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Wildfires are an integral component of Mediterranean ecosystems. The forest
management practices implemented following such forest fires can significantly
influence soil chemistry and metal dynamics. This study investigates the effects of
different forest management strategies, including natural regeneration, grading
(e.g., gradoni terrace making), and subsoiling with ripper on soil levels of major,
trace, and heavy metals in a fire-affected forest in the southwestern part of
Turkiye. Soil samples were collected 2.5 years after the containment of the
wildfire and analyzed for selected metals (Fe, Ca, AL, Mn, Cr, Ni, Zn, Cu, Pb,
Co, As, and Hg) concentrations. The findings indicated that subsoiling with a
ripper resulted in elevated levels of multiple potentially toxic metals, including Cr
(223.22 + 60.47 mg/kg), Ni (150.54 + 27.33 mg/kg), Zn (156.18 + 66.14 mg/kg),
and As (6.72 + 1.30 mg/kg), compared to other treatments. These findings
demonstrate that management interventions such as subsoiling with a ripper
can significantly alter the distribution and concentration of trace metals. Future
research integrating topographic variation and earlier sampling would further
strengthen our understanding of post-fire metal dynamics.

KEYWORDS

post-fire soil contamination, wildfire, forest management, heavy metal, soil disturbance
1 Introduction

Wildfires are becoming more frequent and intense across the world, driven by global
climate change, land-use changes, and prolonged drought conditions (Furtak and
Wolinska, 2023). These extreme events can significantly alter soil chemistry, ecosystem
structure, and hydrological cycles. One of the most critical consequences of wildfire is the
release and redistribution of heavy metals, which are known for their toxicity, persistence,
and long-term environmental impacts (Ku et al., 2024; Rao et al., 2024). Elevated metal
concentrations can impair the quality of air, soil, water, and agricultural products, posing
significant risks to human and ecological health through direct exposure and trophic
transfer (Cobbina et al., 2013; Waiker et al., 2022). Long-term ingestion or inhalation of
heavy metals can lead to serious health problems, including cancer, developmental delays,
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reduced growth, cognitive impairment, and various organ disorders
(Jaishankar et al., 2014).

Wildfire-induced changes in soil properties, including pH shifts,
loss of organic matter, and altered redox conditions, can increase the
mobility and bioavailability of heavy metals such as Cd, Pb, Hg, As
and Zn, thereby elevating risks to both ecosystems and human
health (Arunrat et al., 2023; Salgado et al., 2024). Among these, Pb,
Cd, and Hg are particularly concerning due to their potential to
bioaccumulate in the food web and affect water and soil quality over
extended periods (Tsui et al., 2019; Ding et al., 2022).

Vegetation loss and ash deposition following wildfires can
introduce heavy metals into soils and nearby water bodies via
wind dispersal and storm-driven erosion (Prats et al, 2014;
Santin et al., 2015a). Post-fire runoffs can impact the mobility of
metals, usually increasing metal leaching to nearby water sources
(Burke et al., 2013; Rust et al., 2022). Therefore, post-fire forest
management plays a critical role in shaping landscape recovery and
determining whether these contaminants are stabilized or further
mobilized (Abraham et al., 2017a).

To support vegetation recovery while keeping the soil stable, a
range of forest recovery and management strategies are commonly
2014). These
reforestation, seeding, mulching, passive recovery, complete

applied after wildfires (Prats et al, include
ripping with a ripper, terrace and erosion control measures
(Gémez-Rey et al., 2013; Caliskan and Boydak, 2017; White and
Long, 2019; Papaioannou et al., 2023). While such interventions aim
to reduce erosion and limit contaminant runoff (Robichaud, 2000;
Wagenbrenner et al., 2006), they may also modify key soil processes,
including redox dynamics, microbial activity, and organic matter
input, which influence metal behavior (Certini, 2005). For example,
reforestation may facilitate metal uptake by vegetation (Madejon
et al, 2004). In contrast, plowing can redistribute metals within the
soil profile, enhancing their mobility and potential for leaching or
surface runoff (Kabala et al.,, 2013).

