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The transition zone between the Qinghai–Tibet and Loess Plateaus is an
important ecological functional area and carbon (C) reservoir in China.
However, long-term monitoring data in this area are lacking, and the
mechanisms underlying the carbon sink remain unclear. Using 6 years
(2018–2023) of eddy covariance data from Xinglong Mountain, this study
analyzed the response mechanisms of forest carbon fluxes to meteorological
factors using structural equation modeling (SEM). The results showed that
meteorological factors, including monthly average daily maximum radiation
(Rg), monthly precipitation (PP), monthly average daily maximum vapor
pressure deficit (VPD), monthly effective accumulated temperature (Tac),
monthly average atmospheric temperature (Tair), and monthly average soil
temperature (Tsoil), exhibited significant seasonal variations, peaking from
June to August. Net ecosystem productivity (NEP), gross primary productivity
(GPP), and ecosystem respiration (Reco) also exhibited significant seasonal
variations, peaking from May to August. The forest ecosystem exhibited stable
carbon sequestration (NEP: 299.64–448.62 g C m−2 a−1) from 2018 to 2023. SEM
revealed that Rg and Tair were significant direct drivers of NEP; Reco was
influenced directly by Tsoil and indirectly by Rg; and GPP was mainly affected
directly and indirectly by Rg, and was also directly affected by PP and VPD.
Overall, the forest ecosystem carbon fluxes at Xinglong Mountain were primarily
subjected to direct and significant positive influences from Rg, PP, Tair, Tsoil, and
VPD. This study provides mechanistic insights into the response of forest carbon
cycling to climate change in semi-arid regions, which is highly significant for
evaluating the ecological barrier function of the transition zone between the
Qinghai–Tibet and Loess Plateaus.
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1 Introduction

The annual average growth rate of global atmospheric CO2

concentration has reached 2.40 ppm in recent years (Le Quéré et al.,
2020), making the climate change dynamics dominated by global
warming increasingly urgent (Zhu et al., 2023). Some studies have
shown that further intensification of extreme weather and disasters
can only be effectively avoided when global warming is controlled
within 1.5 °C (King et al., 2018; Masson-Delmotte et al., 2022), so
adopting multiple methods of carbon sequestration under the
premise of reducing carbon emissions is an important approach
to achieving the goal of carbon neutrality.

Carbon fluxes represent instantaneous CO2 exchange rates
(measured in μmol CO2 m-2 s-1), whereas carbon sink describes
the accumulated net carbon storage (generally expressed in g C m-2

a−1). Carbon fluxes in forest ecosystems are key indicators for
assessing the carbon sink function of forests. It not only
characterizes the carbon exchange process between forests and
the atmosphere but also exhibits significant spatio-temporal
heterogeneity, which is primarily influenced by the combined
effects of climate zones and geographical location. Forest carbon
fluxes in different climate zones exhibit distinct response
mechanisms. Tropical forest carbon fluxes are primarily regulated
by precipitation and vapor pressure deficit (VPD) (Saleska et al.,
2003), while temperate forests are more sensitive to changes in
radiation and temperature (Baldocchi et al., 2001). Under the
backdrop of climate change, the frequent occurrence of extreme
weather events (such as droughts and heatwaves) may further alter
the response patterns of forest carbon sinks (Reichstein et al., 2013).
Therefore, conducting an in-depth analysis of the driving
mechanisms of carbon fluxes in specific regions, particularly
clarifying the intensity of key meteorological factors and their
temporal scale dependencies, holds significant scientific
importance for accurately assessing and predicting forest carbon
sink potential.

In general, the key indicators of ecosystem carbon fluxes are the
net ecosystem exchange (NEE), the gross primary productivity
(GPP), and the ecosystem respiration (Reco), with NEE being the
result of the joint action of GPP and Reco (Zhao et al., 2011; Sun S.
et al., 2019). Meteorological factors (e.g., radiation, temperature,
precipitation, and VPD) regulate GPP and Reco by affecting plant
growth (Weltzin et al., 2003; Heimann and Reichstein, 2008; Barnes
et al., 2016; Sun Z. et al., 2019), which, in turn, influences regional
environmental carbon flux changes, and these effects exhibit
uncertainties across different regions (Zhou et al., 2022). There is
a strong and consistent relationship between forest carbon fluxes
and meteorological factors in Asia (Hirata et al., 2008; Kato and
Tang, 2008), and interannual NEE variations are generally caused by
differences in precipitation and temperature (Granier et al., 2000).
Studies in the semi-arid broad forest region of China have shown
that radiation and rainfall are the main factors affecting the seasonal
variation in carbon fluxes in this region (Tong et al., 2012). In
addition, soil temperature is a major factor affecting Reco. Some
studies found that, in forest ecosystems, soil temperature at a depth
of 5 cm has a significant effect on nighttime Reco, which can explain
42%–55% of the nighttime Reco variation (Xu et al., 2018; Zhu et al.,
2023). In summary, NEE exhibits a significant response to
meteorological factors such as atmospheric temperature, VPD,

radiation, soil temperature, and precipitation (Baldocchi and
Vogel, 1996; Fang et al., 2020; Mamkin et al., 2022) and displays
different response characteristics across different time scales
(Granier et al., 2000).

