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Rapid digital economy development is reshaping urban governance and resource
allocation, but its impact on urban land green use efficiency (ULGUE) remains
insufficiently examined. This study investigates whether and how digital economy
development enhances ULGUE in China, focusing on direct effects, mediating
mechanisms, and spatial spillovers. Using panel data from 282 prefecture-level
cities during 2007–2022, ULGUE is measured with the Super-Slack-Based
Measure model. The National E-Commerce Demonstration City policy serves
as a quasi-natural experiment within a Differences-in-Differences framework.
Complementary analyses include instrumental variable estimation, propensity
score matching, and the spatial Durbin model, with robustness checks using 5G
population density. Findings indicate that the digital economy and 5G
infrastructure significantly improve ULGUE. Mechanism tests highlight green
technology innovation and resource efficiency as key channels, with strong
spatial spillover effects. Heterogeneity analysis reveals that policy impacts are
strongest in eastern and early pilot cities, moderate in central regions, and
weakest in western areas. Overall, the study enriches interdisciplinary research
on digitalization and sustainability, and provides policy insights suggesting that
region-specific green strategies and targeted digital infrastructure deployment
are essential to achieve balanced and sustainable urban transitions.
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1 Introduction

Efficient and green land use forms the foundation for high-quality urban development
(Jin et al., 2019). However, the accelerating pace of global urbanization has caused negative
consequences, including land resource scarcity and ecological degradation. To achieve
sustainable development, ULGUE is a crucial statistic for assessing how well environmental
protection coordinates with economic growth (Wang et al., 2021; Tan et al., 2021). China is
aggressively seeking new catalysts for urban green transformation in line with the United
Nations Sustainable Development Goals (SDGs), serving as a prime example of rapid
urbanization. Empirical evidence shows that various policy pilots, such as low-carbon cities,
smart cities, and innovation cities (Liu et al., 2022; Wang et al., 2021; Zuo and Zhang, 2025),
along with environmental regulations (He et al., 2024; Zheng and Chen, 2024) and
increased government attention (Lu and Tao, 2024), can all effectively enhance
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ULGUE. In addition, Zhang et al. (2023) provide robust evidence
that smart city construction significantly contributes to urban green
development through industrial restructuring and green technology
innovation, while also generating positive spatial spillover effects
across neighboring regions. This underscores the importance of
incorporating digital and smart city initiatives into the study of land
use efficiency.

Thanks to advancements in information technology, the
digital economy has emerged as a major driver of urban green
growth (Fan et al., 2024; Hao et al., 2023; Cheng et al., 2023).
While its positive environmental effects are well established
(Cheng et al., 2023; Wen and Sun, 2023), significant research
gaps remain. First, regarding research perspectives, ULGUE—a
crucial component of urban governance performance—is often
overlooked in favor of macro-level environmental metrics, such
as carbon emissions and green total factor productivity (Ding and
Gao, 2023). In addition, concerning the mechanism, the specific
pathways through which the digital economy affects ULGUE
remain inadequately examined (Fan et al., 2024; Hao et al.,
2023; Cheng et al., 2023). Furthermore, many researchers
underestimate the spatial spillover effects produced by the
digital economy’s network externalities (Chu et al., 2023; Yu
et al., 2023).

Compared with prior studies such as Yu et al. (2023), which
mainly emphasize environmental spillovers, and Tan et al. (2021),
which focus on regional heterogeneity under general policy
interventions, this paper innovates by explicitly centering on the
urban land dimension and identifying new causal pathways.
Therefore, constructing a comprehensive conceptual framework
to analyze the digital economy’s effect on ULGUE represents an
urgent scholarly need.

China’s National E-commerce Demonstration Cities (NEDC)
policy, a flagship initiative for digital economy development,
provides a robust quasi-natural experiment setting for examining
this relationship. Unlike earlier studies relying on cross-sectional
data or general proxies, this research leverages the staggered rollout
of the NEDC policy to rigorously identify causal effects through a
DID-based approach. Furthermore, it incorporates 5G
infrastructure indicators, such as population density of base
stations, into the analysis of ULGUE, offering a novel perspective
on how emerging digital technologies shape land-use efficiency.
Methodologically, this study also pioneers the use of an SDM-DID
model, enabling simultaneous identification of causal impacts and
spatial spillovers—a gap not addressed in existing literature.

This study makes three contributions. First, it advances beyond
traditional macro-level environmental assessments by incorporating
digital economy metrics into the ULGUE framework, thus
enhancing the evaluation of sustainability externalities in urban
spatial governance systems (Cheng et al., 2023; Zhang et al., 2024).
Second, based on rigorous theoretical analysis and empirical
modeling, it identifies and verifies two key mediating
variables—green technology innovation and resource use
efficiency—delineating the “innovation-driven resource allocation
optimization” pathway through which the digital economy affects
ULGUE (Guo and Zhang, 2024; Hao et al., 2023; Liu et al., 2025).
Third, by incorporating spatial spillover analysis, it reveals
significant positive radiation effects of digital economy
development across regions, highlighting its potential to support

coordinated regional development and collaborative green
transformation. These insights provide a crucial foundation for
the scientific allocation of digital infrastructure and the design of
differentiated green transition policies (Chu et al., 2023; Tan
et al., 2021).

The structure of the paper is as follows. Section 1 presents the
problem statement and research background. Section 2 develops the
research hypotheses and theoretical analysis. Section 3 describes the
research technique in full. Section 4 provides an analysis of the
empirical findings. Section 5 concludes and discusses policy
implications.

2 Theoretical foundation and research
hypotheses

This study develops its theoretical framework based on
General Purpose Technology (GPT) theory (Bresnahan and
Trajtenberg, 1995) to explain how the digital economy enhances
ULGUE. GPT refers to foundational technologies with broad
applicability, continuous evolution, and the ability to generate
synergistic innovations and structural transformations. The digital
economy represents a modern generation of GPT. It reshapes
production functions and the structure of externalities, thus
promoting urban green development. Its mechanisms include:
(1) Technology Complementarity, which facilitates the
integration of green technologies with digital infrastructure;
(2) Factor Reallocation, which improves the efficiency of land,
capital, and labor allocation; and (3) Spatial Spillovers, which
enable the cross-regional diffusion of green practices and
resource flows.

Building on this, the digital economy shows distinctive
features that reinforce its role in improving ULGUE. Network
effects accelerate the diffusion of green technologies and
sustainable practices across regions. Data-driven decision-
making, through big data, remote sensing, and digital twins,
supports precise land management and efficient
redevelopment. Smart land governance, via e-government and
digital approval systems, enhances transparency and
regulatory capacity, reducing idle land and promoting
brownfield reuse. These mechanisms indicate that the digital
economy, as a GPT, not only reallocates factors but also
advances sustainable land use through institutional and
technological innovations. Empirical evidence supports this
view: Du et al. (2022) show that digitalization in low-carbon
city initiatives improves ecological efficiency by fostering green
innovation and governance capacity.

Based on this logic, ULGUE is defined as the dependent variable.
Two mediating mechanisms are identified: green technology
innovation (GTI), which represents R&D and the
implementation of green technology, and resource use efficiency
(RUE), which measures increased output and ecological
performance per unit of resource input.

Our theoretical model positions GPT as the central tenet, as
illustrated in Figure 1, and shows that the digital economy
indirectly improves ULGUE through GTI and RUE, while also
generating spatial spillovers that improve green performance in
nearby areas.
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2.1 Direct influence of digital economy
on ULGUE

Drawing on GPT theory (Bresnahan and Trajtenberg,
1995), this study conceptualizes the digital economy as a
transformative infrastructure that reshapes the allocation of
urban land, capital, and labor under ecological constraints. As
a GPT, the digital economy affects ULGUE through technology
complementarity, factor reallocation, and altered externality
structures.

Empirical evidence strongly supports this theoretical linkage.
For example, Zhang et al. (2024) found that the rapid expansion of
e-commerce in China significantly reduced carbon emission
intensity and increased land-use efficiency by optimizing
logistics systems. Within the framework of China’s National
E-commerce Demonstration Cities (NEDC) policy, Liu et al.
(2025) showed that digital infrastructure contributed to more
rational urban land use and more efficient resource allocation.
Guo and Zhang (2024) found that digital technologies facilitate
accurate matching of land resources with complementary
production factors, effectively reducing carbon-intensive and
extensive land-use patterns. Additionally, Liu and Qiu (2023)
confirmed that digital infrastructure applications decrease
carbon emissions per unit of GDP, which indicates stronger
ecological sustainability. According to Zhang et al.’s (2022)
analysis of data from 265 Chinese cities, e-commerce pilot cities
performed better than others in pollution control and ULGUE
improvement.

