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Introduction:Climate change is driving a sharp rise in the frequency and intensity
of extreme-weather events, magnifying their social and economic impacts and
exposing the limits of conventional physics-based forecasting systems.
Methods: To understand how artificial intelligence (AI) helps meet this challenge,
we systematically analyzed 8,642 peer-reviewed articles published between 2015
and 2024 in the Web of Science, applying Latent Dirichlet Allocation (LDA) topic
modelling to map the literature.
Results: Five principal research themes emerged: 1) Forecasting and Prediction of
Extreme-Weather Events, 2) Flood Prediction and Risk Assessment, 3) Drought
Monitoring and Agricultural Risk Assessment Using Machine Learning, 4) Climate
Change and Ecosystem Response to Extreme-Weather Events Using Machine
Learning, and 5) Multisource Imagery and Deep Learning for Disaster Detection
and Damage Assessment. Across these domains, AI-driven models improve
forecast skill, fuse heterogeneous hydrometeorological data for real-time
warning, and quantify ecological impacts at finer spatial-temporal scales than
traditional approaches; recent advances include diffusion models that sharpen
rainfall and wind forecasts, recurrent networks that enhance runoff prediction,
and transformer-based vision models that automate high-resolution
damage mapping.
Discussion: The evidence indicates that AI can increase the reliability of extreme-
weather prediction, accelerate disaster-response workflows, and ultimately
reduce societal losses. Methodologically, this study offers the first large-scale,
quantitativemapping of AI research in extreme-weather prediction and response,
capturing both thematic prevalence and temporal evolution—an empirical
perspective that extends and strengthens insights from prior qualitative reviews.
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1 Introduction

1.1 Research background and rationale

Climate change has dramatically increased the frequency and
intensity of extreme-weather events—typhoons, floods, droughts,
and heatwaves—thereby amplifying social and economic losses
(Intergovernmental Panel on Climate Change [IPCC], 2021). For
example, heavy rainfall disasters cause substantial casualties and
economic damage. Conventional Numerical Weather Prediction
(NWP) models, however, struggle with long-range forecasting
because of sensitivity to initial conditions and computational
complexity (Weyn et al., 2021; Zhong et al., 2024). To overcome
these limitations, artificial intelligence (AI)—particularly machine
learning and deep learning approaches—leverages large-scale sensor
data (satellite imagery and in situ observations) to learn complex
nonlinear relationships and to markedly improve predictive
performance.

Diffusion models, such as FuXi-Extreme, have mitigated the
systematic underestimation of heavy rainfall and strong winds found
in conventional forecasting models (Zhong et al., 2024). In addition,
AI-based flood susceptibility assessment systems quantify flood risk
and delineate its spatial distribution, supporting the development of
effective prevention and response strategies (Costache et al., 2023).
A systematic review of AI applications in extreme-weather
prediction and response is therefore essential from both scientific
and policy perspectives.

1.2 Research objectives

This review has three objectives: (i) to identify the dominant
keywords and topical clusters in AI research on extreme-weather
prediction and response published between 2015 and 2024; (ii) to
examine characteristic research trajectories and methodological
patterns within each cluster; and (iii) to derive scientific,
technological and policy implications that can guide next-
generation operational systems.

1.3 Research questions

In addition, this study addresses the following research
questions: What are the main keywords emerging from AI
application research in the field of extreme-weather prediction
and response? Which principal topics emerge from AI
application research in this field, and what research trends and
characteristics does each topic exhibit? What implications do these
research trends have, and how might they influence future research
and policy development?

1.4 Concept of extreme-weather events and
the current status and limitations of their
prediction and response

Extreme-weather events are phenomena that depart from
normal weather conditions—such as typhoons, heavy rainfall,

floods, droughts, and heatwaves—and their frequency and
intensity have been increasing worldwide as a result of climate
change (IPCC 2021). These events exert significant impacts on
natural ecosystems, social infrastructure, and economic systems,
and higher forecasting accuracy is essential for effective disaster
preparedness and damage mitigation.

Traditional weather forecasting is primarily based on NWP
models, which simulate atmospheric conditions using
mathematical frameworks. However, NWP models face
challenges in long-term forecasting due to sensitivity to initial
conditions, model uncertainties, and high computational costs
(Weyn et al., 2021). To overcome these limitations, AI-based
predictive models have been introduced, yet improving
forecasting accuracy and ensuring real-time applicability remain
critical research challenges. Building on this motivation, recent years
have witnessed a rapid turn toward AI-driven approaches, which
form the foundation of emerging research in extreme-weather
prediction.

1.5 Review of AI-Based extreme-weather
prediction studies

These AI technologies have significantly improved the accuracy
of extreme-weather prediction by leveraging machine-learning and
deep-learning techniques. Recurrent neural networks (RNNs), such
as Long Short-Term Memory (LSTM) and Gated Recurrent Unit
(GRU), have demonstrated strengths in learning from time-series
data and have been applied to rainfall-runoff prediction (Gao et al.,
2020), while diffusion models—exemplified by FuXi-Extreme—have
effectively addressed the systematic underestimation of heavy
rainfall and strong winds found in earlier AI models (Zhong
et al., 2024).