The eddy covariance technique (Wang et al., 2024) is a high-
precision method for measuring carbon flux exchange processes in
ecosystems, which is capable of observing a variety of complex
subsurface types over long periods of time through direct
measurements of energy and material exchange fluxes between
vegetation canopies and the atmosphere, and it has been widely
used in the study of forest ecosystems’ climate change and carbon
fluxes (Zhou et al., 2005; Chen et al., 2020; Qi and Wang, 2023)

The transition zone between the Qinghai–Tibet and Loess
Plateaus is a sensitive area to global climate change and a fragile
ecosystem. It is an important ecological functional area and carbon
reservoir in China (Gao et al., 2022). Because of its geographic
environment, characterized by high elevation and low temperature,
and the fact that the critical ecological thresholds of various
ecological environments are often in a critical state, this region is
a key area for ecosystem response and feedback in the context of
global change; it is also one of the most sensitive and vulnerable
regions in the world (Xu et al., 2020; Gao et al., 2022), where changes
in carbon fluxes have significant impacts on climate change, water
source regulation, and carbon balance in China and Asia (Cao et al.,
2017). Accurately assessing the carbon sink capacity of forest
ecosystems in the ecological transition zone along the eastern
margin of the Qinghai–Tibet Plateau (Hu et al., 2020) is of great
practical significance for formulating scientifically sound forest
management strategies and coping with climate change.
Currently, the dynamics of forest ecosystem carbon fluxes and
their driving mechanisms in the ecological transition zone
between the Qinghai–Tibet and Loess Plateaus remain unclear.
Therefore, in this study, we used the eddy correlation method to
conduct site-specific observations of ecosystem carbon fluxes and
meteorological factors in typical natural forest ecosystems at
Xinglong Mountain, within the transition zone, over a period of
6 years (2018–2023). We then analyzed the characteristics of
ecosystem carbon fluxes and meteorological factor changes to
elucidate carbon flux dynamics and their driving factors in the
Qinghai–Tibet Plateau. By analyzing the characteristics of ecosystem
carbon fluxes andmeteorological factors, this study aims to elucidate
the intrinsic carbon cycle mechanisms in the forest ecosystems of
Xinglong Mountain, an ecological transition zone between the
Qinghai–Tibet and Loess Plateaus, and provide data supporting
the response of forest ecosystems in this region to future
climate change.

2 Materials and methods

2.1 Site description

The study area is located at the Gansu Xinglong Mountain
Forest Ecosystem Positioning Research Station (Yuzhong County,
Lanzhou City, China), with coordinates ranging from 35°38′ to
35°58′N and 103°50′ to 104°10′E (Figure 1). It lies within the
ecological transition zone between the Qinghai–Tibet and Loess
Plateaus. The mountain range extends approximately 37 km from
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east to west and 17 km from north to south, with an elevation range
of 1,800–3,670 m (Gao et al., 2023). The region experiences a typical
warm temperate continental monsoon climate, with an average
annual temperature of 6.5 °C, an annual precipitation of
69.72 mm, and 149.79 mm of precipitation occurring from July
to September. The annual total sunshine hours amount to 2,008.6 h,
corresponding to a sunshine rate of approximately 54%. The
predominant soil type is cinnamon soil, with limestone as the
parent material, and the average soil depth is approximately
1.2 m. The forest is mainly composed of tree and shrub forests,
with clear differences in vegetation distribution across slopes. The
vegetation type changes with altitude on shady slopes. The dominant
vegetation types are Populus davidiana–Betula platyphylla mixed
forests, B. platyphylla–Picea wilsonii mixed forests, and P. wilsonii
pure forests, and P. wilsonii is the sub-top community in this region.
On sunny slopes, the dominant vegetation consists of Mongolian
oak and shrubs. The total study area is 955 ha.

2.2 Carbon flux measurement and data
processing

Carbon flux observations were conducted using data collected
from the open-path eddy covariance (OPEC) system installed on the
30-m observation tower (35°51′38″N and 103°59′55″E, with an
elevation of 2,503 m) at the Gansu Xinglong Mountain Forest
Ecosystem Positioning Research Station between 2018 and 2023.
The observation tower is situated on a north-facing slope, with the
underlying surface consisting of forested land. The dominant
vegetation is P. wilsonii, with a stand age of approximately
80 years, a tree density of 1,300 trees per hectare, a canopy
closure greater than 90%, and a mean tree height of 15.0 m. The
eddy covariance system comprises an open-path CO2/H2O infrared
gas analyzer (LI-7500A, Li-COR, United States) and a three-

dimensional ultrasonic anemometer (CSAT3, Campbell Scientific,
United States), which measure the fluctuations in CO2/H2O
concentrations, three-dimensional wind velocity, and virtual
temperature. The data were sampled at a frequency of 10 Hz,
with a flux averaging interval of 30 min.

