the region.

Figure 5 illustrates the temporal evolution of AQI and
pollutants. Several pollutants, especially SO2, show noticeable
fluctuations across years, providing a basis for understanding the
temporal dynamics and episodic pollution patterns in Chang’an.

4.2.2 Seasonal variation analysis
To capture seasonal patterns, Figure 6 presents the variations of

AQI and pollutants across the four seasons: spring, summer,
autumn, and winter. The red, blue, and purple curves represent
the mean, maximum, and minimum values, respectively.

Overall, pollutants demonstrate distinct seasonal behaviors.
PM10 and O3_8 h concentrations peak during summer, possibly
due to intense solar radiation enhancing photochemical reactions. In
contrast, CO levels rise sharply in winter, likely due to increased
emissions from heating and poor atmospheric dispersion. AQI
values also tend to be highest in winter, suggesting worse air
quality conditions during this season. These patterns highlight
the coupled influence of meteorological conditions on pollutant
concentrations.

Table 2 shows the AQI classification used in China, as officially
published by the Ministry of Ecology and Environment. This
provides a regulatory context for interpreting the predicted AQI
values. This classification serves as a basis for regulatory action and
public health advisories, and also provides a meaningful benchmark
for evaluating the performance of air quality forecasting models.

4.2.3 Data distribution
The histograms in Figure 7 show that AQI, PM2.5, and PM10 are

right-skewed, with a significant peak at low values and a gradual

FIGURE 4
Geographical location of Chang’an town in dongguan city.

TABLE 1 Descriptive statistics of AQI and major pollutants (2015–2024).

Metric AQI PM2.5 PM10 SO2 CO NO2 O3_8 h

Count 3,647 3,647 3,647 3,647 3,647 3,647 3,647

Mean 66 46.4 54.24 39.67 4.76 41.01 79.07

Std Dev 33.26 31.87 31.15 35.35 9.49 35.56 47.62

Min 17 0 0 0 0 0 0

25% 41 20 30 9 0.7 10 43

50% 57 37 49 29 1.1 30 76

75% 83.5 69 76 65 1.9 68 108

Max 207 129 175 133 108 120 292
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decline afterward, indicating data concentration at the lower end.
CO presents a sharp and narrow distribution, reflecting a highly
consistent dataset. SO2, NO2 and O3 exhibit more balanced or
slightly left-skewed distributions, implying differences in their
formation mechanisms.

4.2.4 Correlation analysis
Figure 8 illustrates the linear relationships among variables,

quantified by Pearson correlation coefficients ranging from −1
(strong negative correlation) to +1 (strong positive correlation).
The color gradient (red for positive, blue for negative) visually
emphasizes the strength of each correlation. Notably, PM2.5 and

PM10 demonstrate a moderately strong positive correlation
(approximately 0.30), aligning with expectations for pollutants
with shared emission sources and atmospheric dynamics. In
contrast, O3 shows weaker or even negative correlations with
other pollutants, indicating a distinct generation mechanism and
behavior. Most variable pairs exhibit low or negligible correlations,
suggesting that their dynamics are influenced by different factors.
These results can guide feature selection and variable engineering in
subsequent regression and machine learning analyses.

Table 3 summarizes the statistical characteristics and normality
test results for the AQI data. The AQI ranges from 17 to 207, with a
mean of 66.01 and a standard deviation of 33.26, indicating

FIGURE 5
Time series trends of AQI and major pollutants (2015–2024).
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substantial variability. The skewness value of 1.22 suggests a right-
skewed distribution, while the kurtosis of 1.40, lower than the
theoretical normal value of 3, indicates relatively light tail
behavior. The Jarque–Bera test yields a statistic of 1,204.26
(p-value = 0.00), allowing for the rejection of the normality
assumption at a significance level of 0.05. These results confirm
that the AQI data deviates significantly from a normal distribution.