Moreover, AI applications in 2–6-week sub-seasonal forecasting
that combine AI-based models with conventional NWP have been
actively pursued. Machine-learning techniques such as eXtreme
Gradient Boosting (XGBoost) are also increasingly being applied
to weather disaster prediction (Weyn et al., 2021; Yang et al., 2022).
These diverse AI-based approaches complement the limitations of
traditional forecasting systems and enhance the practical
applicability of disaster management systems.

1.6 Topic modeling approach and review of
prior meteorological research trends

Topic modeling is an unsupervised learning technique that
automatically extracts latent topics from large-scale text data. In
particular, Latent Dirichlet Allocation (LDA) derives topics under
the assumption that each document is a mixture of multiple topics
(Blei et al., 2003). Research applying LDA has also increased in the
meteorological domain, enabling systematic identification of major
research trends and issues related to weather prediction
and response.

In this study, we apply an LDA approach to analyze literature on
extreme-weather prediction and response from 2015 to 2024,
identifying five principal topics: 1) Forecasting and Prediction of
Extreme-Weather Events, 2) Flood Prediction and Risk Assessment,
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3) Drought Monitoring and Agricultural Risk Assessment Using
Machine Learning, 4) Climate Change and Ecosystem Response to
Extreme Weather Events Using Machine Learning, and 5)
Multisource Imagery and Deep Learning for Disaster Detection
and Damage Assessment. These findings offer insights into the
development directions and technical requirements of AI-based
extreme-weather prediction research, as well as policy
implications for the implementation of future disaster
management systems.

2 Methods

2.1 Literature search strategy

A systematic search was executed on Web of Science Core
Collection using the query

TS=(“extreme weather” OR “severe weather events” OR
“extreme climate events” OR “climate extremes” OR “flood” OR
“storm” OR “hurricane” OR “drought” OR “heatwave” OR “heavy
snow” OR “cold wave”) AND TS=(“artificial intelligence” OR “AI”
OR “machine learning” OR “deep learning” OR “neural networks”
OR “predictive modeling” OR “data-driven” OR “intelligent
systems” OR “AI models”)

On 17 January 2025 from the Republic of Korea (unrestricted
internet access). Search terms such as “heavy snow” and “cold wave”
were included to ensure coverage of cold-weather extremes
alongside other hazards (e.g., floods, droughts, heatwaves), while
technology keywords (e.g., “machine learning”, “deep learning”)
ensured inclusion of both established AI paradigms (e.g., neural
networks, support vector machines) and emerging approaches (e.g.,
deep learning, reinforcement learning). The search was limited to
2015–2024, peer-reviewed journal articles and open-access
conference papers written in English. No non-electronic archives
were consulted.

In addition to the temporal, language, and document-type filters
described above, our analysis was restricted to the Web of Science
Core Collection, which primarily includes prestigious indices such
as the Science Citation Index Expanded (SCIE) and Social Sciences
Citation Index (SSCI), thereby ensuring a high standard of
peer-reviewed scholarly quality. Journal-level metrics such as
Impact Factor or quartile rankings were not applied as exclusion
criteria because these values vary annually, are not uniformly
available for all indexed records over the 2015–2024 period,
and are not directly accessible through the Web of Science
search interface. Instead, methodological relevance and explicit
application of AI/ML to extreme-weather prediction or response
served as the primary quality-control filters. This approach
prioritizes reproducibility and minimizes selection bias stemming
from incomplete journal metric coverage.

2.2 Screening and eligibility

The initial 12,716 records were de-duplicated, and items lacking
abstracts or published after 2024 were removed, leaving
8,642 articles for screening. Full search strings are available at the
project’s GitHub repository (release v1.0). Topic assignment

probabilities for all included articles are provided in
Supplementary Table S1. Inclusion required (i) explicit
application of AI/ML to prediction or response of extreme-weather
events; (ii) sufficient methodological detail for reproducibility.
Exclusion criteria were (i) topics unrelated to extreme weather;
(ii) grey literature, commentaries, or datasets without analysis.
Study quality was not appraised using a formal risk-of-bias
tool; instead, two consistent criteria were applied across the
corpus: (i) methodological relevance, and (ii) explicit demonstration
of AI application. This approach ensured transparent and
reproducible screening.

2.3 Data preprocessing

Titles and abstracts were tokenised and normalised. Three
custom dictionaries were applied: domain-specific terms (e.g.,
“Weather Forecast”), synonyms (e.g., “AI”), and stop-words (e.g.,
“research”). Processing and visualisation were performed in
NetMiner 4.5.1. c. The resulting five-topic solution underpins the
synthesis in Section 3.