Four layers of forest gradient meteorological sensors were
installed at heights of 6 m, 14 m, 23 m, and 28 m above ground
level on the observation tower to simultaneously monitor
environmental meteorological factors in the natural P. wilsonii
forest. Air temperature and relative humidity sensors (HMP155,
Vaisala, Finland) and anemometers (Model WindSonic, Gill
Instruments, United Kingdom) were installed at heights of 6 m,
14 m, 20 m, and 25 m. A net radiometer (CNR-1, Kipp & Zonen,
Netherlands) was installed at a height of 20 m. Soil temperature and
moisture sensors were placed at depths of 5 cm, 10 cm, 20 cm, 40 cm,
60 cm, 80 cm, and 160 cm, and soil heat flux was measured at a depth
of 5 cm on both the east and west sides of the tower. All instruments
were controlled using a data logger (CR6, Campbell Scientific,
United States), with data recorded every 30 min.

The net ecosystem productivity (NEP) equals negative NEE. The
NEE was calculated at a 0.5-h time interval using EddyPro (v.7.0.8,
LICOR Inc., Lincoln, NE, United States) from the 10-Hz high-
frequency flux raw data. Statistical screening included 2D coordinate
rotation, block-averaging detrending, time-lag detection/
compensation, instrument heat flux components, spectral
corrections, Webb–Pearman–Leuning (WPL) correction, and
micrometeorological flux quality control. Due to limitations
under outdoor power supply conditions, the flux tower used in
this study employed a purely solar-powered system. During periods
of continuous rainy weather, an insufficient power supply led to data
loss, resulting in a data loss rate of 32.66% for CO2 flux data recorded
the 30-min intervals. The REddyProc package in R was used for
Ustar filtering with the moving point test and seasonal thresholds,
gap-filling missing NEE via marginal distribution sampling (MDS)

FIGURE 1
Map of the locality of the study area.
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that leverages co-variation with meteorological drivers and temporal
autocorrelation, and partitioning NEE into Reco and GPP using
nighttime flux partitioning.

The energy balance closure (EBC) was assessed. Using 30-min
raw flux data from 2018 to 2023 and synchronized meteorological
data, the linear closure of the sum of latent heat flux (LE) and
sensible heat flux (H) relative to available energy (the net radiation
minus the ground heat flux) was calculated. A total of 50,885 data
points were analyzed for the 2018–2023 period. The linear
regression slope was 0.72, with an intercept of 4.22 W/m−2 and
an R2 value of 0.98 (Supplementary Figure S1). This slope falls within
the range of 0.55–0.99 observed at FLUXNET global sites (Wilson
et al., 2002), indicating good energy balance closure and reliable
eddy covariance carbon flux data quality.

Meteorological data were synchronized and aggregated into 30-
min intervals. The calculation of VPD was based on the literature
(Zhou et al., 2022). Six key meteorological factors were selected:
monthly average daily maximum radiation (Rg), monthly effective
accumulated temperature (Tac), monthly average daily maximum
vapor pressure deficit (VPD), monthly average atmospheric
temperature (Tair), monthly average soil temperature (Tsoil), and
monthly precipitation (PP).

2.3 Data analysis

The monthly relative anomaly (%) of meteorological factors or
carbon fluxes over the 6-year period, defined as the difference
between the specific value for a given month and the
corresponding multi-year average for that month, was calculated
using the following formula:

ΔVarij � Varij − Varj
Varj

,

where i is the index for the year from 2018 to 2023 and j is the index
for the month from January to December. ΔVarij is the monthly
relative anomaly (%) of meteorological factors or carbon fluxes,Varij
is the monthly meteorological factor or carbon flux, and Varj is the
monthly average value of meteorological factors or carbon fluxes
over the 6-year period from 2018 to 2023.

Principal component analysis (PCA) was performed on the six
meteorological factors. The aim is to group the months of
observation according to meteorological factors. One-way
analysis of variance (ANOVA) and multiple comparisons were
used to test the significance of differences between groups.

Structural equation modeling (SEM) was used to analyze the
effects of meteorological factors on total and component carbon
fluxes at the monthly scale. Five indicators were used to assess the
model fit, namely, chi-square statistic/ degree of freedom (chi-
square/df), goodness-of-fit index (GFI), comparative fit index
(CFI), standardized root-mean-square residual (SRMR), and root-
mean-square error of approximation (RMSEA), and the SEM
constructed in the present study fitted well within these metrics.

Data analysis was performed using the R software package
(version 4.2.1). PCA and clustering analysis (CA) were conducted
using R scripts supported by Numerical Ecology with R (second
edition). SEM and path analysis were conducted using the R

packages lavaan and semPlot, respectively. To quantify the
relative importance and influence pathways of meteorological
factors (Rg, PP, Tac, VPD, Tair, and Tsoil) on forest ecosystem
carbon flux indicators (NEP, GPP, and Reco) in this study, we used
the three groups of data classified by meteorological factors and
carbon fluxes for all months between 2018 and 2023 (6 years)
to build SEM.