The Mediterranean region is highly vulnerable to large-scale
wildfires due to its hot, dry summers and dense forest coverage
(Ozcan et al, 2018). For instance, in 2021, countries across the
Mediterranean basin, including France, Greece, Italy, Spain, and
Tirkiye, experienced widespread wildfire damage, with Tiirkiye and
Italy reporting the most extensive losses. Tiirkiye alone recorded
2,793 wildfires, which burned approximately 139,503 ha of forested
land in 2021 (San-Miguel-Ayanz et al., 2023).

Antalya has experienced some of the most destructive wildfires
in the country’s history. The 2021 Manavgat and surrounding fires
in the city alone burned more than 75,000 ha. Despite the severity
and frequency of such events, few studies have examined heavy
metal concentrations in forest ecosystems following wildfires
(Bartkowiak and Lemanowicz, 2017; Esen et al., 2023; Villarruel
etal., 2024), to the best of our knowledge, no study has examined the
impact of post-fire forest management practices on soil major, trace,
and heavy metal levels. Therefore, our study aims to investigate the
effects of post-fire forest management practices on the distribution
and concentration of heavy metals in fire-impacted soils. By
comparing managed and unmanaged burned sites, we aim to
assess how post-fire management practices such as natural
regeneration, seedling and seed sowing, gradoni terracing, and
full-surface soil ripping (hereby referred to as subsoil ripping,
RIP) influence both major and trace metal dynamics in soil.
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2 Materials and methods

2.1 Study area

The study was conducted in Manavgat, Antalya (Figure 1), a
region characterized by a Mediterranean climate with hot, dry
summers and mild, wet winters (Kavgact et al., 2010). In the
summer of 2021, Turkiye experienced a series of catastrophic
wildfires, the most severe of which occurred in Manavgat.
Beginning on 28 July and lasting until 10 August, the fire burned
approximately 40,000 ha of forest, making it the largest wildfire
recorded in the history of the Republic of Tirkiye (Atalay
et al.,, 2024).

The affected landscape was primarily composed of Pinus brutia
(Turkish red pine) forests, along with maquis shrublands and
sclerophyllous forest (Kavgaci et al., 2017). In the aftermath, a
range of post-fire forest management strategies was employed by
the General Directorate of Forestry of Tirkiye to mitigate erosion
and promote vegetation

recovery. These included passive

approaches natural active

interventions like seed sowing in areas with limited seed sources

including regeneration, and
and disruptive mechanical treatments, including gradoni terracing
and subsoil ripping (RIP), followed by reforestation efforts (Yildiz
et al.,, 2023).

To assess the impact of these strategies on heavy metal
dynamics in soil, four distinct sites were selected, each
representing a different post-fire management approach. The
natural site (36.94450° N, 31.37040° E) was located on a slope
and left to recover without human disturbance. Nearby this, the
graded site (36.94430° N, 31.37030° E) was also sloped but
underwent mechanical grading (e.g., gradoni terracing) and
was planted with pine seedlings in 2023. The RIP site
(36.94180° N, 31.37726° E), situated on flatter terrain, was
subjected to full-surface soil ripping using heavy-duty dozers
and then replanted following fire. Finally, the control site
(36.95898° N, 31.35140° E), which was not impacted by
the wildfire.

2.2 Sample collection

Soil sampling was conducted once on 4 January 2024,
approximately 2.5 years after the fire, across four distinct land
cover types representing both burned and unburned forest
conditions. Within each plot, a representative 10 x 10-m area
was defined. From each of these areas, surface soil samples were
randomly collected at a depth of 0-5 cm using a stainless-steel shovel
to prevent contamination. The samples were placed in clean, labeled
Ziplock bags, stored on ice during transport, and transferred to the
laboratory for processing. Upon arrival, soils were freeze-dried and
passed through a 2 mm sieve to ensure homogeneity prior
to analysis.