2.4 Topic modelling

An unsupervised Latent Dirichlet Allocation (LDA) model was
tuned via coherence maximisation, yielding α = 0.05, β = 0.02, k = 7
(coherence = −1.765). Parameter search was conducted across a
range of candidate topic numbers (k), with repeated runs to reduce
stochastic variation. The k = 7 configuration achieved one of the
highest coherence scores (see Figure 2) while also providing clearer
thematic separation than most alternative settings. On this basis, we
adopted k = 7 as the initial solution. Two topics—Topic 6 (space
weather) and Topic 7 (public health/healthcare)—were excluded
after manual review due to irrelevance to extreme-weather research.
This exclusion step follows the post hoc refinement approach
recommended by Jacobi et al. (2016), in which researchers may
remove low-relevance or non-interpretable topics to enhance
thematic clarity. The resulting five-topic solution ensured high
semantic coherence and thematic relevance without
excessive overlap.

Representative coherence scores for candidate k values are
presented in Figure 2. While broader parameter testing was
performed during model selection, not all outputs are displayed,
as many lower-scoring configurations offered little additional
interpretive value. To support transparency, Supplementary
Material—including topic–document assignment probabilities,
keyword dictionaries, and the reference matrix—are openly
available in the project’s GitHub repository (release v1.0). These
resources enable reproducibility of the analysis without inflating
manuscript length.

2.5 Flow diagram and visual analytics

Figure 1 presents the PRISMA flow for electronic records only;
the caption notes this adaptation. Figure 2 displays coherence scores
across candidate k values. Higher coherence scores generally

Frontiers in Environmental Science frontiersin.org03

Kim and Kim 10.3389/fenvs.2025.1659344

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1659344


FIGURE 1
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram of data collection.

FIGURE 2
Topic modeling optimization validation results.

Frontiers in Environmental Science frontiersin.org04

Kim and Kim 10.3389/fenvs.2025.1659344

mailto:Image of FENVS_fenvs-2025-1659344_wc_f1|tif
mailto:Image of FENVS_fenvs-2025-1659344_wc_f2|tif
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1659344


indicate greater semantic interpretability, and k = 7 was selected as
the optimal starting point as it demonstrated a high coherence score
and strong thematic separation (see Topic Modelling section
for details).

2.6 Transparency and data availability

The full article list, search strings, custom dictionaries, and
topic-assignment matrices are openly available at GitHub: https://
github.com/bykim1011/AI-Extreme-Weather-Review (release v1.0).
The figures were generated using different tools: Figure 2 was
directly from NetMiner outputs, while Figure 1 was created in
Python to illustrate the screening process and Figure 3 was
prepared in Excel.

3 Results

3.1 Overview of results

This study applied LDA to analyze AI application trends in
extreme-weather prediction and response from 2015 to 2024,
classifying a total of 8,642 academic articles into five principal
topics. Table 1 presents the main keywords for each topic
alongside the frequency and proportion of articles. Frequency
analysis revealed that Topic 2, Flood Prediction and Risk
Assessment, had the highest share (33.83%), followed by Topic 1,
Forecasting and Prediction of Extreme-Weather Events (17.79%),
Topic 5, Multisource Imagery and Deep Learning for Disaster
Detection and Damage Assessment (16.87%), Topic 3, Drought
Monitoring and Agricultural Risk Assessment Using Machine

FIGURE 3
Time-series analysis and linear trend results by topic.

TABLE 1 Main keywords and article frequency and proportion by topic.

ID Name Terms (probability) Frequency Proportion
(%)

1 Forecasting and Prediction of Extreme-Weather
Events

forecast (0.041), prediction (0.038), precipitation (0.037), storm
(0.019), rainfall (0.019), ML (0.017), Neural Network (0.014),
temperature (0.013), wind (0.012), LSTM(0.007)

1,537 17.79

2 Flood Prediction and Risk Assessment flood (0.100), prediction (0.032), forecast (0.026), ML (0.020), river
(0.019), Neural Network (0.015), flow (0.015), rainfall (0.014), risk
(0.013), susceptibility (0.011)

2,924 33.83

3 Drought Monitoring and Agricultural Risk
Assessment Using Machine Learning

drought (0.101), plant (0.029), crop (0.028), soil (0.028), moisture
(0.014), ML (0.012), irrigation (0.011), prediction (0.011), RF (0.010),
precipitation (0.007)

1,413 16.35

4 Climate Change and Ecosystem Response to
Extreme-Weather Events Using Machine Learning

climate (0.040), forest (0.021), drought (0.020), vegetation (0.019),
ecosystem (0.015), temperature (0.014), tree (0.013), soil (0.011), fire
(0.009), precipitation (0.009)

1,310 15.16

5 Multisource Imagery and Deep Learning for Disaster
Detection and Damage Assessment

imagery (0.073), flood (0.064), disaster (0.022), damage (0.019),
satellite (0.014), Neural Network (0.013), CNN(0.010), SAR(0.010),
hurricane (0.005), inundation (0.005)

1,458 16.87
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TABLE 2 Characteristics of five representative articles for each topic.