3 Results and discussions

3.1 Characteristics of meteorological factors

As shown in Figure 2, Tac, Rg, VPD, Tair, Tsoil, and PP
exhibited significant seasonal fluctuations. Rg reached the
maximum between May and August, while Tac and Tair began
to increase significantly in June and reached the maximum in July;
Tsoil increased 1–2 months later than Tair, peaking in August
(Figure 2). VPD began to increase in April–May, reaching its
peak in June–July. However, due to the rainfall time in Xinglong
Mountain from July to September, PP remains relatively low at this
time (June–July) (Figure 2), leading to insufficient water supply for
plant growth andmaking this period the most water-stressed time of
the year. From July to September, PP increased significantly, Tair
gradually decreased, and both Rg and VPD began to weaken,
alleviating water stress and marking the end of the seasonal
drought period. △Varj values effectively quantify the degree of
deviation of various meteorological factors from their averages,
revealing the variability in different factors at different temporal
and spatial scales. During the 6-year observation period, △Rg and
△Tair showed the most significant fluctuations, while △Tsoil and
△Tac were more affected by seasonal factors (Figure 2).

3.2 Variations in carbon fluxes

The carbon source and carbon sink functions of forest
ecosystems are significantly influenced by climate zones and
geographical location. In low-latitude tropical and subtropical
regions, forests typically exhibit a sustained and stable carbon
sink function. In mid-to-high-latitude temperate and cold
regions, due to climatic conditions resulting in higher
precipitation and a higher proportion of deciduous tree species,
forests exhibit pronounced seasonal variations in carbon fluxes, with
a significant carbon sink during summer and a weak carbon source
in winter (Malhi et al., 1999; Chen et al., 2015; Ma et al., 2019). The
results of this study indicated that, in most of the observed years, the
monthly NEP of the forest on Xinglong Mountain had positive
values (Figure 3A), indicating that the forest ecosystem in this region
acted as a stable carbon sink. The NEP exhibited significant seasonal
variations. The NEP rapidly increased fromMarch to April, reached
a peak from May to June rapidly decreased from September to
November, and remained at a low level from December to February
(Figure 3A). However, in some observed years, NEP turned negative
from November to January of the following year (Figure 3A),
indicating a temporary carbon source, consistent with the carbon
cycle patterns of temperate forests in the Northern Hemisphere,
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while also exhibiting significant regional specificity (Yu et al., 2014;
Valentini et al., 2000).

The GPP of the forest ecosystem on Xinglong Mountain
exhibited distinct seasonal dynamics between 2018 and 2023,
with an initial increase followed by a decrease, with a maximum
in July (Figure 3C). The GPP rapidly increased to higher levels
driven by enhanced spring solar radiation. It is associated with the
unique water–heat synchrony in the East Asian monsoon region
where Xinglong Mountain is located, effectively enhancing light
energy utilization efficiency (Zhang et al., 2018). The GPP during the
growing season (May–September) contributed approximately 60%

of the annual GPP (Figure 3C; Figure 4A). However, the increase in
GPP during the growing season may have been significantly
constrained by water stress (Zhou et al., 2021), reflecting the
sensitivity of semi-arid forests to atmospheric drought (Stocker
et al., 2018). During the winter (November–December), lower
temperatures and insufficient radiation jointly inhibited
vegetation photosynthesis, causing GPP to decrease to its lowest
annual level, a pattern similar to observations in European
temperate forests (Reichstein et al., 2007).

The seasonal dynamics of Reco were generally synchronous with
NEP and GPP. However, Reco exhibited more complex

FIGURE 2
Monthly variations inmeteorological factors from 2018 to 2023 on Xinglong Mountain. The left axis showsmonthly averaged or accumulated values
(the black straight line), and the right axis shows the relative anomalies (%) for each month within 6 years (the blue dotted line) (A–F). Rg is the monthly
average daily maximum radiation (A), PP is the monthly precipitation (B), VPD is the monthly average daily maximum vapor pressure deficit (C), Tac is the
monthly effective accumulated temperature (D), Tair is the monthly average atmospheric temperature (E), and Tsoil is the monthly average soil
temperature (F).

Frontiers in Environmental Science frontiersin.org05

Chen et al. 10.3389/fenvs.2025.1657389

mailto:Image of FENVS_fenvs-2025-1657389_wc_f2|tif
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1657389


FIGURE 3
Monthly variations in carbon fluxes of the forest ecosystem from 2018 to 2023 on XinglongMountain. The left axis showsmonthly carbon fluxes (the
black straight line), and the right axis shows monthly relative anomalies within 6 years (the blue dotted line). NEP is the net ecosystem productivity (A),
Reco is the ecosystem respiration (B), and GPP is the gross primary productivity (C).