In summary, this study conceptualizes the digital economy as a
GPT that drives green transformation, highlighting its
transformative effect on urban land use for sustainable
development. We propose Hypothesis 1:

H1: The growth of the digital economy notably improves ULGUE.

2.2 The mediating role of green technology
innovation

From the GPT perspective, the digital economy stimulates green
innovation through technology complementarity. As a foundational
technology with broad applicability and evolutionary potential, it
lowers innovation costs, facilitates cross-firm learning, and provides
information infrastructure. Therefore, it accelerates the
development and diffusion of eco-friendly technologies. These
technologies, in turn, reduce carbon emissions, optimize energy
structures, and enhance land-use sustainability.

Numerous studies offer strong support. Liu et al. (2025) found
that the NEDC policy, through increased R&D funding and digital
infrastructure, significantly drives GTI. Cheng et al. (2023)
employed spatial econometrics to confirm that digital economy
development suppresses urban carbon emissions, with green
technology diffusion showing a 23.7% mediation effect and a
spatial spillover coefficient of 0.215. Fan et al. (2024) noted that
higher regional digitalization strengthens firms’ absorptive capacity
for green technologies; the elasticity of green innovation reaches
0.394 in high-tech industries. Hao et al. found a sharp marginal
increase in green innovation effects when the digital index exceeded
0.68. Liu and Qiu (2023) reported that green patents accounted for
20.07% of emission reductions under the NEDC policy, and energy
consumption per unit of land declined by 14.2%. Yu et al. (2023)
highlighted that fiscal incentives, internet infrastructure, and
agglomeration effects jointly support the spatial diffusion of
green innovation, with a spillover effect up to 1.025.

These findings confirm that the digital economy, as a GPT,
enhances ULGUE by promoting the diffusion of green technology
innovation across cities. We assume Hypothesis 2:

H2: Innovation in green technologies helps ULGUE by acting as a
mediator in the growth of the digital economy.

FIGURE 1
Theoretical model.
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2.3 The mediating role of resource
use efficiency

Another critical feature of GPT is to enhance resource use
efficiency. Digital platforms reduce information asymmetry,
automate operational processes, and enable real-time
optimization of factor allocation. As a result, they decrease
energy inefficiencies and improve the productivity of land, labor,
and capital inputs. This represents a key pathway toward green and
intensive land use.

Liu et al. (2023) used China’s e-commerce demonstration city
policy as a natural experiment and revealed significant energy-
saving effects of digital platforms on economic output. Guo and
Zhang (2024) argued that, under energy constraints, digital
transformation improves urban resource allocation and has
become an endogenous driver of high-quality urban
development. Jiang et al. (2024) empirically demonstrated that
e-commerce platforms enhance energy–output conversion
efficiency from a carbon productivity perspective. Liu and Qiu
(2023) further confirmed through econometric analysis that the
NEDC policy significantly reduced energy consumption per unit of
land, establishing it as an important indirect indicator of ULGUE
improvement. Ding and Gao (2023) highlighted from a micro
perspective that the digital economy facilitates the dynamic
reallocation of labor and capital, which increases overall factor
productivity. Ding and Gao (2023) also provided additional
evidence that green technologies enhance energy efficiency and
Green Total Factor Productivity (Green TFP), further
complementing resource optimization.

Collectively, digital economy development improves resource
use efficiency, as measured by lower energy and land consumption
per unit of GDP, thereby indirectly promoting greener and more
intensive urban land use. We suppose Hypothesis 3:

H3: Digital economic growth boosts ULGUE indirectly by
optimizing resource use efficiency.

2.4 Spatial spillover effects of digital
economy development

The systemic nature of GPT also appears in spatial externalities.
Digital infrastructure, platforms, and network structures support
knowledge sharing, institutional coordination, and regional
collaboration. These mechanisms generate green effects that
extend beyond local boundaries and initiate a “diffusion-
coordination-progress” mechanism among cities.

Empirical evidence supports this mechanism. According to
Zhang et al. (2024), core cities are important channels for the
geographical spread of sustainable practices, and digital platforms
play an instrumental role in reshaping regional factor flows. Cheng
et al. (2023) applied spatial models and found nonlinear spillover
effects in carbon emission reduction, with an effect radius exceeding
300 km. Liu et al. (2025) observed that the NEDC policy produces
significant intra- and inter-regional effects; through the diffusion of
green innovations and fiscal incentives, it affects adjacent cities’
green TFP and ULGUE. Zhang and Chen (2024) emphasize the
strong regional penetration of e-commerce infrastructure, which

supports cross-city green innovation collaboration and increases
environmental technology levels across urban clusters. The spatial
aggregation and evolutionary trajectory of ULGUE in the Yangtze
River Delta are further supported by Tan et al. (2021), who highlight
the interdependence of green performance across cities.

Therefore, through platforms, knowledge externalities, and
factor flows, the advancement of the digital economy has a major
positive spatial spillover effect, enhancing ULGUE in nearby cities.
This leads to our final hypothesis:

H4: The expansion of the digital economy exerts a substantial
positive spatial spillover effect on the ULGUE of neighboring
cities. The study’s theoretical model is shown in Figure 1.

3 Methodology

3.1 Model specification

3.1.1 Baseline regression model
Following the analytical framework proposed by Moser and

Voena, this study constructs a quasi-natural experiment based on
the NEDC program to evaluate the effect of growing digital
infrastructure on ULGUE. We determine the causal policy effects
using a differences-in-differences (DID) model. In 2011, a
collaborative policy document titled “Guidelines on Launching
National E-commerce Demonstration Cities,” issued by five
ministries, including the NDRC, laid the foundation for the
three-phase implementation of the NEDC strategy across
70 cities. These phases were launched in 2011, 2014, and 2017,
respectively, and show a typical staggered promotion pattern. The
NEDC policy has strong exogeneity and institutional shock
characteristics. First, pilot cities were designated by the central
government through top-down administrative assignment, which
eliminates self-selection by local governments and reduces sample
selection bias. Second, the clear temporal structure of the policy
rollouts facilitates the construction of a progressive DID model.
Third, the division between treatment and control groups is explicit,
so policy effects can be captured through interaction terms.

To estimate the effect of the development of the digital economy,
as represented by the NEDC policy, on ULGUE, the baseline
regression model (Equation 1) is created as follows:

Lgueit � α0 + α1Didit +∑ ρcontrolit + ui + λt + εit, (1)
where i and t denote city and year, respectively; α0 is a constant term;
ui and λt represent area fixed effects and time fixed effects,
respectively; and εit refers to the residual term. The efficiency of
land green usage is represented by the explanatory variable (Lgueit),
and the creation of digital infrastructure is represented by the core
explanatory variable (Didit).

3.1.2 Mediating effect model
Using Baron and Kenny’s traditional mediation analysis

approach, this study systematically developed multiple regression
equation sets to examine the role of mediating factors in the policy
influence process. To enhance the statistical credibility of the results,
Sobel tests and bootstrap repeated sampling techniques were
introduced to verify the significance of the mediating pathways.
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The specific analysis paths were divided into the following three
groups of models (Equations 2–4):

Lgueit � α0 + α1Didit +∑ ρcontrolit + ui + λt + εit (2)
Mit � β0 + β1Didit +∑ ρcontrolit + ui + λt + εit (3)

Lgueit � γ0 + γ1Didit + γ2Mit +∑ ρcontrolit + ui + λt + εit. (4)

In this study, Mit is set as a mediating variable to reflect green
technology innovation or resource use efficiency. When regression
model (4) produces a statistically significant coefficient α2 for the
mediating variable, and the coefficient α1 associated with the core
explanatory variable Didit decreases substantially or loses
significance relative to model (2), this suggests that the mediating
mechanism exists and that the effect of the policy variable on the
dependent variable may be partially or fully transmitted through the
mediating path.

3.1.3 Spatial durbin differences-in-
differences model

This study combines the spatial econometric method proposed
by Corrado and Fingleton (2012) to extend the traditional DID
Model (Equation 5) by embedding spatial lag variables and spatial
weight matrices, thereby constructing the Spatial Durbin DID
Model (SDM-DID). This approach systematically identifies
regional linkage and spatial spillover effects resulting from policy
implementation.