Topic Probability Article title Year Source Citationsa

1 0.991 Quantifying the Environmental Effects on Tropical Cyclone Intensity
Change Using a Simple Dynamically Based Dynamical System Model

2023 Journal of the Atmospheric Sciences 5

0.986 Sub-Seasonal Forecasting With a Large Ensemble of Deep-Learning
Weather Prediction Models

2021 Journal of Advances in Modeling Earth
Systems

107

0.985 Machine Learning-Based Hurricane Wind Reconstruction 2022 Weather and Forecasting 13

0.984 Predictability Limit of the 2021 Pacific Northwest Heatwave From
Deep-Learning Sensitivity Analysis

2024 Geophysical Research Letters 5

0.982 FuXi-Extreme: Improving extreme rainfall and wind forecasts with
diffusion model

2024 Science China Earth Sciences 5

2 0.997 Using fuzzy and machine learning iterative optimized models to
generate the flood susceptibility maps: case study of Prahova River
basin, Romania

2023 Geomatics, Natural Hazards and Risk 8

0.993 Modeling coordinated operation of multiple hydropower reservoirs at a
continental scale using artificial neural network: the case of Brazilian
hydropower system

2021 Brazilian Journal of Water Resources
(RBRH)

1

0.992 Detection of areas prone to flood risk using state-of-the-art machine
learning models

2021 Geomatics, Natural Hazards and Risk 48

0.992 A Comparative Analysis of Multiple Machine Learning Methods for
Flood Routing in the Yangtze River

2023 Water 9

0.992 A comparative assessment of decision trees algorithms for flash flood
susceptibility modeling at Haraz watershed, northern Iran

2018 Science of The Total Environment 556

3 0.990 Developing a Hyperspectral Remote Sensing-Based Algorithm to
Diagnose Potato Moisture for Water-Saving Irrigation

2024 Horticulturae 2

0.990 Assessing the sensitive spectral bands for soybean water status
monitoring and soil moisture prediction using leaf-based hyperspectral
reflectance

2023 Agricultural Water Management 35

0.988 Toward Field Level Drought and Irrigation Monitoring Using Machine
Learning Based High-Resolution Soil Moisture (ML-HRSM) Data

2023 IEEE International Geoscience and
Remote Sensing Symposium

0

0.988 Yield prediction models for some wheat varieties with satellite-based
drought indices and machine learning algorithms

2025** Irrigation and Drainage 0

0.986 A robust model for diagnosing water stress of winter wheat by
combining UAV multispectral and thermal remote sensing

2024 Agricultural Water Management 24

4 0.989 Resistance of grassland productivity to drought and heatwave over a
temperate semi-arid climate zone

2024 Science of The Total Environment 3

0.987 Inner Mongolia grasslands act as a weak regional carbon sink: A new
estimation based on upscaling eddy covariance observations

2023 Agricultural and Forest Meteorology 21

0.986 Assessing andModeling Ecosystem Carbon Exchange andWater Vapor
Flux of a Pasture Ecosystem in the Temperate Climate-Transition Zone

2021 Agronomy 3

0.985 Climate change drives habitat contraction of a nocturnal arboreal
marsupial at its physiological limits

2020 Ecosphere 39

0.983 Regional differences in the response of California’s rangeland
production to climate and future projection

2023 Environmental Research Letters 2

5 0.993 Flood Detection in Dual-Polarization SAR Images Based onMulti-Scale
Deeplab Model

2022 Weather and Forecasting 23

0.991 BDANet: Multiscale Convolutional Neural Network With Cross-
Directional Attention for Building Damage Assessment From Satellite
Images

2022 IEEE Transactions on Geoscience and
Remote Sensing

79

0.989 FloodNet: A High Resolution Aerial Imagery Dataset for Post Flood
Scene Understanding

2021 IEEE Access 156

0.989 Large-scale building damage assessment using a novel hierarchical
transformer architecture on satellite images

2023 Computer-Aided Civil and
Infrastructure Engineering

36

(Continued on following page)
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Learning (16.35%), and Topic 4, Climate Change and Ecosystem
Response to Extreme-Weather Events Using Machine Learning
(15.16%). This distribution indicates that AI techniques have
been particularly active in flood prediction and assessment
research in recent years. The representative articles listed in
Table 2 were selected through a two-step process to ensure high
thematic relevance. First, all 8,642 articles were ranked in
descending order by their topic-probability scores generated by
the LDA model. Second, abstracts of the top-ranked articles were
manually reviewed to identify five studies per topic that best
exemplified its core research focus. This combined
quantitative–qualitative procedure ensured that the selected
articles are both statistically robust and substantively
representative. To further contextualize these representative
studies, additional metadata—including publication year, source,
and citation counts—are provided. Figure 3 illustrates a time-series
analysis of topic occurrence, visualizing annual changes in article
counts for each topic over the study period (2015–2024). Topic 2
exhibited a steady upward trend from the early years and a
pronounced surge after 2020. This post-2020 acceleration in
Topic 2 suggests an emerging research priority, potentially driven
by increasing flood events and advances in hydrological modeling.
Topics 1/5 also showed continuous growth in research interest over
the past 5 years, underscoring their rising importance. Meanwhile,
Topics 3/4 demonstrated stable increases in recent years, confirming
that AI-based precision agriculture and ecosystem management
have become increasingly prominent research themes. Building
on these findings, the following sections delve into the specific
trends, characteristics, and key case studies for each topic. A full
list of topic assignments and probabilities is available in
Supplementary Table S1.