FIGURE 4
Monthly (A) and interannual (B) changes in carbon fluxes of the forest ecosystem on Xinglong Mountain. The data were analyzed using one-way
ANOVA with the LSD post hoc test at a significance level of P = 0.05. Data are represented as the means ± SE (standard error) of six replicates. Different
lowercase letters (a, b, c, d, e, and f) over the bars indicate significant differences (P < 0.05) in carbon fluxes among different months. NEP, net ecosystem
productivity; Reco, ecosystem respiration; GPP, gross primary productivity.
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characteristics (Figure 3B), showing a steady increase fromMarch to
May, a sharp increase from June to August, with peaks typically
occurring in July–August, and a significant decrease from September
to November (Figure 3B). The sustained high levels of Reco in
autumn (September–October) may be related to the delayed
response of deep soil carbon pools (Schlesinger, 1997). This
phenomenon has not been reported in forests in the East Asian
monsoon region and warrants further investigation.

Between 2018 and 2023, the monthly relative anomalies (△NEP,
△Reco, and △GPP) of NEP, Reco, and GPP of the forest ecosystem
on Xinglong Mountain varied to different degrees (Figure 3).△NEP
exhibited the largest fluctuation range, with extreme deviations
observed in summer and winter, indicating the high sensitivity of
net carbon exchange to seasonal and interannual climate variability
and susceptibility of the net carbon sink function to disruption by
extreme climate events (Yu et al., 2014; Zhou et al., 2021). △Reco
exhibited the second-highest range of fluctuations. Combined with
Tair variation characteristics (Figure 2E), the results of this study
indicated that △Reco responded rapidly to short-term temperature
changes (e.g., freeze–thaw and high temperatures) (Figure 3B), and
locally abnormal high values may threaten carbon balance, reflecting
the high dependence of respiratory processes on temperature
(Reichstein et al., 2005). △GPP was relatively stable (Figure 3C),
indicating a strong physiological regulatory capacity of vegetation.
However, △GPP significantly increased during the growing season,
suggesting that water and thermal conditions are the primary factors
driving its changes during this period (Stocker et al., 2018; Zhang
et al., 2018).

3.3 Carbon sink function of the
forest ecosystem

On a global scale, NEP of temperate forest ecosystems typically
ranges from 150 to 500 g C·m−2·a−1 (Luyssaert et al., 2007).
Temperate forests in East Asia, due to their high synchrony of
water and heat conditions during the growing season, may have
significantly higher carbon sequestration potential than temperate
forests at the same latitude in Europe and North America (Yu et al.,
2014). The average NEP of China’s forest ecosystems is 380 ±
90 g C·m−2·a−1 (Yu et al., 2014), with the annual average NEP of
evergreen broad-leaved forests reaching 388 g C·m−2·a−1 (Zhao et al.,
2019), while temperate deciduous forests have an annual average
NEP of 310 g C·m−2·a−1 and exhibit significant interannual
fluctuations (150–450 g C·m−2·a−1) due to climate variability
(Tong et al., 2012; Wang et al., 2019). However, the NEP of
mixed evergreen coniferous and deciduous broad-leaf forests is
only 44 g C·m-2·a−1 (Zhao et al., 2019).

Our results showed that the forest ecosystem on Xinglong
Mountain exhibited outstanding carbon sink functions, with NEP
ranging from 299.64 to 448.62 g C·m-2·a−1 (Figure 4A), placing it
within the high-value range of global temperate forest NEP
(150–500 g C·m-2·a−1). The pronounced interannual variability of
NEP can be attributed to the following reasons: consecutive heavy
precipitation events in 2018–2019 led to a significant increase in
NEP in 2020 (448.62 g C·m−2) (Figure 4A). However, the prolonged
high temperature and drought during 2021–2022 caused NEP to
decrease annually until it began to recover in 2023, following a

decrease in VPD. This pattern of change indicated that climate
extremes exert a significant regulatory influence on carbon cycling
processes in the Xinglong Mountain forest ecosystem by altering key
environmental factors such as Tair, PP, Rg, and VPD (Reichstein
et al., 2013). At the same time, the carbon sink function of the forest
ecosystem on Xinglong Mountain exhibited distinct seasonal
characteristics, with monthly NEP ranging from 11.34 to
379.96 g C·m−2·month−1 (Figure 4B). It significantly increased
from May to July and significantly decreased from November to
February of the following year. The seasonal dynamics of GPP and
Reco exhibited asymmetric responses to environmental changes
(Figure 4B) (Piao et al., 2020). In particular, the imbalance
between the sudden enhancement of respiration and the gradual
regulation of photosynthesis had contributed to the vulnerability of
the forest carbon cycle on Xinglong Mountain forest, highlighting
the special sensitivity of semi-arid ecosystems to global change
(Legg, 2021).