Lgueit � γ0 + ρ∑
j

WijLguejt + γ1Didit + γ2 ∑
j

WijDidjt

+ γ3controlit

+γ4 ∑
j

Wijcontroljt + ui + λt + εit, (5)

where ρ is the spatial autoregressive coefficient of ULGUE,
WijLguejt, Wij, andWijcontroljt represent the spatially lagged
values of the respective variables, and Wij indicates the element
of the spatial weight matrix that captures the spatial linkage between
the samples.

3.2 Variable selection

3.2.1 Explained variable (land green use efficiency)
The study focuses on ULGUE as the key variable, aiming to

show the correlation between the logical distribution of input
elements and the efficiency of outputs in urban land resource
development (Xu et al., 2025). Regarding Tone’s proposed super-
efficiency SBM model, a system has been developed for practical
measurement.

In terms of input specification, this study includes four
categories of factor variables. First, labor input is quantified using
annual year-end employment figures, which reflect the total
workforce engaged in productive activities, following the
methodology of Wang et al. (2021). This serves as an indicator
of human capital utilization. Second, capital input is adapted from
Xu et al. (2025), using total fixed asset investment to represent
material capital expenditure within the city. Third, science and
technology investment is measured as the aggregate of research

and development expenditures and educational funding allocations,
reflecting the level of knowledge capital investment. Fourth, the
energy dimension is represented by annual total water and electricity
consumption, which serve as proxy indicators for resource
consumption.

For output indicators, this study adopts per capita GDP,
following the approach of He et al. (2024) and Wang et al.
(2021), as a proxy for urban economic development. In response
to the unanticipated outcomes, and in line with the method of Wang
and Han, environmental effect is measured using three types of
industrial emissions: wastewater, sulfur dioxide, and smoke dust. All
fluctuating data are sourced from the China Urban Statistical
Yearbook, which guarantees reliability, uniformity in breadth,
and thoroughness across the time series.

3.2.2 Explanatory variable (digital economy
development)

Drawing on the methodological framework of Liu et al. (2023),
this study uses a DID estimation strategy to assess the causal effect of
NEDC policies on ULGUE. The main identification strategy
constructs interaction terms between binary treatment indicators
(policy intervention group) and temporal dummy variables (pre/
post implementation). Specifically, if a city initiates the policy pilot
in a given year, the urban area is included in the treatment group,
with the treatment group identification variable set to one. At the
same time, the temporal indicator variable is coded as one for all
years after policy implementation. Cities not selected for the pilot
program serve as the control group, with both treatment and time
dummies equal to zero. This interaction term specification allows for
rigorous estimation of the policy’s causal effects using the difference-
in-differences framework.

3.2.3 Mechanism variables
Resource use efficiency. Following Zheng and Chen (2024),

resource use efficiency is measured by the amount of energy
consumption that corresponds to economic output per person.
The calculation method converts different types of energy
consumption at the urban level—including total electricity
consumption, as well as artificial, natural, and liquefied petroleum
gas supplies—into a standard coal equivalent (measured in 100 tons).
This value is then divided by the region’s per capitaGDP (measured in
yuan) to obtain the energy-to-per capita output ratio. A natural
logarithmic transformation is applied to this ratio to represent
“resource use efficiency” and to control for the effect of outliers.

Green technology innovation (GTI). Following Fu’s (2024)
methodological framework, this study includes GTI as a core
explanatory variable, measured using city-level counts of green
patent applications. The calculation method is as follows: GTI =
ln (1 + number of green invention patents + number of green utility
model patents). This approach applies a logarithmic transformation
to the annual sum of green invention and utility model patents
declared by each city. This metric effectively captures regional
innovation outputs in green technology, providing both practical
applicability and strong representativeness for policy evaluation.

3.2.4 Control variables
The analysis includes several control variables in three

important dimensions to reduce the possibility of omitted

Frontiers in Environmental Science frontiersin.org05

Jiang et al. 10.3389/fenvs.2025.1659159

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1659159


variable bias and increase the accuracy of model estimation: (1)
Economic Development Level (InPGDP): According to He et al.
(2024) and Wang et al. (2021), the logarithm of a region’s per capita
real GDP represents its economic output capabilities. (2) Industrial
Structure (IS): According to Lu et al. (2020), the degree of service
sector dominance is gauged by the tertiary industry’s added value as
a percentage of the regional GDP. (3) Environmental Regulation
Strength (ERS): Referring to Berman and Bui, (1998), an indicator
was constructed by obtaining the frequency of occurrence of
environment-related terms in policy documents through text
analysis methods. (4) Population density (InDENS): It is defined
as the natural logarithmic value of the number of permanent
residents per unit of land area (Liu et al., 2022). (5) Financial
development level (FinDev): Following the idea proposed by Beck
et al. (2000), financial resource allocation capacity is proxied by the
share of loan balances held by financial institutions relative to GDP.
Variable definitions are listed in Table 1.

3.2.5 Sample selection and data processing
A balanced panel data set is constructed, including

282 prefecture-level and above cities in China, with continuous
annual data from 2007 to 2022. The study period is selected to
balance methodological requirements and data availability.
Although the National E-commerce Demonstration City (NEDC)
policy was formally introduced in 2011, the analysis extends the
starting year to 2007 to provide an adequate pre-policy period,
which meets the parallel trends assumption of the DID model. The
end year is set as 2022 because it is the most recent year with
complete and consistent city-level data, which allows for an
assessment of the medium-to long-term policy effects.

To ensure data completeness and consistency in administrative
divisions, the final sample includes 67 pilot cities with complete
observations—23 from the first batch, 29 from the second, and
15 from the third—as well as 215 non-pilot cities that were never

included in the policy. The main data sources are the China Urban
Statistical Yearbook, the China Energy Statistical Yearbook, and
statistical bulletins issued by cities at the prefecture level. Missing
values for certain years are addressed using group mean imputation
or linear interpolation, which aims to improve data integrity and
reduce estimation bias. Table 2 displays descriptive statistics for the
primary variables.

Additionally, Figure 2 shows the trajectory of ULGUE for various
categories during 2007–2022. In terms of trend, ULGUE
demonstrates a continuous upward development for the whole
country, model cities, and non-model cities. Analyzing various
urban clusters indicates a consistent superiority in the efficiency of
green land use, with demonstration cities consistently outperforming
non-demonstration cities throughout the research period. Between
2011 and 2022, the ULGUE of demonstration cities increased from
0.406 to 0.572, an increase of 40.726%, whereas the growth rate of this
metric in cities without demonstrations during that period was
14.316%. The observed disparities suggest a causal linkage to the
NEDC policy intervention. Pilot cities show significantly stronger
performance gains in green land use intensification, while the
divergence from non-pilot counterparts progressively widens.

4 Analysis of empirical test results

4.1 Baseline model regression

Using the DID Model requires adherence to the parallel trend
hypothesis. The pre-treatment data show parallel trends in green
land use efficiency between the experimental and control cohorts,
which satisfies a critical quasi-experimental assumption. To
rigorously test this condition and dynamically assess policy
effects, we implement an event-study framework and specify the
following econometric specification (Equation 6):

TABLE 1 Definitions of the variables.

Variables Variables name Definition Symbols

Explained variable Land green use efficiency The super efficiency Slack-Based Measure model is used for measurement Lgue

Explanatory
variables

Digital economy development • Policy implementation group dummy variable (treat): Cities designated as NEDC pilots during the
study period constitute the treatment group (Treatment = 1), while non-pilot cities serve as the
control group (Treatment = 0). This binary coding follows a strict intent-to-treat (ITT) assignment
based on policy rollout records

• Policy implementation time dummy variable (time): If a national e-commerce demonstration city
pilot was implemented in a certain year, the value for that year is 1; 0, otherwise

• Interaction term (treat): A dummy variable interaction term used to identify whether a city was a
national e-commerce demonstration city pilot in a certain year

NEDC

Mediating variables Resource use efficiency Total energy consumption (in 100 tons of standard coal) per 100 yuan of regional GDP per capita
Energy consumption per unit of GDP

RUE

Green technology innovation The logarithm of the number of green patents (invention + utility model) filed in that year GTI

Control variables Economic development level Measure by the natural logarithm of real GDP per capita InPGDP

Industrial structure Proportion of added value of the tertiary industry to GDP (%) IS

Environmental regulation
intensity

Environmental protection word frequency and/text total word frequency precise patterns ERS

Urban population density The natural logarithm of population per unit area is used for measurement InDENS

Financial development level The proportion of loans from financial institutions to GDP FinDev
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Yit � φ0 + ∑
k�6

k�−6
φkD

k
it +∑ ρcontrolit + ui + λt + εit (6)

In this model, Dk
it represents a series of dummy variables

(including 6 years before policy implementation, the current year,
and the subsequent 6 years), where cities not used for
demonstrations are given a value of zero, and the estimated
coefficient φk quantifies the differential in green land use
efficiency between treatment and control cohorts during the kth
year following NEDC policy implementation.