2.3 Sample analysis

Soil organic matter (SOM) was estimated using the loss-on-
ignition (LOI) method, which serves as a proxy for SOM (Hereafter
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FIGURE 1

Study area located in Manavgat, Antalya, Turkiye, including four forest plots: Control (A), Graded (B), Natural (C) and Subsoil Ripping (D).

referred to as SOM), by combusting soil samples in a muffle furnace.
Approximately 5 g of freeze-dried, homogenized soil was weighed
into pre-cleaned ceramic crucibles. The samples were then
combusted in a muffle furnace at 500 C for 4 hours to oxidize
the organic material. After cooling, crucibles were reweighed, and
organic matter content was calculated based on the mass loss during
ignition (Ulus et al., 2022).

Total mercury (Hg) concentrations in soils were measured at the
Biogeochemistry Laboratory of The Chinese University of Hong
Kong using a Nippon MA-3000 solid-phase mercury analyzer (NIC,
Japan). For each analysis, approximately 50 mg of soil sample was
weighed into a pre-cleaned sample boat. Calibration curves were
constructed using the TAEA-456 certified reference material (Costal
Sediment). Analytical accuracy and quality control were further
ensured by including the MESS-4 (Marine Sediment) reference
material during each analytical session.

Soil samples were analyzed at the Joint School of Nanoscience
and Nanoengineering for the quantification of other heavy
metals. Samples preparation followed EPA Method 3052 for
total soil digestion using a microwave digestion system (CEM
Mars 6 microwave digester). Specifically, 0.5 g of dried,
homogenized soil was placed in Teflon vessels with 9 mL of
concentrated HNO; and 3 mL of HF. Following microwave-
assisted digestion, 10 mL of 4% boric acid solution was added
to neutralize residual HF. The resulting solution was filtered
using syringe filters and diluted accordingly. A final dilution
factor of 1:6000 was applied and considered in the final
concentration calculations. Elemental concentrations were
Inductively  Coupled Mass
Spectrometry (Agilent 7900). Internal standards and multi-
point calibration curves were used to ensure analytical quality.
Procedural blanks and certified reference materials (e.g., SRM

measured  using Plasma
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FIGURE 2

Loss-on-ignition (LOI) content (%) across four sites: Control,
Natural, Graded, and Subsoil Ripping (RIP). Different letters on the
boxplots indicate statistically significant differences between groups
(P < 0.05).

2711a) were included to monitor both precision and accuracy
throughout the analysis.

2.4 Statistical analysis

Statistical analyses and data visualization were performed using
SigmaPlot software. One-way repeated measures ANOVA was
applied to assess differences among treatments, followed by
Tukey’s post hoc test for pairwise comparisons. Linear regression
analyses were conducted to evaluate the relationships between
metals and SOM.
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FIGURE 3

Boxplots showing concentrations of twelve metals in surface soils across three post-fire forest management treatments (natural, graded, and subsoil
ripping (RIP) and control). Each subplot (A—L) represents a different metal: (A) Iron (Fe), (B) Calcium (Ca), (C) Aluminum (Al), (D) Manganese (Mn),
(E) Chromium (Cr), (F) Nickel (Ni), (G) Zinc (Zn), (H) Copper (Cu), (1) Lead (Pb), (J) Cobalt (Co), (K) Arsenic (As), and (L) Mercury (Hg). Different letters indicate
statistically significant differences among treatments (p < 0.05). Please note that the unit for mercury is different from the other metals and is
indicated accordingly in the boxplots.
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FIGURE 4