3.4 Classification of groups based on
monthly averaged meteorological factors

PCA was used to assess the importance of six meteorological
factors in ranking monthly data (Figure 5; Table 1). PC1 and
PC2 explained 69.4% and 18.0% of the total variance in
meteorological data, respectively, with a cumulative contribution
rate of 87.4% (Figure 5), indicating that these two principal
components can effectively characterize the main variability
features of the data. PC1 integrates variables closely related to

FIGURE 5
Meteorological factor PCA biplot. Rg is the monthly average daily
maximum radiation; PP is the monthly precipitation; VPD is the
monthly average daily maximum vapor pressure deficit; Tac is the
monthly effective accumulated temperature; Tair is the monthly
average atmospheric temperature; and Tsoil is the monthly average
soil temperature. The red circle represents the equilibrium
contribution circle, and the variables with vectors longer than the
radius of this circle make a higher contribution than average.
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energy balance and thermodynamic processes, reflecting the overall
synergistic changes in meteorological indicators. All indicators had
high positive loadings on PC1 (Table 1), indicating strong positive
correlations among these indicators. Tair and Tac had the highest
positive loadings on PC1, making them the core variables driving
PC1 variability. PC2 revealed local or antagonistic differences in
meteorological variables, corresponding to secondary patterns of
dry/wet conditions or energy distribution. The high positive
loadings of Tsoil and PP indicated that soil temperature and
precipitation exhibited synergistic changes in PC2, reflecting the
temperature buffering effect caused by increased soil moisture
following precipitation events. Rg and VPD were positively
correlated with PC1 but negatively correlated with PC2,
indicating that under clear-sky conditions, radiation and vapor
pressure deficit jointly drive overall warming while suppressing
local precipitation. Tair and Tsoil exhibited consistent directions
on PC1. However, on PC2, Tsoil was significantly positive, while
Tair was nearly neutral, indicating that air temperature is primarily

controlled by large-scale thermal processes, whereas soil
temperature is more sensitive to local moisture conditions.

This study used a cellular automaton (CA) based on Euclidean
distance combined with the Ward clustering method to group and
analyze the observed months (Figure 6A). To determine the optimal
number of groups and assess the reliability of PCA and CA
grouping, we used Rg, PP, Tac, Tair, Tsoil, and VPD from
2018 to 2023 as reference indicators. By progressively setting the
termination year (from 2023 to 2018) to calculate the difference rate,
we found that the difference rate was highest for CA6 (most
significant variation), while CA3 had the smallest difference rate
(best stability) (Figure 6A). Therefore, the CA3 grouping scheme
was selected, dividing the growth change stages of forest vegetation
on Xinglong Mountain into three periods. This result indicated that
a smaller number of classification groups (CA3) provides more
stable monthly classification results, making it suitable for long-term
ecological process analysis.

The meteorological factors of Xinglong Mountain form three
distinct regions in the feature space across different months
(Figure 6B), exhibiting significant differences in their distribution
patterns and similarities. After PCA-corrected cluster analysis, the
seasonal climate of Xinglong Mountain was divided into three
groups, and the differences in meteorological factors and carbon
fluxes among the groups were significant (Figure 7). Group 1
(October to February of the following year) samples were
concentrated in the lower-left quadrant of the PCA space,
corresponding to the non-growing season characterized by low
temperature, low radiation, and low carbon fluxes, with good
internal repeatability and consistency, indicating stable climatic
conditions and weak plant physiological activity during this
phase. Group 2 (March–May) samples shifted toward the positive
direction of PC1, reflecting increasing temperature and radiation,
while PC2 values increased, suggesting increased precipitation,
exhibiting typical characteristics of the transition period from the
non-growing season to the growing season. During this period,

TABLE 1 Principal component load coefficients.

Meteorological factor PC1
(69.37%)

PC2
(17.96%)

Rg 0.4043 −0.4888

VPD 0.4011 −0.4990

PP 0.3615 0.4486

Tac 0.4275 0.1544

Tair 0.4752 −0.0573

Tsoil 0.3694 0.5325

Note: Rg is the monthly average daily maximum radiation; PP is the monthly precipitation;

VPD is the monthly average daily maximum vapor pressure deficit; Tac is the monthly

effective accumulated temperature; Tair is the monthly average atmospheric temperature;

and Tsoil is the monthly average soil temperature.