4.2.5 Stationarity testing
An Augmented Dickey–Fuller (ADF) test was conducted to

assess the stationarity of the AQI time series. As shown in Figure 9,
the ADF statistic is −8.9342, yielding a p-value of 0.0000, well below
the significance threshold of 0.05. Thus, the null hypothesis of a
unit root (non-stationarity) is rejected, confirming that the AQI
series is stationary. This result supports the use of ARIMA
models in subsequent baseline forecasting since they require
stationary data.

4.3 CEEMDAN decomposition of the AQI
time series

Figure 10 presents the CEEMDAN decomposition results for the
AQI series. CEEMDAN is an improved version of the EMDmethod. By
introducing adaptive noise and performing ensemble averaging,
CEEMDAN enhances the stability of the decomposition and
improves the separation of modes. The first row (red) shows the
original signal, which contains multiscale information, including
high-frequency noise and low-frequency trends. The middle green
subplots represent different IMFs, arranged from high to low
frequencies. The higher-order IMFs capture high-frequency noise
and fast oscillations, while the lower-order IMFs gradually reveal
low-frequency trends. The final row represents the residual trend
component, reflecting the long-term variations of the signal.
CEEMDAN provides better decomposition performance than
traditional EMD and EEMD (Ensemble Empirical Mode
Decomposition), effectively suppressing mode mixing and yielding
IMFs with clearer physical significance, making it possible to
decompose the target prediction data into interpretable features.
With feature engineering completed, the next step involves building
the forecasting model and conducting experimental analysis.

5 Results and discussion

5.1 Experimental environment and data
processing

This study implemented the proposed CEEMDAN-GNN-
Transformer and baseline models within a Python environment

FIGURE 6
Seasonal patterns of AQI and major pollutants.

TABLE 2 National AQI classification standard (China).

AQI range Air quality category Air quality
level

0–50 Excellent Level 1

51–100 Good Level 2

101–150 Lightly Polluted Level 3

151–200 Moderately Polluted Level 4

201–300 Heavily Polluted Level 5

>300 Severely Polluted Level 6

Frontiers in Environmental Science frontiersin.org09

He et al. 10.3389/fenvs.2025.1653446

mailto:Image of FENVS_fenvs-2025-1653446_wc_f6|tif
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1653446


using the PyTorch deep learning framework. All experiments were
conducted on a workstation configured with an NVIDIA GeForce
RTX 3060 GPU, ensuring consistent training efficiency and
reproducibility across experiments. Unless stated otherwise, all
experiments were conducted under the same hardware and
software conditions.

During the data preprocessing phase, the dataset was
divided into training (80%) and test (20%) sets. The feature
variables and prediction target were standardized using the
StandardScaler method, yielding a mean of 0 and a standard
deviation of 1 across both sets. This normalization mitigates the
effects of differing variable scales, improves model training
efficiency, and promotes stable convergence. The
standardized data were then transformed into PyTorch
tensors to enable high-performance batch processing within
the deep learning pipelines.

5.2 Model evaluation metrics

To comprehensively assess the performance of the proposed
model, this study adopts four widely used regression evaluation
metrics: Mean Absolute Error (MAE), Mean Squared Error (MSE),
Coefficient of Determination (R2), and Explained Variance Score
(EVS). These metrics assess model performance from multiple
perspectives, including error size, model fit, and the extent of
data variance explanation (Chai and Draxler, 2014; Chicco
et al., 2021).

MAE is the average of the absolute differences between actual
observations and predicted values.

MSE is the mean of the squared differences between actual and
predicted values.

R2 quantifies the model’s ability to explain variance in the data,
with values closer to 1 indicating better explanatory power.

FIGURE 7
Frequency histograms of AQI and major pollutants.
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EVS is similar to R2 but focuses more on the model’s ability to
explain data variability, with higher EVS values indicating better fit.