3.2 Topic 1: forecasting and prediction of
extreme-weather events

In recent years, AI-based techniques—particularly machine
learning and deep learning—have become the primary research
methods in the field of extreme-weather forecasting and prediction.
The main keywords—forecast, precipitation, storm, wind,
temperature, LSTM—reflect the application of modeling
techniques to a diverse set of meteorological variables.

Specifically, efforts to address initial-condition sensitivity
through machine-learning and deep-learning approaches have
increased. For example, Vonich and Hakim (2024) introduced an
initial-condition optimization method using backpropagation,
reducing error by over 90 percent compared to conventional
models. This result underscores the critical role of initial-condition
optimization in determining model performance.

Conventional AI-based models tended to underestimate
extreme events as forecast lead time increased. To overcome this,
the diffusion-model-based FuXi-Extreme was proposed (Zhong
et al., 2024); it captures finer intensity variations in heavy rainfall
and strong winds, thereby greatly alleviating the underestimation
issue compared to the original FuXi.

At the same time, combining NWP and AI-based models has led
to increasingly precise 2–6-week sub-seasonal forecasting. These
advances promise practical integration with disaster management
systems (Weyn et al., 2021). Notably, recent work has developed an
XGBoost-based hurricane wind reconstruction model,
demonstrating its potential application in weather disaster
analysis and response systems (Yang et al., 2022).

Overall, these research trends indicate that AI technologies are
enhancing the reliability of extreme-weather forecasting. Future
studies are expected to focus on developing more sophisticated
deep-learning architectures, quantifying and reducing forecast
uncertainty, and validating system performance in operational
settings. AI-based extreme-weather forecasting systems are
anticipated to strengthen disaster response capabilities and
substantially minimize societal losses.

3.3 Topic 2: flood prediction and risk
assessment

In recent years, AI-based methods—including machine learning
and deep learning—have become central research approaches in
flood prediction and risk assessment. The main keywords—flood,
prediction, forecast, river, flow, rainfall, risk,
susceptibility—highlight the factors necessary for accurately
identifying flood occurrence potential and vulnerable areas.

Susceptibility-mapping using various machine-learning models
and short-to medium-term flow prediction have been particularly
active. For example, Costache et al. (2023) used a fuzzy machine
learning hybrid model to generate a flood-susceptibility map for the
Prahova River basin in Romania, achieving high AUC (area under
the curve) and accuracy and demonstrating superior performance
compared to conventional models. Meanwhile, Zhou & Kang (2023)
compared the flood-routing performance of several machine-
learning techniques—LSTM, GRU, and random forest (RF)—for
the Yangtze River basin, reporting that the GRUmodel exhibited the
highest prediction accuracy. Huan (2024) applied a Loess-Temporal
Convolutional Network (TCN)-GRU model to urban real-time
flood forecasting, effectively capturing seasonal and geographic
heterogeneity to improve accuracy.

Researchers have also derived flood-prone areas using RF and
decision tree models (Khosravi et al., 2018; Costache et al., 2021; El
Baida et al., 2024) and advanced dam outflow and monthly

TABLE 2 (Continued) Characteristics of five representative articles for each topic.

Topic Probability Article title Year Source Citationsa

0.989 Automated Flood Depth Estimates from Online Traffic Sign Images:
Explorations of a Convolutional Neural Network-Based Method

2021 Sensors 10

aCitation counts as of 14 August 2025 (Source: Web of Science Core Collection).
bThe article by Akcapınar and Çakmak (2025) is included in this review because it was indexed and available as an ‘early access’ publication in 2024 at the time of our systematic search on

17 January 2025. Although the final version was assigned a 2025 publication date, the article’s availability in 2024 placed it within our study’s scope.
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flow prediction by integrating optimization algorithms or statistical
techniques into artificial neural network (ANN) frameworks. For
instance, Zaini et al. (2018) combined the Bat algorithm with a
backpropagation neural network (BPNN) to develop a Bat-BPNN
model, significantly improving monthly flow prediction accuracy.
Brêda et al. (2021) demonstrated that pure ANN models—without
additional optimization techniques—outperformed traditional
benchmarks in predicting outflows for multiple large-scale
hydropower dams in Brazil.

Furthermore, RNN models such as LSTM and GRU have been
introduced for short-term flow prediction, efficiently learning from
time-series data and outperforming conventional ANNmodels (Gao
et al., 2020). These hybrid modeling and optimization approaches
enable more precise flood-risk analysis and suggest that either
simple ANN or optimization/ensemble strategies can be effective
depending on the application context (e.g., dam operations, urban
flooding, large basins).

Overall, AI-based flood prediction and risk assessment has
rapidly advanced to process vast meteorological, topographic, and
hydrological data efficiently and improve predictive performance.
Future research will likely focus on developing more sophisticated
deep-learning architectures, minimizing forecast uncertainty, and
implementing and validating real-time flood-warning systems to
substantially strengthen disaster-response capabilities.