Figure 3 shows the outcomes of the parallel trend examination.
The regression coefficients in the pre-policy period fluctuate
around zero and are not statistically significant, which supports
the parallel trend condition between the treated and control cities
and validates the use of the DID strategy. In the year the policy was
introduced, and in the following 2 years, the coefficients remain

insignificant, suggesting a delayed policy response. Beginning in
the third year after the policy enactment, the regression coefficients
show a notable positive trend and continue to rise. The NEDC
policy initially shows limited effects on ULGUE, indicating a
temporal lag in the digital economy’s capacity to increase green
land use outcomes. This evidence, combined with the exogenous
and staggered rollout of NEDC designations (2011, 2014, and
2017), further reinforces the credibility of the DID strategy.

Table 3 reports the baseline regressions. Columns
1–4 progressively add year and city fixed effects. Across all
models, the coefficient of digital economy development is
positive and significant at the 1% level, supporting Hypothesis 1.
In Model (4), the interaction term (Treat × Post) is 0.060, significant
at 1%. This implies that the NEDC policy raised ULGUE in pilot
cities by 0.060 units on average, about 14.85% of the sample mean
(0.404), reflecting a substantial policy effect. These results align with

TABLE 2 Descriptive results.

Variables Variable names Sample size Mean Standard deviation Minimum Maximum

Explained variable Green utilization efficiency of land 4,512 0.404 0.089 0.301 0.909

Explanatory variable Digital economy development 4,512 0.139 0.346 0.000 1.000

Mediating variables Green technology innovation 4,512 0.982 2.008 0.007 13.123

Energy efficiency 4,512 0.031 0.022 0.004 0.113

Control variables Economic development level 4,512 10.591 0.677 8.913 12.061

Population density 4,512 8.004 0.715 6.110 9.340

Industrial structure 4,512 0.461 0.110 0.173 0.732

Intensity of environmental regulation 4,512 0.008 0.003 0.002 0.016

Financial development level 4,512 0.982 0.568 0.291 3.184

FIGURE 2
ULGUE trend from 2007 to 2022.
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FIGURE 3
Parallel trend and dynamic effect test results. Note: The upper and lower lines of the solid points represent 95% confidence intervals.

TABLE 3 Benchmark regression.

Variables (1) (2) (3) (4)

Land green use
efficiency

Land green use
efficiency

Land green use
efficiency

Land green use
efficiency

Digital economy development 0.064*** 0.082*** 0.068*** 0.060***

(15.189) (14.837) (15.367) (14.761)

Economic development level 0.074*** 0.031*** −0.054***

(21.353) (18.393) (-9.633)

Population density 0.004*** 0.006*** 0.002

(2.830) (3.515) (1.584)

Industrial structure −0.230*** −0.125*** 0.071***

(-14.268) (-10.532) (3.912)

Intensity of environmental
regulation

−3.166*** −0.934*** −1.339***

(-8.717) (-3.676) (-5.260)

Financial development level −0.030*** 0.020*** −0.017***

(-11.269) (6.006) (-4.805)

Constant term 0.395*** −0.257*** 0.063*** 0.946***

(479.526) (-7.492) (2.882) (16.705)

Urban fixed effects Controlled Uncontrolled Controlled Controlled

Year-fixed effect Controlled Controlled Uncontrolled Controlled

Sample size 4,512 4,512 4,512 4,512

R2 0.809 0.408 0.791 0.817

*, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively. The t-statistics are in parentheses.
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Liu et al. (2025), who show that digital infrastructure improves
resource allocation efficiency, and with Guo and Zhang (2024), who
find that digital technologies enhance factor matching and reduce
inefficient land development.

Control variables also matter. Economic development has a
significant positive effect, indicating that cities with stronger
foundations integrate resources more effectively (Zheng and
Chen, 2024). Population density is positive, suggesting that labor
supply and urban vitality promote efficiency (Liu et al., 2022). By
contrast, environmental regulation intensity is negative and
significant, likely due to higher short-term compliance costs or
uneven enforcement, reflecting transitional rather than long-term
effects. Industrial upgrading and financial development also
significantly affect ULGUE.

Overall, the green transformation of land use depends not only
on digital tools but also on industrial policies, institutional support,
and financial systems.

4.2 Robustness test

4.2.1 Robustness checks
We conduct robustness checks through variable substitution

and model extension:
First, regarding the explanatory variables, we introduce three

representative indicators of communication infrastructure: Internet
penetration, 5G population density, and long-distance cable length
per unit area. Although existing empirical studies rarely apply “5G
base station population density” directly to urban land green use
efficiency, Yang et al. (2018) from the communication engineering
field show that base station density is a key factor affecting network
performance, especially in urban deployment scenarios, where it
determines the transition from noise-limited to interference-limited
regimes. Based on this theoretical foundation, we treat 5G
population density as a structural proxy for digital infrastructure
and include it in the robustness analysis to strengthen the
engineering logic behind our green land use model. Following
the methodologies of Wang and Wang (2024) and El-Garaihy
et al. (2022), we also use Internet penetration rate and fiber-optic
cable density (km/km2) as key infrastructure indicators to examine
the consistency of our core conclusions. As shown in Columns
(1)–(3) of Table 4, all three infrastructure indicators have
significantly positive coefficients at the 1% significance level (p <
0.01). The signs and magnitudes of the control variables remain
consistent with theoretical expectations, and the model’s
explanatory power (R2) varies within ±0.03, which indicates the
robustness of the baseline findings across alternative digital
economy measures. Second, for the dependent variable, we
extend the original Super-SBM model. In addition to the initial
specification that includes only the “three industrial wastes” as
undesirable outputs, CO2 emissions are also included as an
additional undesirable output to recalculate ULGUE. The
regression results reported in Column (4) of Table 4 show that
the effect of digital economy development remains positive and
statistically significant at the 5% level, which provides further
support for the external validity of the core model.

Taken together, these robustness checks, which include both the
substitution of explanatory variables and the alternative estimation

of the dependent variable, provide strong evidence that digital
infrastructure construction significantly contributes to improving
ULGUE. Therefore, these results reinforce the reliability and validity
of our main conclusions.

4.2.2 Instrumental variable method
This study adopts Guo and Zhang (2024)’s causal inference

framework to address endogeneity, focusing on how e-commerce
policies affect urban development, and applies the instrumental
variable (IV) approach of Li et al. (2016) based on historical
communication facilities. The two-stage least squares method
(2 S LS) is used. Specifically, we employ the correlation between
post office counts and Internet user numbers in 1984 as the key
instrument, reflecting early infrastructure foundations of
digitalization.

To justify exogeneity, we argue that postal density in
1984 mainly reflected administrative layout and communication
demand, not current determinants of ULGUE. At that time, China’s
land market was undeveloped and the notion of ULGUE did not
exist, making a direct effect implausible. Our specification also
controls for structural city characteristics such as economic
development, population density, industrial structure, and
financial development, reducing concerns that postal density
captures persistent unobserved traits. From a theoretical
standpoint, 1984 postal density is unlikely to correlate with pre-
treatment ULGUE, supporting the exclusion restriction.

The instrument’s strength is confirmed by the first stage: the IV
coefficient is 0.126 (p < 0.01), with an F-statistic of 158.049, well
above the threshold of 10. The Kleibergen–Paaprk LM statistic (p =
0.000) rejects weak-instrument and under-identification concerns.
In the second stage (Table 5, Column 2), the policy variable remains
positive and significant (p < 0.01). After addressing endogeneity,
digital economy development continues to enhance ULGUE,
indicating robust results.

Overall, combined with strong statistical evidence and
consistency with prior studies using historical infrastructure as
instruments (Li et al., 2016; Guo and Zhang, 2024), the
instrument is both relevant and exogenous, reinforcing the
reliability of the baseline estimates.

4.2.3 PSM-DID test
To address potential non-randomness in sample selection,

this paper adopts the Propensity Score Matching–Difference-in-
Differences (PSM-DID) method following Moser and Voena
(2012). A binary variable indicates city participation in the
NEDC program (1 for pilot, 0 otherwise). Control variables
are included as covariates in a Logit regression to estimate
propensity scores. Two strategies are applied: kernel matching,
which weights all controls by score distance, and caliper matching
with a width of 0.1, conducted with replacement to improve
comparability.