To comprehensively assess the performance of the models in air
quality forecasting, four common regression metrics were selected:
Mean Absolute Error (MAE), Mean Squared Error (MSE),
Coefficient of Determination (R2), and Explained Variance Score
(EVS). These metrics evaluate the model’s prediction performance
from multiple dimensions, including error magnitude, goodness of
fit, and its ability to capture the data’s variability. MAEmeasures the
average absolute difference between the actual observations and the

model’s predictions, while MSE captures the average squared error
between actual and predicted values. The R2 coefficient quantifies
the proportion of data variance explained by the model, ranging
from 0 to 1, with values closer to 1 indicating stronger explanatory
capacity. EVS operates similarly to R2 but focuses more explicitly on
the proportion of data variance explained by the prediction, making
it especially valuable for assessing the model’s ability to capture
variability across the dataset.

5.3 Baseline models

To validate the effectiveness of the proposed CEEMDAN-GNN-
Transformer model, this study selects nine representative predictive
models for comparison. These models include deep learning
approaches (e.g., CNN-Transformer), ensemble learning methods
(e.g., XGBoost, GBDT, Random Forest), traditional machine
learning methods (e.g., KNN, SVM), and classical time series
models (e.g., ARIMA). These models exhibit significant
differences in terms of time pattern modeling ability, variable
relationship modeling strength, IMF component utilization,
implementation complexity, and computational resource
requirements, as summarized in Table 4 (Cui et al., 2023; Ye
et al., 2025; Lei et al., 2023).

Through comparative analysis, it is evident that CNN-
Transformer combines CNN’s local feature extraction ability and

FIGURE 8
Pearson correlation coefficient heatmap.

TABLE 3 Statistical characteristics of AQI and jarque–bera (JB) test results.

Metric Value

Max 207

Min 17

Mean 66.01

Standard Deviation 33.26

Skewness 1.22

Kurtosis 1.4

Jarque-Bera (JB) Test 1,204.26

p-value 0
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Transformer’s global dependency modeling capability, making it
highly suitable for time series modeling. Compared to traditional
time series models, CNN-Transformer efficiently extracts short-
term patterns while modeling long-range dependencies, with
relatively low computational complexity. By comparing it with
GNN-Transformer, this study highlights the necessity of the
GNN structure for temporal tasks and examines whether it
enhances the Transformer’s performance in complex time series
modeling. The comparison validates the advantage and applicability
of GNN-Transformer in handling complex time series data and
relational modeling tasks.

5.4 Ablation study

To explore the contribution of each key module in the proposed
model and verify the combination effect, this study designs a

systematic ablation experiment. Keeping hyperparameters
consistent, the experiment sequentially removes or combines the
signal decomposition module (CEEMDAN), the GNN, and the
Transformer module, with a Multi-Layer Perceptron (MLP) used
as the baseline model for comparison. Each experiment is repeated
20 times, with the average result taken to ensure robust and fair
evaluation. The results are shown in Table 5.

The experimental results indicate that both GNN and
Transformer significantly improve the model’s performance.
Transformer, in particular, demonstrates a more substantial effect
(MAE reduced from 16.97 to 14.032, R2 improved to 0.54). The
combination of GNN and Transformer further enhances prediction
capability (MAE reduced to 10.021, R2 improved to 0.79), indicating
a synergistic effect. Moreover, the introduction of CEEMDAN signal
decomposition significantly optimizes the Transformer’s prediction
performance (MAE reduced to 8.9022, R2 improved to 0.81). When
CEEMDAN is added on top of the GNN-Transformer combination,

FIGURE 9
Adf stationarity test results for the AQI time serie.
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the performance improvement is limited (MAE decreases from
10.021 to 9.2495, R2 improves to 0.87). In summary, the
CEEMDAN-GNN-Transformer architecture demonstrates superior

modeling capability in time series prediction tasks, with the
complementary strengths of the three components achieving the
best performance in complex temporal modeling tasks.

FIGURE 10
CEEMDAN decomposition of the AQI time series.

TABLE 4 GNN-transformer and baseline model feature comparison.