3.4 Topic 3: drought monitoring and
agricultural risk assessment using
machine learning

Driven by climate change, the importance of drought monitoring
and agricultural risk assessment has increased, and data-driven
approaches using machine-learning techniques have emerged as key
researchmethodologies. Keyword analysis indicates that current studies
focus on moisture-related factors directly affecting crop growth,
leveraging the fusion of machine-learning methods with remote-
sensing data for precision irrigation and yield prediction.

Recent trends show notable efforts to enhance drought
monitoring accuracy and efficiency through the integration of
remote-sensing technology and machine-learning. Suyala et al.
(2024) used hyperspectral remote-sensing data to diagnose potato
moisture content and develop a water-saving irrigation algorithm.
Wang et al. (2024) combined Unmanned Aerial Vehicle (UAV)-
based multispectral and thermal imagery to create a moisture-stress
diagnosis model for winter wheat, demonstrating its potential for
irrigation decision support.

Machine learning’s role, has also expanded in soil-moisture
prediction and agricultural risk assessment. Crusiol et al. (2023)
developed a model to predict soil moisture in soybean cultivation
areas using leaf-based hyperspectral reflectance, validating the
effectiveness of remote-sensing-based monitoring. Akcapınar and
Çakmak, (2025) combined the MODIS drought index with
machine-learning algorithms to predict wheat yield, suggesting
contributions to production forecasting and early-warning systems.
Yang et al. (2023) demonstrated the feasibility of field-level drought and
irrigation monitoring systems using high-resolution soil-moisture data
generated by machine learning, highlighting practical agricultural
management applications.

Although earlier research relied mainly on regression and
statistical methods, recent analyses have actively adopted a
variety of machine-learning models—RF, support vector machine
(SVM), and ANN. Okyere et al. (2024) combined a novel drought
index with machine-learning models to accurately detect drought
stress in wheat. Shi et al. (2022) improvedmoisture-status prediction
for winter wheat by fusing multisource sensor data with machine
learning. Garriga et al. (2021) used hyperspectral canopy reflectance
data and multiple linear regression to estimate carbon-isotope
discrimination and yield in wheat, demonstrating that machine
learning can greatly enhance analytical precision and efficiency.

These trends clearly show that the fusion of machine-learning
and remote-sensing technologies is accelerating advances in drought
monitoring and agricultural risk assessment. Future work will likely
focus on developing universal models applicable across diverse
crops, regions, and environmental conditions; building real-time
drought-monitoring systems; and strengthening integration with
agricultural decision-support platforms. AI-based drought
prediction and agricultural risk assessment systems are expected
to play a vital role in stabilizing crop productivity and promoting
sustainable agriculture in the era of climate change.

3.5 Topic 4: climate change and ecosystem
response to extreme-weather events using
machine learning

In recent years, climate change has increased the frequency of
extreme-weather events—droughts, heatwaves, and erratic
precipitation—causing significant transformations across global
ecosystems, particularly forests, grasslands, and wetlands. For
example, Huang B. et al. (2024) reported that simultaneous
drought and heatwave events in temperate semi-arid grasslands
dramatically reduced ecosystem resistance, and You et al. (2023)
identified a threshold in Inner Mongolia grasslands at which
prolonged drought shifted the system from a carbon sink to a
carbon source. These findings highlight how climate change
impacts on ecosystem structure and function—such as vegetation
productivity, soil nitrogen and carbon storage, and biodiversity—are
becoming increasingly pronounced.

Recent studies have noted that combined stressors—moisture
stress, heat stress, and wetland salinization—can produce
asymmetric alterations in biogeochemical cycles. Chamberlain
et al. (2020) found that wetland salinization sharply decreases
plant photosynthesis while only modestly reducing methane
(CH4) emissions, resulting in complex net greenhouse-gas
outcomes. Likewise, Li et al. (2021) and Liu et al. (2023) used
machine-learning techniques, including SVM and Gradient Boosted
Regression Trees (GBRT), to quantify the effects of precipitation
imbalance and increased extreme-drought frequency on
productivity and water-use efficiency in temperate grasslands and
California rangelands, respectively.

Crucially, ecosystem responses to extreme weather vary
markedly across spatial and temporal contexts. Zeng et al. (2023)
showed that Tibetan Plateau grasslands in regions with higher
precipitation exhibit greater sensitivity to temperature increases,
revealing regional vulnerability differences. Case studies such as the
rapid habitat contraction of Australia’s greater glider—an arboreal
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marsupial (Wagner et al., 2020)—and the potential savannization of
tropical rainforests (Nath et al., 2024) suggest that certain species
and ecosystems may be unable to adapt to extreme conditions and
could face rapid decline.

Consequently, the body of research systematically analyzing
how climate change and extreme events affect ecosystem
productivity, water-carbon-nitrogen cycling, and habitat
conservation is expanding, and the integration of AI with
ecological models is playing a pivotal role. Future work should
develop integrated models that combine regional climate scenarios
with long-term observational datasets to capture these complex
interactions in greater detail, providing the scientific basis for
strategies aimed at strengthening ecosystem resilience and
sustainable resource management.