FIGURE 6
Rate of difference between the classification results based on meteorological factors from 2018 to the year shown on the abscissa and the
classification results based onmeteorological factors from2018 to 2022 (A). The rate of difference is the proportion ofmonths with differing classification
results relative to the total number of months included in the classification. CA3–CA6 were based on the monthly average daily maximum radiation (Rg),
monthly precipitation (PP), monthly average daily maximum vapor pressure deficit (VPD), monthly effective accumulated temperature (Tac),
monthly average atmospheric temperature (Tair), and monthly average soil temperature (Tsoil) and were divided into three to six groups. PCA biplot with
overlaid clustering results ofmeteorological factors (B). Group 1 represents the non-growing season, Group 2 represents the transition period, andGroup
3 represents the growing season.
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climatic conditions began to favor biomass accumulation but had
not yet reached the most suitable growth state, and biomass
accumulation rates remained relatively low. Group 3
(June–September) was significantly concentrated in the high-
value region of PC1, indicating that high temperatures and high
radiation drive carbon flux peaks, marking the main growing season
on Xinglong Mountain, a period of the year with higher
temperatures and relatively ideal growth conditions, where plant
growth is active and biomass production reaches its peak. However,
the degree of aggregation of Group 3 in the feature space was low,
and intra-group repeatability and consistency were poor, revealing
ecological process heterogeneity caused by meteorological
fluctuations during the growing season.

3.5 Effects of meteorological factors on
carbon fluxes

This study utilized three groups of data classified based on six
meteorological factors (Rg, PP, VPD, Tac, Tair, and Tsoil) and

ecosystem carbon fluxes (NEP, Reco, and GPP) for all months from
2018 to 2023 to construct SEM and quantify the relative importance
and direct or indirect effects of meteorological factors on forest
ecosystem carbon fluxes. As shown in Figure 8, in Group 1, Tac had
a direct and significant negative effect on NEP; VPD had a direct
positive effect on GPP; Tair indirectly increased GPP by increasing
VPD; and VPD had a significant positive effect on GPP. Tsoil and Rg
both had direct and significant negative effects on Reco, while PP
and Tac indirectly regulated Reco by influencing VPD. In Group 2,
both VPD and Tsoil directly and significantly influenced NEP; Tsoil
had a significant positive effect on GPP; VPD had a negative effect
on Reco; and Tac and PP indirectly regulated carbon fluxes by
significantly influencing Tsoil. In Group 3, Rg had a significant
direct positive effect on NEP and indirectly increased GPP through
its significant positive effect on Tair; Tair had a significant positive
effect on GPP; and VPD indirectly increased Reco by significantly
affecting Tsoil.

Overall, Rg had a significant positive effect on NEP and GPP
(Figure 8), suggesting that an increase in Rg promotes forest
ecosystem carbon absorption on Xinglong Mountain. This result

FIGURE 7
Meteorological factors and carbon fluxes in the three groups. Group 1 represents the non-growing season, Group 2 represents the transition period,
and Group 3 represents the growing season. Rg is the monthly average daily maximum radiation (A); PP is the monthly precipitation (B); VPD is the
monthly average daily maximum vapor pressure deficit (C); Tac is the monthly effective accumulated temperature (D); Tair is the monthly average
atmospheric temperature (E); and Tsoil is the monthly average soil temperature (F). NEP is the monthly net ecosystem productivity (G), Reco is the
monthly ecosystem respiration (H), and GPP is the monthly gross primary productivity (I). The data were analyzed using one-way ANOVA with the LSD
post hoc test at a significance level of P = 0.05. Data are represented as the means ± SE (standard error). Different lowercase letters (a, b, and c) over the
bars indicate significant differences (P < 0.05) in meteorological factors or carbon fluxes between the three groups.
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suggested that Rg is a key environmental driver regulating the
carbon sink function in temperate forest ecosystems, consistent
with the theoretical expectations of the Farquhar photosynthesis
model (Farquhar et al., 1980). The results of this study were
consistent with those from studies in temperate mixed forests in
the United States, where Rg dominated NEE variations (Baldocchi
and Vogel, 1996); they also align with findings from the conclusions
of the global carbon flux observation network, demonstrating that
the spatial pattern of NEE variations in forest ecosystems across
latitudes is associated with Rg (Reichstein et al., 2007; Devi Kanniah
et al., 2010; Ashton et al., 2012). The effect of Tair on NEP is mainly
achieved by regulating the enzyme activity of photosynthesis and
respiration. Within a certain range, NEP increases with Tair.
However, higher Tair could reduce plant enzyme activity and
cause stomata to close, thus leading to the phenomenon of a
midday depression of photosynthesis (Baldocchi and Vogel,
1996). VPD had a direct and significant positive effect on GPP

(Figure 8), indicating that an increase in VPD can simultaneously
promote plant photosynthesis and transpiration, thereby
accelerating ecosystem carbon absorption, consistent with the
stomatal optimization theory (Medlyn et al., 2011). However,
when VPD is high and drought stress is present, plants close
their stomata to reduce transpiration efficiency while also closing
stomata to enhance respiration (Tong et al., 2012; Shu et al., 2021),
becoming one of the factors enhancing Reco, consistent with the
“cumulus reflected radiation” theory (Segal and Davis, 1992). PP had
a direct and significant positive effect on GPP (Figure 8), indicating
that increased precipitation facilitates plant growth and carbon
uptake. Observations in China’s semi-arid regions showed that,
for every 1 mm increase in precipitation during the growing
season, GPP increases by 0.3 g C m−2·d−1 (Liu et al., 2021).
Additionally, in this study, Tair exhibited a positive synergistic
effect with PP, in sharp contrast to the negative correlation
observed in Europe’s summer arid regions (Reichstein et al.,