Model Time pattern Variable
relationship

IMF component
utilization

Implementation
complexity

Scale
requirements

GNN-
Transformer

Medium (depends on
Transformer)

Strong (explicit
modeling)

Strong (hierarchical modeling) Medium-high Medium-high

CNN-
Transformer

Strong (local + global) Weak (implicit
modeling)

Medium (time scale
decomposition)

Medium-high Low

XGBoost Medium (depends on
windowing)

Medium (feature
interaction)

Medium (used as features) Medium Medium

AdaBoost Medium (depends on
windowing)

Medium (feature
interaction)

Medium (used as features) Medium Medium

KNN Weak (no explicit
modeling)

Weak (no explicit
modeling)

Weak (no hierarchical
awareness)

Low Low

GBDT Medium (depends on
windowing)

Medium (feature
interaction)

Medium (used as features) Medium Medium

SVM Medium (depends on
windowing)

Medium (depends on
kernel)

Medium (depends on feature
engineering)

Medium-high (kernel
parameters)

Medium-high

Random Forest Medium (depends on
windowing)

Medium (feature
interaction)

Medium (used as features) Medium Medium

ARIMA Strong (explicit time
pattern modeling)

Weak (univariate) Weak (low utilization) Low Low
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5.5 Hyperparameter optimization and
model training

This study employs the Optuna framework for
hyperparameter optimization, aiming to minimize the MSE
of the GNN and Transformer models on the validation set.
Optuna is a Bayesian optimization-based automated
hyperparameter search tool that intelligently explores the
search space to find the optimal combination of
hyperparameters with the fewest trials. It supports various
machine learning and deep learning frameworks, including
Scikit-learn, PyTorch, and TensorFlow. By defining the
search space, the optimizer selects appropriate
hyperparameters such as the number of attention heads,
hidden layer dimensions, model depth, learning rate, dropout
rate, and number of neighbors. Through 50 trials, Optuna
automatically tunes the hyperparameters to find the best
combination, improving model prediction accuracy, reducing
computational cost, and enhancing generalization ability.

Table 6 lists various hyperparameters affecting model
performance, along with their respective search ranges. These
include structural parameters (scaling factor for hidden layers,
attention heads, and encoder layers), graph structure parameters
(number of neighboring nodes in the graph), regularization
parameters (dropout rate), and optimizer parameters (learning
rate). The tuning of these hyperparameters directly impacts
model training performance and generalization ability. After
20 iterations, the optimal combination of hyperparameters was

obtained. A partial example of the optimization results is shown
in Table 7.

As shown in Table 7, the optimal hyperparameter combination
found through the optimization process includes 8 attention heads, a
hidden dimension scaling factor of 47, 1 attention layer, a learning
rate of 0.000153, a dropout rate of 0.197, and 5 neighbors. This
combination resulted in the best performance, with a loss of 0.1929,
demonstrating the model’s best performance under these settings.
The actual hidden layer dimension is calculated by multiplying the
hidden_dim_factor by num_heads.

The final model was built using the best parameters obtained
from Optuna’s optimization. The following steps were undertaken:
the graph structure was constructed, with adjacency matrices
calculated based on feature similarities for both the training and
testing sets, where the k nearest neighbors were identified for each
data point. The edge index for GNN computation was then built.
The same k_neighbors value was used for both training and testing
sets, but separate graph structures were created for each. The model
was trained for 200 epochs. Each epoch included a forward pass
through the GNN layers, Transformer layers, and a fully connected
layer, followed by calculating the mean squared error loss between
predicted and true values. Backpropagation was performed to
compute gradients, and the Adam optimizer was used to update
the model parameters.

From the training logs, as shown in Table 8, the loss decreases
progressively over the training process, indicating that the model is
converging and improving its prediction accuracy. The loss
decreases rapidly during the initial stages (Epochs 20–40), from
0.3592 to 0.2892, reflecting the larger optimization steps in the early
training phase. In subsequent stages, the loss stabilizes, indicating
that the training process is becoming more stable. By Epoch 200, the
loss converges to 0.1635. Overall, the decreasing trend in loss
indicates the model’s effective training and suggests that it
achieves an optimal performance level.

Table 9 provides a summary of the final model’s parameter
counts, highlighting its complexity and capacity.