3.6 Topic 5: multisource imagery and deep
learning for disaster detection and damage
assessment

Research in disaster detection and damage assessment has
increasingly combined multisource imagery—synthetic aperture
radar (SAR), electro-optical (EO) satellite data, UAV and
ground-camera images—with deep-learning techniques to
automate precise detection of floods, building damage, and
water-depth estimation. The main keywords—SAR, convolutional
neural networks (CNNs), inundation—reflect the trend toward
integrating multi-resolution, multi-sensor data to enhance
disaster-response capabilities.

In flood-inundation and water-depth detection, SAR-based
deep-learning models have been particularly prominent. Multi-
scale Deeplab (Wu et al., 2022), Flood Water Body Extraction
Network (FWENet; Wang et al., 2022), and WaterDetectionNet
(Huang Y. et al., 2024) leverage CNN architectures to achieve
high-accuracy mapping of inundation extents. Akiva et al. (2021)
introduced H2O-Net, a self-supervised method that overcomes
domain gaps between low-resolution satellite and high-resolution
aerial imagery, enabling rapid and precise disaster-scene analysis.

Building-damage detection has focused on pre- and post-event
satellite comparisons. Shen et al. (2022) developed BDANet, a
CNN-based model for estimating building damage severity, while
Kaur et al. (2023) used a hierarchical transformer architecture to
perform fine-grained damage assessment over large areas. Qing et al.
(2023) applied a dual distortion-adaptive generative adversarial
network (GAN) to accurately transform SAR ↔ EO imagery,
correcting geometric distortions in high-resolution disaster analyses.

UAV and ground-camera imagery studies also deserve
attention. FloodNet (Rahnemoonfar et al., 2021) built a
high-resolution aerial dataset for identifying flooded structures
and roads, and Song and Tuo (2021) proposed a low-cost, real-
time system for estimating flood depth from traffic-sign images.
These approaches complement satellite limitations in spatial and
temporal resolution, offering refined urban-flood monitoring.

Finally, a Sentinel-1 CNN benchmark (Bereczky et al., 2022)
demonstrated that deep-learning methods far outperform
traditional rule-based chains in water and flood mapping,
automating critical hydrological information extraction and
substantially reducing decision-making time in emergencies.

Overall, the fusion of multisource imagery and cutting-edge
deep-learning techniques (CNNs, transformers, GANs) enables
near-real-time analysis and monitoring of disaster scenes,
efficiently supporting rescue and recovery decisions and
minimizing damage. Future work will likely advance real-time
multi-sensor, multi-resolution data processing and tighter
integration with operational disaster-management systems,
playing a key role in strengthening societal safety nets.

4 Discussion

4.1 Principal research themes

This study comprehensively analyzed AI application trends in
extreme-weather prediction and response from 2015 to 2024 using
topic modeling.

First, advanced deep-learning methods—such as LSTM and
diffusion models—have substantially improved forecast accuracy
for typhoon tracks, rainfall, and heatwaves. The FuXi-Extreme
diffusion model, in particular, effectively addresses
underestimation of extreme precipitation and wind speeds, while
NWP-AI fusion approaches deliver competitive performance at
2–6-week sub-seasonal forecasting.

Second, in flood prediction and risk assessment, GRU-based
flow models and fuzzy machine learning hybrid model,
techniques have enhanced the reliability of real-time warning
systems. A variety of machine-learning models that integrate
meteorological, hydrological, and topographic data enable
finer-scale flood-risk analyses.

Third, drought monitoring and agricultural risk assessment
research has leveraged hyperspectral remote sensing, UAV
imagery, and machine-learning (e.g., ML-HRSM) to support
moisture-status diagnostics, precision irrigation, and yield
prediction at 30 m resolution.

Fourth, machine-learning models such as SVM and GBRT have
been used to quantify how altered precipitation patterns and
extreme drought impact ecosystem productivity, carbon cycling,
and habitat conservation—providing critical evidence for informed
policy decisions.

Finally, the fusion of multisource imagery (SAR, EO, UAV,
ground cameras) with state-of-the-art deep-learning models (CNNs,
transformers, GANs) is automating high-resolution mapping of
flood extents and building damage, thereby accelerating
emergency response and recovery efforts.

4.2 Broader implications and context

Interestingly, despite being included as a search keyword,
heatwave did not emerge as an independent topic in the LDA
solution. This suggests that heatwave-related research is often
treated as a sub-theme within broader domains, rather than
forming a distinct, high-frequency cluster. This interpretation is
strongly supported by a quantitative post hoc check: among the
8,642 articles, 59 contain “heatwave” in their title, and 58 of these
(98.3%) are classified under either Topic 1 (Forecasting and
prediction) or Topic 4 (Ecosystem response). While this finding
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underscores the interdisciplinary nature of heatwave research, it also
represents a limitation of the present topic modeling approach.
Future studies could apply targeted search strategies or sub-topic
modeling to better isolate heatwave-related AI applications—for
example, focusing specifically on urban heatwaves (where AI-driven
microclimate models address heat–health risks) or compound
extremes such as heatwave–drought interactions (where AI can
improve multi-hazard early warning systems).