Balance tests show that covariate means between treatment and
control groups are statistically indistinguishable, with standardized
bias below 10%, confirming good match quality. Re-estimated DID
regressions on the matched samples (Table 6) indicate that, at the
1% level, NEDC construction continues to exert a significantly
positive effect on urban development, supporting the robustness
of the baseline findings.
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4.2.4 Other robustness tests
Four supplementary tests were conducted to ensure the

robustness of the results. First, Propensity Score Matching (PSM)
was used to reconstruct the sample by matching treated and
untreated cities through kernel and caliper matching methods,
which mitigates sample selection bias (see Columns (1) and (2)
of Table 6). The findings confirm the reliability of the baseline results
by showing that the beneficial effect of digital economy growth on
ULGUE is statistically significant. Second, to prevent estimate bias
because of inherent locational and resource advantages, key
cities—municipalities directly under the central government,
provincial capitals, and sub-provincial cities—were excluded from
the sample (see Column (3)). Third, the core explanatory variable
was lagged by one period to account for the delayed effect of policy
implementation and to reduce potential reverse causality (see
Column (4)). Lastly, dummy variables for the smart city policy

and the low-carbon pilot policy were included to control for
interference from concurrent policies that may also affect
ULGUE (see Columns (5) and (6)).

The digital economy development coefficient consistently shows
significant positive effects in all robustness tests, confirming the
stability and reliability of the baseline results. This identification
strategy aligns with previous studies. For example, Liu et al. (2025)
adopted comparable strategies, such as sample exclusion and lagged
variable settings, and found that the NEDC initiative notably
enhanced urban green performance. Similarly, Zheng and Chen
(2024) used a spatial DID model and placebo testing to verify the
favorable effect of low-carbon policies on ULGUE. Liu, Feng, and
Wang (2022) highlight the role of green transformation policies in
increasing land use efficiency, which supports our inclusion of policy
control variables. Together, these studies provide strong theoretical
and empirical support for our estimation approach and conclusions.

TABLE 4 Robustness checks—alternative variables.

Variables (1) (2) (3) (4)

Land green use
efficiency

Land green use
efficiency

Land green use
efficiency

ULGUE (Alternative
Estimation)

Internet penetration rate 0.001***

(6.044)

5G population density 0.014***

(2.942)

Long-distance optical cable length
per unit area

0.005***

(11.587)

Digital economy development 0.013**

(2.081)

Level of economic development −0.059*** −0.024** −0.059*** −0.089***

(-9.878) (-2.057) (-9.615) (-6.655)

population density 0.002 0.007** 0.007*** 0.005

(1.390) (2.411) (2.666) (1.057)

Industrial Structure 0.069*** 0.112 0.142*** 0.010

(3.681) (1.347) (8.139) (0.210)

Environmental regulation intensity −1.788*** 0.345 −0.853*** 1.298*

(-6.841) (1.082) (-3.163) (1.934)

level of financial development −0.018*** 0.003 −0.010** −0.017

(-4.564) (0.455) (-2.286) (-1.586)

constant term 0.996*** 0.592*** 0.922*** 1.392***

(16.367) (4.345) (13.885) (9.670)

urban fixed effect control control control control

year fixed effect control control control control

sample size 4,512 1,128 3102 4,512

R2 0.801 0.974 0.885 0.729

*, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively. The t-statistics are in parentheses.
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According to Table 7, once matching was performed, no
covariate differences between the treatment and control samples
reached statistical significance (p > 0.05), suggesting that the groups
achieved adequate balance through the matching process.

4.2.5 Placebo test
Based on the counterfactual idea of placebo testing, this article

refers to the study by Wang and Wang, (2024) to construct false
policy regions for robustness testing. This study conducts a spatial
placebo test by randomly assigning pseudo-treatment status across
potential pilot cities. Figure 4 shows the distribution of estimated
coefficients and corresponding p-values using kernel density plots,
which are derived from 500 random replications of the treatment
group assignment. The results show two key findings: first, the mean
regression coefficient (0.032) is close to zero, which indicates no
systematic treatment effect under randomization; and second, more
than 90% of the simulated p-values are above conventional
significance thresholds (p > 0.1). These patterns confirm that the
observed policy effects are unlikely to result from chance spatial
correlations, thus supporting the validity of our causal inferences.

These findings are highly consistent with those of Zheng and
Chen (2024), who use a spatial DID model to evaluate the effect of
China’s low-carbon city pilot policy on ULGUE. Their analysis
includes a placebo approach to validate the robustness of the
identified causal relationship. The results show that when the
treatment status is randomly assigned, the statistical significance
of the policy effect disappears. This further confirms that the original
estimation is not driven by model specification or sample selection
bias, but instead reflects a genuine policy effect. Both studies
demonstrate that the placebo test, as a counterfactual-based
robustness check, is an effective tool for enhancing the credibility
of causal inference and strengthening the reliability of empirical
conclusions.

4.3 Mechanism effect test

This section examines how the digital economy influences
ULGUE through two mediating paths: RUE and green
technology innovation (GTI). Drawing on Fu (2024)

TABLE 5 Robustness testing - instrumental variable method.

Variables (1) (2)

Digital economy development Land green use efficiency

tool variable 0.126***

(5.158)

Digital economy development 0.470***

(7.221)

Level of economic development −0.100*** −0.016

(-4.084) (-1.188)

population density −0.003 0.002

(-0334) (0.469)

Industrial Structure −0.012 0.075*

(-0.147) (1.926)

Environmental regulation intensity −7.903*** 2.178**

(-5.190) (2.435)

level of financial development 0.005 −0.018**

(0.254) (-2.208)

constant term 1.260***

(4.847)

urban fixed effect control control

year fixed effect control control

sample size 4,512 4,512

Cragg-Donald Wald F statistic 158.049

48.106

Kleibergen-Paap rk LM statistic (p-value = 0.000)

*, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively. The t-statistics are in parentheses.
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and Zheng and Chen (2024), we adopt a parallel mediation
model, treating GTI and RUE as independent rather than
sequential channels. Although the two may be correlated in
practice, the identification relies on the assumption that each
captures a distinct pathway from digital economy development to
ULGUE, consistent with Liu et al. (2023) and Guo and
Zhang (2024).

Regression results in Table 8 show that digital economy
development significantly promotes GTI (coef. = 1.539, p <
0.01), and GTI positively affects ULGUE (coef. = 0.015, p <
0.01), supporting Hypothesis 2. These findings are consistent
with Liu et al. (2025) and Cheng et al. (2023). Similarly, the
digital economy significantly enhances RUE by reducing energy
intensity (coef. = −0.003, p < 0.01), while RUE has a strong
negative effect on ULGUE (coef. = −0.993, p < 0.01). Since
RUE is measured as energy consumption per unit of GDP, the

negative sign indicates that lower energy intensity
improves efficiency and land sustainability, validating
Hypothesis three and aligning with Liu et al. (2023) and Guo
and Zhang (2024).

The Sobel tests (16.510 for GTI and 4.675 for RUE, both p <
0.001) confirm these mediation effects. Overall, the results reveal a
dual parallel mediation mechanism, showing that digitalization
enhances ULGUE by advancing green innovation and resource
efficiency, while avoiding endogeneity concerns tied to assuming
a strict causal sequence.

Table 9 presents the robustness check of mediation effects using
the Bootstrap resampling method, following the recommendations
of Hair et al. (2021). We conducted 1,000 bootstrap replications to
generate 95% confidence intervals for the indirect effects. All
intervals exclude zero and align with the Sobel test, confirming
the stability of the mediation results.

TABLE 6 Robustness test.