The model developed in this study integrates a GNN and a
Transformer architecture to process graph-structured data and
capture global dependencies. The input feature dimension is 17,
and after two layers of GNN processing, it is mapped to a 376-
dimensional hidden representation. Subsequently, a single-layer
Transformer encoder with 8 attention heads is used to further

TABLE 5 Ablation experiment results comparison.

Component MAE R2

MLP (Baseline) 16.97 0.43

GNN 15.422 0.48

Transformer 14.032 0.54

GNN-Transformer 10.021 0.79

CEEMDAN-GNN 14.221 0.58

CEEMDAN-Transformer 8.9022 0.81

CEEMDAN-GNN-Transformer 9.2495 0.87

TABLE 6 Hyperparameter search space.

Category Hyperparameter
name

Search
range

Affected model
component

Description

Scaling Coefficients hidden_dim_factor 16–64 GNN - Transformer Controls the scaling factor for hidden
layers

Structural Parameters num_heads 2–8 Transformer Number of attention heads

Structural Parameters num_layers 1–3 Transformer Number of encoder layers

Graph Structure
Parameters

k_neighbors 3–10 GNN Number of neighboring nodes in the
graph

Regularization Parameters dropout 0.1–0.5 GNN - Transformer Dropout rate

Optimizer Parameters lr 0.0001–0.01 Overall Model Learning rate
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TABLE 7 Hyperparameter optimization results.

Iteration Loss num_heads hidden_dim_factor num_layers Lr Dropout k_neighbors

0 0.463 3 44 3 0.0001 0.18658 9

1 0.283 7 34 3 0.0001 0.13044 7

2 0.27 5 60 1 0.0002 0.19506 6

3 0.27 8 19 2 0.0004 0.3713 6

4 0.51 2 59 2 0.0016 0.4443 7

5 0.192 8 47 1 0.00015 0.1969 5

. . . . . . . . . . . . . . . . . . . . . . . .

46 0.255 7 28 2 0.0007 0.35967 8

47 0.766 6 56 3 0.0008 0.273 9

48 0.509 7 35 2 0.0003 0.27438 7

49 0.676 8 45 1 0.0006 0.33695 5

*The bolded row indicates the best hyperparameter combination obtained in this optimization.

TABLE 8 Model training loss progression.

Epoch 20 40 60 80 100 120 140 160 180 200

Loss 0.3592 0.2892 0.2403 0.2187 0.2027 0.1866 0.1748 0.1662 0.1631 0.1635

TABLE 9 Final model architecture and parameter counts.

Layer name Parameter shape Parameter count

gnn1.bias (376) 376

gnn1.lin.weight (376, 17) 6,392

gnn2.bias (376) 376

gnn2.lin.weight (376, 376) 141,376

transformer_encoder.layers.0.self_attn.in_proj_weight (1,128, 376) 424,128

transformer_encoder.layers.0.self_attn.in_proj_bias (1,128) 1,128

transformer_encoder.layers.0.self_attn.out_proj.weight (376, 376) 141,376

transformer_encoder.layers.0.self_attn.out_proj.bias (376) 376

transformer_encoder.layers.0.linear1.weight (1,504, 376) 565,504

transformer_encoder.layers.0.linear1.bias (1,504) 1,504

transformer_encoder.layers.0.linear2.weight (376, 1,504) 565,504

transformer_encoder.layers.0.linear2.bias (376) 376

transformer_encoder.layers.0.norm1.weight (376) 376

transformer_encoder.layers.0.norm1.bias (376) 376

transformer_encoder.layers.0.norm2.weight (376) 376

transformer_encoder.layers.0.norm2.bias (376) 376

fc.weight (1, 376) 376

fc.bias (1) 1

Total Parameters 1,850,297

*The bolded row indicates the total number of trainable parameters in the model.
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model global feature interactions. Finally, a fully connected layer
maps the features to a 1-dimensional output for pollutant
prediction. The total number of parameters is approximately
1.85 million, making it a relatively complex model for pollutant
time series forecasting.