FIGURE 8
Structural equation modeling reflects the overall impact of six meteorological factors on forest ecosystem carbon fluxes on Xinglong Mountain.
Double-headed dashed lines indicate non-significant covariances. The values on the solid arrows represent standardized coefficients (SCs), indicating the
standardized total effect between variables. The thickness of the arrows indicates statistical significance, with thicker arrows indicating more significant
differences. The asterisk (*) indicates a significant difference. *, P < 0.05; **, P < 0.01; ***, P < 0.001. The color of arrows indicates the direction of
effects, with green arrows indicating positive effects and red arrows indicating negative effects. Group 1 represents the non-growing season, Group
2 represents the transition period, and Group 3 represents the growing season. Total represents all groups. NEP, Reco, and GPP represent net ecosystem
productivity, ecosystem respiration, and gross primary productivity, respectively. Rg, monthly average daily maximum radiation; PP, monthly
precipitation; VPD, monthly average daily maximum vapor pressure deficit; Tac, monthly effective accumulated temperature; Tair, monthly average
atmospheric temperature; Tsoil, monthly average soil temperature.
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2007), highlighting the core role of water–heat synchronization
under a monsoon climate. Tsoil was a direct driver of Reco,
while Rg exerted an indirect promotional effect on Reco by
significantly enhancing Tsoil. Under the trend of decreasing
forest carbon sink capacity due to global warming (Fang et al.,
2020), the increase in Tsoil could become one of the key factors
accelerating soil carbon release (Yu et al., 2014), with this effect
being particularly pronounced during the late growing season and
non-growing season. The results of the SEM indicated that the
variations in the forest ecosystem carbon fluxes on Xinglong
Mountain in the transition zone between the Qinghai–Tibet and
Loess Plateaus were primarily significantly positively influenced by
Rg, Tair, VPD, PP, and Tsoil.

The transition zone between the Qinghai–Tibet and Loess
Plateaus is an ecologically fragile area where the Loess Plateau
rises toward the Qinghai–Tibet Plateau. It is also one of the
regions with the richest forest resources in China. Xinglong
Mountain, located on the northeastern edge of the transition
zone between the Qinghai–Tibet and Loess Plateaus, is
extremely ecologically sensitive. This study focuses on this key
ecological niche, and its findings provide important insights into
the carbon cycle patterns of the entire eastern forest under climate
change. However, this study also has certain limitations: current
single-tower observations can only capture the carbon flux
characteristics of specific altitude zones or forest types and
cannot cover the spatial heterogeneity caused by extreme
water–heat gradients, slope orientation, soil, and management
activities. It is also difficult to analyze the nonlinear effects of
drought or extreme precipitation on the carbon cycle in the
transition zone between the Qinghai–Tibet and Loess Plateaus.
If directly applied to a larger scale, this will significantly amplify
the uncertainty of carbon sink assessments. Future research
should expand the scope of forest ecosystem carbon flux
monitoring in this transition zone. On the one hand, fixed EC
towers should be distributed along elevation, vegetation, and
climate gradients. On the other hand, satellite remote sensing
technology should be used to infer regional vegetation
productivity, and flux tower observation data should be used as
a benchmark to calibrate regional carbon flux models, thereby
reducing the uncertainty in carbon sink assessments in the
transition zone between the Qinghai–Tibet and the
Loess Plateaus.

4 Conclusion

This study conducted long-term observations of carbon fluxes
in the forest ecosystem and their influencing factors on Xinglong
Mountain, located in an ecological transition zone between the
Qinghai–Tibet and Loess Plateaus. This study revealed the
spatiotemporal characteristics of forest ecosystem carbon fluxes
in this region and their relationship with meteorological factors.
The results showed that the forest ecosystem on Xinglong
Mountain functioned as a carbon sink throughout the year and
exhibited significant seasonal and interannual variations.
Meteorological factors (such as Rg, Tair, Tsoil, VPD, and PP)
had different influences on forest ecosystem carbon fluxes at
different temporal scales. Overall, the forest ecosystem carbon

fluxes were primarily subjected to significant positive direct
influences from Rg, PP, Tair, Tsoil, and VPD. As global
climate change intensifies, the frequency and intensity of
extreme weather events (such as droughts and high
temperatures) may increase, which could adversely affect the
carbon sink capacity of the forest ecosystem on Xinglong
Mountain. In particular, during drought years, the combination
of high temperatures and low precipitation could significantly
reduce the forest ecosystem’s carbon uptake capacity on Xinglong
Mountain, leading to a decrease in its carbon sink capacity.
Therefore, future efforts should focus on strengthening the
monitoring and management of the forest ecosystem on
Xinglong Mountain in the transition zone between the
Qinghai–Tibet and Loess Plateaus to address the challenges
posed by climate change.
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