Variables (1) (2) (3) (4) (5) (6)

PSM match Cull
Central
city

Core explanatory
variable lags one period

Controlling other policy
implications

Kernel
matching

Caliper
matching

Low carbon
pilot policy

Smart city
construction

Digital economy
development

0.039*** 0.033*** 0.046*** 0.061*** 0.059*** 0.060***

(8.777) (6.417) (9.184) (14.687) (14.761) (14.603)

Low carbon pilot
policy

0.006**

(2.135)

Smart City
Construction

0.002

(0.960)

Level of economic
development

−0.047*** −0.057*** −0.050*** −0.054*** −0.055*** −0.054***

(-4.716) (-4.486) (-8.905) (-9.443) (-9.645) (-9.694)

population density 0.008** 0.007 0.003** 0.002 0.002 0.002

(2.482) (1.522) (2.290) (1.324) (1.623) (1.561)

Industrial Structure 0.128*** 0.115** 0.059*** 0.091*** 0.070*** 0.070***

3.190) (2.493) (3.250) 4.826) (3.860) (3.894)

Environmental
regulation intensity

−1.837*** −1.789*** −0.920*** −1.269*** −1.327*** −1.354***

(-3.506) (-2.782) (-4.022) (-4.930) (-5.212) (-5.306)

level of financial
development

−0.015*** −0.023*** −0.020*** −0.015*** −0.017*** −0.017***

(-3.502) (-3.401) (-5.301) (-4.209) (-4.790) (-4.809)

constant term 0.846*** 0.977*** 0.880*** 0.944*** 0.947*** 0.948***

(7.788) (7.316) (16.239) (16.300) (16.697) (16.803)

urban fixed effect control control control control control control

year fixed effect control control control control control control

sample size 4,512 1,627 3952 4,230 4,512 4,512

R2 0.827 0.832 0.768 0.833 0.818 0.817

*, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively. The t-statistics are in parentheses.
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4.4 Spatial spillover effects test

This study analyzes the spatial-economic effects of the NEDC
policy within a spatial econometric framework following Corrado
and Fingleton (2012). Three spatial weight matrices capture
different inter-city relationships. The geographic distance matrix
(Wd) measures spatial adjacency using inverse geographic distances
between city coordinates, reflecting Tobler’s First Law of Geography.
The economic distance matrix (We) is constructed from the
reciprocal of absolute differences in per capita GDP, capturing
disparities in development levels and potential spillover channels.
This widely used measure offers a robust proxy for economic
proximity. Alternative indicators such as FDI flows were

considered but excluded due to missing data and comparability
issues at the prefecture level. A hybrid matrix (Wm = 0.5Wd +
0.5We) assigns equal weight to geographic and economic proximity.
Following Corrado and Fingleton (2012) and Elhorst (2014), this
design reflects both spatial and economic linkages.

Using these matrices, Moran’s I values are calculated to test
spatial correlation in ULGUE. Table 10 provides annual Moran’s I
statistics with Z-scores, while Figure 5 illustrates their evolution
from 2007 to 2022. The figure shows a clear upward trend, indicating
increasingly significant positive spatial correlation across cities. This
confirms the appropriateness of spatial econometric modeling.

Model specification is further validated through diagnostics.
LM-lag and LM-error tests (p < 0.10) identify spatial

FIGURE 4
Placebo test.

TABLE 7 Balance test results for PSM.

Variable Unmatched matched Mean treated Mean control %Bias t-value p-value

Level of economic development U 10.986 10.468 81.1 23.10 0.000

M 10.826 10.801 4.0 0.79 0.431

population density U 8.075 7.982 13.4 3.72 0.000

M 7.979 8.000 −3.0 −0.61 0.544

Industrial Structure U 0.452 0.464 −10.8 −3.01 0.003

M 0.479 0.473 5.4 1.00 0.315

Environmental regulation intensity U 0.008 0.008 −2.1 −0.58 0.562

M 0.008 0.008 1.3 0.26 0.797

level of financial development U 1.449 0.836 100.9 34.64 0.000

M 1.063 1.111 −7.9 −1.78 0.075
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dependence; Wald and LR tests (p < 0.01) reject reducing the Spatial
Durbin Model (SDM) to SAR or SEM; and Hausman and LR tests
(p < 0.01) support adopting a two-way fixed effects SDM. These
checks together confirm the robustness of the empirical framework.

Results in Table 11 show that across all three matrices, the “W×
Digital Economy Development” coefficient is significantly positive,

indicating that NEDC pilot construction enhances ULGUE. The
positive “W × Land Green Use Efficiency” coefficient confirms
spatial spillovers: local efficiency gains extend to surrounding
areas. Decomposition of spatial effects reveals three dimensions:
direct, indirect, and total effects, all significant at the 1% level. The
indirect effect under Wd (1.543) is especially strong, likely due to (i)

TABLE 8 Mechanism effect test.

Variable (1) (2) (3) (4)

Green technology
innovation

Land green use
efficiency

Energy utilization
efficiency

Land green use
efficiency

Digital Economy
Development

1.539*** 0.038*** −0.003*** 0.057***

(15.190) (9.698) (-5.101) (14.541)

Green Technology Innovation 0.015***

(12.032)

Resource Use Efficiency −0.993***

(-9.753)

Economic Development Level −1.185*** −0.037*** −0.016*** −0.070***

(-9.769) (-7.160) (-16.726) (-11.561)

Population Density 0.057 0.002 0.001** 0.003**

(1.639) (1.053) (2.110) (2.040)

Industrial Structure 2.879*** 0.029* 0.001 0.072***

(7.808) (1.683) (0.358) (4.008)

Environmental Regulation
Intensity

−45.671*** −0.674*** 0.116** −1.224***

(-6.450) (-2.850) (2.122) (-4.904)

Financial Development Level −0.055 −0.016*** −0.001 −0.018***

(-0.658) (-4.966) (-1.312) (-5.030)

Constant Term 11.943*** 0.772*** 0.195*** 1.139***

(9.250) (14.857) (18.530) (18.356)

City Fixed Effects Control Control Control Control

Year Fixed Effects Control Control Control Control

Sample Size 4,512 4,512 4,512 4,512

R2 0.790 0.840 0.882 0.824

Sobel test statistic 16.510 4.675

Sobel p-value 0.000 0.000

*, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively. The t-statistics are in parentheses.

TABLE 9 Bootstrap test.

Mediator variable Effect type Coefficient Std. Error z-value p-value 95% confidence interval

Green Technology Innovation Indirect Effect 0.0224 0.0025 9.01 0.000 [0.0175, 0.0273]

Direct Effect 0.0377 0.0041 9.29 0.000 [0.0297,0.0456]

Resource Use Efficiency Indirect Effect 0.0028 0.0007 4.18 0.000 [0.00148, 0.0041]

Direct Effect 0.0573 0.0041 14.01 0.000 [0.0493,0.0653]
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knowledge spillovers, whereby digital and green technologies
developed in demonstration cities diffuse to nearby regions; (ii)
labor mobility and inter-city firm linkages, which facilitate the

transfer of skills, practices, and managerial know-how across
urban areas; and (iii) shared infrastructure networks, such as
broadband connectivity, logistics systems, and e-commerce

TABLE 10 Moran’s I index for land green use efficiency.

Year Geographic distance weight
matrix

Economic distance weight matrix Nested geo-economic distance
weight matrix

Moran’s I Z-Score Moran’s I Z-Score Moran’s I Z-Score

2007 0.023*** 5.271 0.068** 2.386 0.046*** 3.224

2008 0.034*** 7.408 0.087*** 3.034 0.061*** 4.218

2009 0.057*** 12.850 0.060** 2.252 0.059*** 4.351

2010 0.038*** 8.831 0.085*** 3.146 0.061*** 4.565

2011 0.041*** 9.151 0.102*** 3.681 0.072*** 5.145

2012 0.044*** 9.581 0.127*** 4.410 0.086*** 5.934

2013 0.038*** 8.309 0.124*** 4.335 0.081*** 5.649

2014 0.038*** 8.435 0.132*** 4.600 0.085*** 5.931

2015 0.039*** 8.542 0.160*** 5.536 0.100*** 6.870

2016 0.039*** 8.487 0.184*** 6.277 0.112*** 7.591

2017 0.042*** 8.957 0.199*** 6.722 0.120*** 8.108

2018 0.047*** 9.985 0.216*** 7.276 0.132*** 8.824

2019 0.051*** 10.654 0.232*** 7.796 0.142*** 9.447

2020 0.056*** 11.772 0.250*** 8.356 0.153*** 10.184

2021 0.058*** 12.000 0.257*** 8.599 0.158*** 10.462

2022 0.059*** 12.329 0.263*** 8.770 0.161*** 10.684

*, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively. The t-statistics are in parentheses.

FIGURE 5
Trend of Moran’s I index.

Frontiers in Environmental Science frontiersin.org15

Jiang et al. 10.3389/fenvs.2025.1659159

mailto:Image of FENVS_fenvs-2025-1659159_wc_f5|tif
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1659159


platforms, which enhance inter-city integration and amplify policy
diffusion Thus, the NEDC policy improves land-use efficiency not
only within pilot cities but also across neighboring regions,
confirming Hypothesis 4. These findings are consistent with
Zheng and Chen (2024), who showed similar spatial effects for
the Low-Carbon City Pilot Policy, reinforcing that green
development initiatives generate significant regional spillovers.