5.6 Forecasting results and
comparative analysis

To comprehensively evaluate the forecasting performance of the
proposed CEEMDAN–GNN–Transformer model for air quality
prediction, a comparative analysis was conducted against a range
of classical machine learning and deep learning approaches. All
models were tested on the same dataset preprocessed via
CEEMDAN signal decomposition, and their performance was
assessed using four commonly used metrics: MAE, MSE, R2, and
EVS. The results are presented in Table 10.

As shown in Table 10, the forecasting performances of the
compared models vary significantly. The GNN–Transformer
approach achieves the best results across all metrics, with the
lowest MAE (7.6495) and MSE (98.2009), along with the highest
R2 (0.9192) and EVS (0.9491). This highlights its superior ability to
capture complex temporal dynamics and to accurately explain the
variance within the data. Meanwhile, XGBoost also delivers strong
performance, yielding an R2 of 0.8890 and an EVS of 0.9044,
underscoring its effectiveness in capturing feature interactions
and nonlinear relationships. In comparison, Random Forest,
SVM, and CNN-Transformer perform slightly worse than
XGBoost and GNN-Transformer in terms of MSE and MAE,
while Adaboost and KNN show relatively weaker performance in
all metrics. Notably, KNN has the highest MSE (422.7499) and the
lowest R2 (0.5454), which indicates its limitations in modeling
complex dynamic relationships, especially in high-dimensional
regression tasks. Overall, the GNN-Transformer and XGBoost
models demonstrate superior prediction performance in this
study, while traditional machine learning methods (e.g., KNN,
Adaboost) show certain limitations in modeling complex
dynamic changes.

Figure 11 illustrates the forecasting results of the GNN-
Transformer model compared with observed AQI values. The
predicted time series closely tracks the actual observations,

demonstrating the model’s strong temporal modeling capability
and its ability to capture long-term trends in air quality
fluctuations. However, slight discrepancies are observed during
certain extreme events, such as pollution peaks or sharp declines,
where the predicted values tend to be smoother than the actual data.
This limitation may arise from the signal decomposition and
denoising process of CEEMDAN, which can attenuate high-
frequency variations. Despite this, the proposed GNN-
Transformer approach shows considerable promise in capturing
the overall dynamics of air quality. In future work, incorporating
meteorological covariates or further refining the model architecture
could help better capture these abrupt variations and further
improve prediction precision.

Although CEEMDAN is effective in reducing noise and
extracting multi-scale features, its decomposition inherently
introduces a smoothing bias, diminishing the retention of high-
frequency signals. In this study, extreme pollution episodes (such as
sharp AQI surges or declines) appear attenuated in the fitted curve.
While beneficial for overall stability and trend extraction, this
effect may be suboptimal for real-time air quality management,
where timely detection of extreme events is critical for public
health and emergency response. Future work could consider
augmenting CEEMDAN with high-frequency component
weighting or integrating auxiliary submodels optimized for peak
detection to enhance responsiveness to short-term pollution shocks.

5.7 Model uncertainty quantification and
prediction interval evaluation

In environmental air quality forecasting, beyond accuracy, it is
equally important to quantify the uncertainty of predictions, as this
information supports scientific decision-making and risk
management. To this end, the Monte Carlo (MC) Dropout
method—a Bayesian approximation technique—was applied to
the CEEMDAN–GNN–Transformer model for uncertainty analysis.

Originally proposed by Gal and Ghahramani. (2016), MC
Dropout involves keeping the dropout mechanism active during
inference, performing multiple stochastic forward passes to simulate
sampling from the posterior weight distribution. This enables
approximate estimation of the predictive distribution. For each
of T stochastic passes, predictions ŷt are collected, from which the
predictive mean and variance are computed, as shown in
Equations 15, 16:

E ŷ*[ ] ≈ 1
T
∑T
t�1
ŷt (15)

Var ŷ*[ ] ≈ 1
T
∑T
t�1

ŷt − E ŷ*[ ]( )2 (16)

Using these results, two uncertainty evaluation metrics were
calculated: Prediction Interval Coverage Probability (PICP) and
Mean Prediction Interval Width (MPIW). The results are shown
in Table 11.