In parallel, previous narrative and qualitative reviews have
provided valuable overviews of AI/ML applications in specific
extreme weather contexts but often lack quantitative mapping of
thematic prevalence and temporal evolution. For example,
McGovern et al. (2023) synthesized applications for high-impact
phenomena such as lightning, hail, tornadoes, and severe winds,
emphasizing model architectures and forecasting challenges. While
informative, such approaches do not measure the relative weight of
different research themes or capture how their prominence changes
over time. By contrast, our LDA-based, data-driven analysis
quantifies thematic composition across the field—revealing, for
instance, that flood-related studies (Topic 2) constitute 33.83% of
the literature—and identifies dynamic patterns, including a
pronounced post-2020 surge in flood-focused research. This
integrative perspective not only corroborates qualitative insights
but also embeds them within a broader, empirically grounded
thematic and temporal framework, thereby extending the scope
and interpretive power of prior reviews.

Beyond heatwaves, the policy and operational implications of
our findings extend to other hazards as well. For instance, AI has
already been incorporated into flash flood early-warning systems
in China, which manage real-time data across multiple
administrative levels to support rapid decision-making (Liu
et al., 2018). In addition, hybrid and ensemble machine
learning models for flood depth estimation have demonstrated
improved predictive accuracy, directly supporting flood
prevention and relief planning (Liu et al., 2025). On the
agricultural front, AI-enabled precision irrigation
frameworks—such as hybrid deep-learning models that
combine remote sensing with temporal dependencies—have
shown strong potential to optimize water use and strengthen
food security under climate variability (Ye et al., 2024). These
cases illustrate how the methodological advances documented in
this review can translate into tangible risk-reduction strategies
and smart resource management, underscoring the importance
of integrating AI research outputs into policy frameworks and
real-world disaster management operations.

Collectively, these findings confirm that AI technologies
can complement traditional physics-based forecasting, deliver
more precise predictions of extreme events, and integrate
with real-time disaster-response systems to minimize social and
economic losses. They also underscore the necessity of
multidisciplinary, sensor-fusion approaches for next-generation
disaster-management systems.

4.3 Limitations and future directions

Nonetheless, this analysis is constrained by its reliance on
English-language abstracts indexed in the Web of Science

database—potentially excluding the most recent studies and
relevant grey literature—and by the subjective interpretation
inherent in topic-model outputs. Future research should expand
coverage to a broader range of data sources and real-world case
studies, rigorously quantify and reduce AI-model uncertainty, and
validate system performance in operational settings. Such efforts
would help standardize and disseminate AI-based forecasting and
disaster-response technologies while fostering stronger international
collaborations.

In addition, as with most topic-modeling approaches, the results
are inherently sensitive to preprocessing choices (e.g., tokenization,
stop-word selection) and corpus composition, meaning that
alternative parameter settings may yield slightly different topic
structures. Acknowledging this limitation underscores the
importance of transparency in model design and the value of
complementary qualitative validation when interpreting
thematic outputs.

Taken together, these insights highlight both the promise and
the challenges of applying AI to extreme-weather prediction and
response, offering a foundation for more robust, transparent, and
operationally relevant research in the years ahead.

5 Conclusion

This systematic topic-model review shows that artificial
intelligence research has rapidly diversified across all major
extreme-weather hazards since 2015. Deep-learning families—LSTM,
diffusion and NWP-AI fusion—now outperform traditional
statistical baselines for typhoon tracks, high-intensity rainfall
and sub-seasonal heatwave forecasts, while GRU-based
flow models and fuzzy-ML hybrids already enhance real-time
flood-warning reliability. In drought monitoring, hyperspectral
and UAV imagery combined with ML-HRSM enable 30 m-scale
moisture diagnostics and precision irrigation; for ecological
drought impacts, SVM and GBRT quantify effects on
productivity, carbon cycling and habitat resilience.
Multisource image fusion with CNNs, transformers and GANs
automates fine-resolution mapping of flood extent and building
damage, accelerating emergency response and recovery.
Collectively, these advances confirm that AI can complement
physics-based forecasting, integrate with sensor networks and
disaster-response workflows, and thereby help to reduce social
and economic losses from extremes.

At the same time, this study is limited by its reliance on
English-language abstracts indexed in the Web of
Science—potentially excluding grey literature and non-English
research—and by the subjective interpretation inherent in topic-
model outputs. Looking ahead, future work should broaden data
sources, incorporate diverse case studies, and embed uncertainty
quantification and field validation into next-generation AI early-
warning systems. More importantly, the field must now shift
from methodological development to operational integration by
embedding AI pipelines within meteorological services and
standardizing evaluation protocols. Linking predictive outputs
with disaster-management agencies will enable proactive
planning, resource allocation, and cross-border coordination,
thereby providing not only methodological refinements but
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also a practical blueprint for embedding AI into real-world
extreme-weather forecasting and climate-resilience policy.
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