Table 12 further reports sensitivity tests of the hybrid matrix (v =
0.3, 0.7). Results remain robust, with larger weights on economic
distance amplifying indirect effects, indicating asymmetric
spillovers. This supports v = 0.5 as a reasonable baseline.

4.5 Heterogeneity analysis

To examine how digital economic development affects ULGUE
differently across two important aspects, this study conducts a
comprehensive heterogeneity analysis: (1) geographical regions
and (2) policy implementation cohorts. The multi-dimensional
assessment shows significant variations in policy effectiveness
based on locational characteristics and adoption timing.

4.5.1 Regional heterogeneity
Building on Zhu et al. (2023), this study divides the sample into

Eastern, Central, and Western regions to test for regional variation
in the digital economy’s impact on urban land green use efficiency
(ULGUE). Table 13 shows uniformly positive and significant
coefficients, confirming that digitalization enhances ULGUE
overall but with spatial gradients. The Eastern region records the
strongest effect (0.068, p < 0.01), reflecting advantages in
infrastructure, institutional support, and green innovation

resources. The Central region also demonstrates a significant
effect (0.049, p < 0.01), suggesting that digitalization contributes
to greener land use even under weaker conditions. By contrast, the
Western region’s effect is weaker (0.039, p < 0.05), constrained by
limited infrastructure, inefficient resource allocation, and restricted
factor mobility. These findings align with Zheng and Chen (2024),
who report that low-carbon city pilots deliver stronger benefits in
the East due to solid economic and governance foundations.

Figure 6 further illustrates these regional disparities.
Standardized coefficients are 0.217, 0.280, and 0.223 for the
Eastern, Central, and Western regions, respectively, underscoring
the heterogeneity of policy effects across China’s economic zones.

4.5.2 Batch heterogeneity
To evaluate whether policy timing influences the green effects of

digital economy development, this study incorporates batch-specific
dummies within a triple difference (DDD) framework. As shown in
Table 14, the estimated coefficients for the first and second batches
are 0.084 and 0.058, both significant at the 1% level, while the third
batch yields a coefficient of 0.010, significant only at the 10% level.
These results indicate that the policy markedly enhanced ULGUE in
the first two cohorts, but its impact in the third batch
remains limited.

A Wald joint test is further performed on the coefficients of
Digital Economy × 1st batch, 2nd batch, and 3rd batch. The joint
statistic equals 17.840 and is significant at the 1% level, confirming
that batch heterogeneity is statistically evident.

The weaker performance of later cohorts may stem from
diminishing marginal returns, as the earlier pilots had already
established critical digital infrastructure and institutional
frameworks, reducing incremental benefits for subsequent cities.

TABLE 11 Results of the spatial effects test.

Variable and effect
type

Geographic distance weight
matrix

Economic distance weight
matrix

Nested geo-economic distance
weight matrix

W × Digital Economy
Development

0.107** 0.023*** 0.039***

(2.418) (3.527) (3.213)

W × Land Green Use
Efficiency

0.886*** 0.391*** 0.788***

(32.127) (16.274) (22.738)

Direct Effect 0.067*** 0.048*** 0.050***

(18.029) (17.512) (18.259)

Indirect Effect 1.477** 0.065*** 0.357***

(2.506) (6.392) (4.620)

Total Effect 1.543*** 0.113*** 0.407***

(2.608) (10.400) (5.222)

Control Variables Control Control Control

Year Fixed Effects Control Control Control

City Fixed Effects Control Control Control

Sample Size 4,512 4,512 4,512

R2 0.088 0.176 0.133

*, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively. The t-statistics are in parentheses.
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In addition, fiscal constraints, limited digital literacy, and weaker
governance capacity hindered effective adoption of digital tools and
enforcement of regulatory frameworks. These frictions along the
chain from “digital investment → institutional embedding → green
outcomes” further diluted policy effectiveness.

These findings accord with Liu et al. (2025), who show that the
NEDC policy yields stronger impacts in early pilots with more
advanced digital ecosystems. Similarly, Guo and Zhang (2024) reveal
that initial batches facilitated efficient allocation of land and
production inputs, supporting sustainable, low-carbon growth.
Overall, the evidence indicates that the policy’s effectiveness in
enhancing ULGUE depends on timing and local readiness, while
later cohorts encounter diminishing returns and uneven outcomes
from weaker implementation.

5 Discussion

5.1 Key findings

This research shows that the digital economy can increase
ULGUE, which is consistent with Guo and Zhang (2024) and Liu
and Qiu (2023), who find that digital technology promotes resource
efficiency and environmental improvement. In the context of rapid
urbanization in China, digitalization is an important tool for green
urban transformation. However, the effect of the digital economy
may be limited by regional development levels and infrastructure,
and its effectiveness differs among cities (Cheng et al., 2023; Liu
et al., 2025). Our results confirm this: the digital economy has

stronger effects in China’s eastern regions than in western regions.
Eastern areas have more advanced economic development and
stronger digital infrastructure, which allow for broader
technology adoption and promotion. Therefore, policies are more
effective in increasing ULGUE in these regions.

In contrast, underdeveloped infrastructure in western regions
limits the potential of the digital economy (Chu et al., 2023).
Additionally, eastern China’s superior human capital and
innovation capacity amplify digital benefits, resulting in more
substantial green benefits. Meanwhile, inadequate innovation
endowments and underdeveloped economic foundations in
western regions constrain the efficacy of the digital economy in
advancing sustainable land use practices.

The digital economy indirectly improves ULGUE by stimulating
green innovation and optimizing resource allocation. This finding
supports Liu and Qiu’s (2023) and Fan et al.’s (2024) arguments
regarding the intermediary function of technological innovation in
green transitions. These scholars show that innovation enhances
environmental outcomes, enables efficient resource use, and
facilitates greener land utilization. Because innovation effects
depend on institutional environments and financial development
(Berman and Bui, 1998; Beck et al., 2000), this study includes these
variables as controls. This approach reinforces the robustness of our
conclusion concerning the mediating role of green innovation.
Nevertheless, we acknowledge that GTI and RUE may themselves
be endogenously affected by digital economy development, which
could bias mediation estimates. Although additional methods such
as instrumental variables or dynamic panel approaches could
mitigate this issue, it remains a limitation of the present study.

TABLE 12 Sensitivity analysis of spatial effects based on the nested geo-economic weight matrix.

Variable and effect type Nested geo-economic distance weight
matrix

Nested geo-economic distance weight
matrix

Weight v = 0.3 v = 0.7

W × Digital Economy Development 0.028*** 0.094***

(3.091) (5.137)

W × Land Green Use Efficiency 0.584*** 0.896***

(18.172) (36.852)

Direct Effect 0.048*** 0.055***

(17.742) (18.011)

Indirect Effect 0.129*** 1.377***

(5.923) (3.406)

Total Effect 0.178*** 1.433***

(7.918) (3.530)

Control Variables Control Control

Year Fixed Effects Control Control

City Fixed Effects Control Control

Sample Size 4,512 4,512

R2 0.160 0.118

*, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively. The t-statistics are in parentheses.
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TABLE 13 Regional heterogeneity analysis results.

Variables (1) (2) (3)

Eastern region Central region Western region

Digital Economy Development 0.068*** 0.049*** 0.039**

(4.339) (4.858) (2.602)

Economic Development Level −0.053** −0.020** 0.010

(-2.007) (-2.451) (0.786)

Population Density 0.018 −0.002 −0.002

(1.459) (-0.457) (-0.498)

Industrial Structure 0.145 −0.039 −0.025

(1.363) (-1.543) (-0.916)

Environmental Regulation Intensity −1.157 −0.306 0.103

(-1.418) (-0.812) (0.171)

Financial Development Level −0.034** −0.004 −0.013

(-2.397) (-0.511) (-1.337)

Constant Term 0.842*** 0.639*** 0.311**

(3.258) (6.513) (2.145)

City Fixed Effects Control Control Control

Year Fixed Effects Control Control Control

Sample Size 1,600 1728 1,184

R2 0.839 0.859 0.728

*, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively. The t-statistics are in parentheses.

FIGURE 6
ULGUE trend from 2007 to 2022 (east vs. central vs. west).
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Moreover, The digital economy yields spatial spillovers: it raises
local ULGUE and improves neighbors’ green performance. As Chu
et al. (2023) show, digital infrastructure promotes efficiency via
diffusion, information, and factor flows. Our estimate gives a
spillover coefficient of 1.543. Yet, spillovers may be constrained
by geography and institutions, especially where infrastructure is
weak (Cheng et al., 2023), implying regionally divergent effects
needing targeted policies.