The results show that the PICP (0.916) is close to the ideal 95%
coverage, indicating that the prediction intervals successfully cover
the majority of observed values. The MPIW (22.001) is substantially

TABLE 10 Model performance comparison (based on CEEMDAN
decomposition).

Model MAE MSE R2 EVS

XGBoost 8.1333 103.2361 0.889 0.9044

Random Forest 9.373 144.0375 0.8451 0.8628

Adaboost 14.2955 283.4626 0.6952 0.788

KNN 14.8311 422.7499 0.5454 0.5597

SVM 10.4308 129.8963 0.8603 0.9567

ARIMA 17.3121 354.4236 0.4989 0.4835

CNN-Transformer 10.6673 168.2338 0.8173 0.8247

GNN-Transformer 7.6495 98.2009 0.9192 0.9491
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narrower than the typical AQI category width (≈50 for mild
pollution), implying high-precision prediction intervals.

6 Conclusion

This study addresses the forecasting of the AQI in Changan
Town, Dongguan, and proposes an improved
CEEMDAN–GNN–Transformer framework aimed at enhancing
both prediction accuracy and stability. First, the AQI time series
is decomposed using the CEEMDANmethod, extracting multi-scale
features and mitigating the effects of non-stationarity in the original
data. Second, a GNN is introduced to capture spatial dependencies,
effectively uncovering latent spatial relationships among various
pollutants and environmental factors, thereby enhancing the
model’s ability to perceive the evolution patterns of AQI. Finally,
a Transformer module is employed to model long-term temporal
dependencies, capturing the temporal dynamics and trend
characteristics of AQI variations.

Through ablation experiments and hyperparameter
optimization, this study validated the contribution of each
submodule to the overall model performance and compared it
with several mainstream baseline models. The experimental
results show that the proposed CEEMDAN-GNN-Transformer

model outperforms all other models across all evaluation metrics
(MAE, MSE, R2, EVS), with particularly significant advantages in
prediction accuracy and fitting ability. Specifically, the model
achieved the lowest MAE (7.6495) and MSE (98.2009), an R2 of
0.9192, and an EVS of 0.9491, demonstrating that this approach
can accurately capture the long-term evolution characteristics of
AQI and improve the reliability and stability of the
prediction results.

From a deployment perspective, the
CEEMDAN–GNN–Transformer model demonstrates manageable
hardware requirements. Experiments indicate that training and
inference can be completed within a reasonable time frame on a
mid-range GPU (NVIDIA RTX 3060), making it viable for
implementation in local environmental monitoring centers or
regional environmental agencies. However, several limitations
remain: (1) current inputs are limited to pollutant concentration
data, without incorporating meteorological conditions or emission
source activity, which may reduce accuracy during extreme pollution
events; (2) the smoothing effect of CEEMDAN, while improving
stability, may weaken sensitivity to short-term abrupt changes; and (3)
cross-regional generalization has yet to be validated with multi-city,
multi-station datasets.

Future work will focus on integrating multi-source data (e.g.,
meteorological variables, traffic flow) and introducing weighted

FIGURE 11
GNN-transformer model prediction fitting.

TABLE 11 Bayesian approximation–based uncertainty evaluation.

Metric Value Ideal/Target Interpretation

Point prediction accuracy 0.902 → 1 High point-prediction performance

PICP 0.916 ≥0.95 Interval covers most true values

MPIW 22.001 Context-dependent Narrow interval, high precision
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enhancement strategies for high-frequency components to balance long-
term trend forecasting with short-term anomaly detection. Furthermore,
interpretability methods will be incorporated—leveraging attention
weight distributions and feature attribution rankings—to
systematically analyze the relative contributions of pollutants and
environmental factors, thereby improving transparency and
application value. Finally, the model will be tested across diverse
regional settings to promote its practical adoption in real-time AQI
early warning and long-term trend prediction.
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