5.2 Theoretical contributions

This research addresses gaps in examining the environmental
effects of the digital economy across perspectives, mechanisms, and
spatial dimensions. It also extends General Purpose Technology
(GPT) theory.

First, we broaden the research perspective. While previous
research often focuses on macro-level environmental indicators,
this study examines ULGUE as a specific dimension. This approach

enriches studies that link the digital economy to sustainable
development.

Second, it reveals the internal mechanisms. Through empirical
testing, we identify two core transmission pathways: GTI and RUE.
This finding clarifies how digital technologies affect urban green
transitions.

Third, we verify and quantify spatial spillover effects. This study
incorporates spatial considerations into the analytical framework
and uses spatial econometric techniques to empirically verify and
quantify the significant positive spillover effects of the digital
economy on ULGUE. This finding provides new empirical
evidence for spatial economics.

Fourth, this study refines and expands the theoretical framework
of GPTs. While GPT theory traditionally emphasizes the broad
applicability and inter-industry complementarity of technologies
(Bresnahan and Trajtenberg, 1995), it offers limited explanation of
how these technologies function within ecological and sustainability
transitions. To address this gap, this study introduces two specific
transmission mechanisms—green technology innovation (GTI) and

TABLE 14 Batch heterogeneity analysis results.

Variables (1) (2) (3)

First batch Second batch Third batch

Digital Economy Development × 1st 0.084***

(9.356)

Digital Economy Development × 2nd 0.058***

(10.144)

Digital Economy Development × 3rd 0.010*

(1.671)

Economic Development Level −0.056*** −0.060*** −0.059***

(-9.447) (-10.111) (-9.988)

Population Density 0.002 0.003** 0.002

(1.034) (1.968) (1.563)

Industrial Structure 0.075*** 0.069*** 0.070***

(4.123) (3.753) (3.773)

Environmental Regulation Intensity −1.679*** −1.529*** −1.845***

(-6.518) (-5.864) (-6.957)

Financial Development Level −0.017*** −0.019*** −0.017***

(-4.576) (-4.883) (-4.398)

Constant Term 0.971*** 1.014*** 1.012***

(16.182) (16.704) (16.678)

City Fixed Effects Control Control Control

Year Fixed Effects Control Control Control

Wald joint test statistic 17.840***

Sample Size 4,512 4,512 4,512

R2 0.810 0.807 0.798

*, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively. The t-statistics are in parentheses.

Frontiers in Environmental Science frontiersin.org19

Jiang et al. 10.3389/fenvs.2025.1659159

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1659159


resource use efficiency (RUE)—to operationalize the abstract notion
of “technological complementarity” described by Helpman and
Trajtenberg (1994). These mechanisms clarify how digital
infrastructure drives green innovation and improves resource
allocation, thereby enriching the theoretical logic of GPTs in
sustainability research. Furthermore, the integration of spatial
econometric techniques shows that digital infrastructure and
platforms generate measurable green spillover effects across city
boundaries. This spatial extension complements earlier GPT
formulations by including regional interaction and cross-
boundary externalities, offering new insights into how digital
systems support network-based diffusion, coordinated
development, and collective urban green transformation. The
findings strengthen the theoretical robustness and policy
relevance of GPT theory in guiding green and sustainable
regional development. At the same time, we also recognize that
GPTs, including digital technologies, may generate unintended
environmental externalities such as electronic waste and high
energy consumption in data centers, which should be
incorporated into future theoretical extensions.

5.3 Policy implications

While China operates under a hierarchical and multi-tiered
governance structure, the execution of NEDC policies requires
coordination among multiple entities, such as governments,
urban planners, and economic policymakers. Therefore, we
propose targeted recommendations.

For governments, optimizing top-level design with regionally
differentiated strategies is fundamental. Policies should implement
tailored fiscal and industrial measures concerning uneven digital
infrastructure and economic development across eastern, central,
and western regions. Governments should scale up replicable
models from successful E-commerce Demonstration Cities. In
addition, specific policy instruments can be introduced, such as
linking subsidies for 5G infrastructure to measurable improvements
in green land use efficiency, or establishing cross-city digital–green
innovation cooperation zones in urban clusters like the Yangtze
River Delta. Governments can also lead efforts to build cross-
regional digital governance and data-sharing platforms to harness
spatial externalities and create green synergies.

For urban planners, integrating digital technology into spatial
planning is essential. Planning departments should include digital
infrastructure, such as 5G and IoT, in land-use plans. Technologies
such as remote sensing and digital twins can be used to develop
dynamic monitoring and simulation systems that improve land use
efficiency. Land supply models should be reformed to connect land
quotas and prices with firms’ green technology and digital maturity.
This market-oriented approach can promote ULGUE.

For economic policymakers, promoting a digital-driven green
industrial ecosystem is critical. This includes establishing special
funds, encouraging integration between digital platforms and
manufacturing firms, and accelerating the diffusion of green
technologies. Additionally, financial incentives, such as subsidies
and tax breaks, can support firms in their green and digital
transitions, ultimately supporting green industrial clusters and
enhancing regional green competitiveness.

5.4 Limitations and future research

5.4.1 Limitations
Several limitations should be noted. First, because pollution

and energy statistics are published with a lag, the dataset ends in
2022 and does not capture emerging developments such as
generative AI (AIGC). Second, although the DID approach
satisfies the parallel trend assumption, potential interference
from concurrent initiatives (e.g., smart city or low-carbon
programs) and unobservable shocks cannot be ruled out. Third,
the mechanism analysis relies on proxies—patent counts for green
innovation and the energy-to-GDP ratio for resource efficiency.
While widely used, these indicators may not fully reflect
how digital technologies affect land-use practices: patents
indicate innovation potential rather than application, and
energy intensity may miss structural or behavioral changes. The
lack of firm-level surveys or case studies also limits
explanatory depth.

In addition, comparative fit statistics (e.g., log-likelihood, AIC)
for the three spatial models are not reported; although useful for
robustness, they would considerably increase the analytical
burden. The findings are also shaped by China’s unique
institutional context of state-led digital infrastructure and public
land ownership, which restricts generalization to market-based or
private land systems. Finally, the framework does not incorporate
moderating factors such as institutional quality or urban
density, nor account for feedback loops. Excluding these
elements, though improving tractability, may reduce the
framework’s comprehensiveness.

5.4.2 Future research
Future studies can explore the following directions. First,

researchers can shift the analytical focus to the micro firm level.
Although this study identifies green innovation and resource
efficiency as mediators at the city level, firm-level data may
provide deeper insights into how digital technologies affect
production processes, supply chain management, and land use
decisions. Firm surveys or case studies, in particular, could help
verify whether patent-based indicators and energy-intensity
measures accurately reflect changes in actual land-use
efficiency. Second, cross-country comparative research can be
conducted. To assess the external validity and institutional
contingencies of the findings, future work may compare the
digital economy’s effects on land-use efficiency across
countries or regions with different governance structures.
Third, the mechanism analysis can be refined and extended.
Beyond technological and resource-based mechanisms, the
digital economy may affect green land use through
sociological channels, such as governance reforms, lifestyle
shifts, and environmental preferences. In addition, subsequent
research could integrate moderating factors such as institutional
quality and urban density, as well as feedback loops within the
theoretical framework, to better capture the complex interactions
between digitalization and sustainable land use. Finally, future
research should also pay attention to the negative externalities of
digitalization, such as electronic waste and the rising energy
consumption of data centers, to achieve a more balanced
assessment of its role in sustainable urban transitions.
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6 Conclusion

To rigorously assess the effect of digital economy expansion on
ULGUE and its underlying mechanisms, this study uses panel data
from 282 Chinese cities and treats the NEDC policy as a quasi-
natural experiment. The main conclusions are as follows. First, the
digital economy has a strong positive effect on ULGUE, which shows
that digital technologies substantially contribute to urban growth
and the green transformation of land use. Second, two core pathways
drive this improvement: stimulating green technology innovation to
upgrade land-use practices, and increasing resource allocation
efficiency to direct production factors toward greener, higher-
productivity sectors. Third, spatial analysis shows strong network
externalities. The digital economy not only improves ULGUE locally
but also positively affects neighboring cities, which emphasizes the
need for regional coordination to capture digital dividends. Fourth,
regional heterogeneity analysis finds an east-to-west decreasing
effect, where the digital economy’s benefits are greatest in eastern
China, intermediate in central areas, and lowest in the west. Earlier
policy adoption also produces stronger effects, which highlights the
importance of policy timing and infrastructure maturity in
determining effectiveness.
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