Relationships between soil organic matter (SOM) and selected metal concentrations in post-fire soils across control, natural, graded, and subsoil
ripping (RIP) treatments. Panels show: (A) Fe, (B) Ca, (C) AL, (D) Mn, (E) Cr, (F) Ni, (G) Zn, (H) Cu, (I) Pb, (J) Co, (K) As, and (L) Hg. To keep each panel clear,
only the regression equations for statistically significant relationships (p < 0.05) between SOM and metal concentrations are shown.
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3 Results and discussions
3.1 Soil organic matter

SOM varied across treatments (Figure 2). SOM values were
similar among the three post-fire treatments, RIP (7.28% + 1.48%),
natural (12.22% * 3.93%), and graded (10.90% + 3.36%), with no
significant differences. Only the control plot had significantly higher
SOM (26.19% + 8.90%), indicating better organic matter retention
in undisturbed soils. Esen et al. (2023) reported much lower SOM in
Pinus brutia forest, in Antalya, with pre-fire values of 6.7% + 2.5%,
and post-fire levels of 6.0% + 2.7% in northern areas and 2.0% *
0.38% in southern sites. The higher SOM levels observed in our
study may be due to the presence of organic material left after
burning (such as twigs, bark, and needles), as well as newly grown
vegetation based on field observation.

The noticeable decline in SOM from control to RIP plot
highlights the vulnerability of soil carbon pools to both wildfire
and land changes. Fire can consume substantial amounts of
vegetation and organic-rich topsoil (Salgado et al., 2024), while
plowing may further degrade SOM by mixing it with deeper, carbon-
poor layers (Jiménez-Morillo et al., 2020).

3.2 Concentrations of major, trace and
heavy metals in soil

We measured several major, trace and heavy metals and compared
them across three post-fire forest management strategies: natural,
graded, RIP treatments and control. Overall, metal concentrations
varied significantly by both metal type and treatment. Figure 3
presents boxplots of metals (Fe, Ca, Al, Mn, Cr, Ni, Zn, Cu, Pb, Co,
As, and Hg) in soil samples collected from all four study areas.

RIP soils consistently showed the highest levels for several
metals, including Fe (19,671.94 £ 5,019.05 mg/kg), Mn (688.57
13042 mg/kg), Cr (22322 + 6047 mg/kg), Ni (150.54
27.33 mg/kg), Zn (156.18 * 66.14 mg/kg), Cu (26.24
749 mg/kg), Co (184 + 3.01 mg/kg), and As (6.72
1.30 mg/kg), all significantly higher than those in Natural and

+ + H+

Graded treatments (p < 0.01 for most comparisons). In contrast,
the natural regeneration site had the lowest concentrations for most
metals, including Fe, Mn, Cr, Ni, As, and Co (Figure 3). The graded
treatment showed similar values, with Ca notably peaking here
(6,795.96 + 750.35 mg/kg), significantly higher than in control or
natural plots (p < 0.001). The control site, despite being unburned,
exhibited the highest levels of Al (3,547.96 + 645.08 mg/kg), Pb
(19.68 + 3.38 mg/kg) and Hg (89.70 + 28.25 ng/g).

Calevels showed a generally increasing trend from the control to
the natural and graded sites, except in the RIP site (Figure 3B). Given
the high volatilization temperature of Ca (~1,240 C; Pereira et al,,
2011), it thermally mineralizes and remains in the soil after fire,
often concentrated in ash. Ku et al. (2018) found significantly higher
Ca in both black and white ash compared to unburned soils. The
elevated and variable Ca in the RIP site likely reflects white ash
accumulation, typical in Pinus plantations (Abraham et al., 2017b),
and ash retention due to flat terrain. In contrast, ash in the sloped
natural and graded sites may have been more easily displaced. Fe
levels showed a different pattern, highest in the RIP site,
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intermediate in the control, and lowest in the natural and graded
sites (Figure 3A).

Mn and Al all exhibited similar distribution patterns, with the
highest concentrations in the RIP and control site, and the lowest in
the natural and graded sites. These elements are thermally stable.
Mn and Al withstand temperatures exceeding 1,000 C and tend to
remain in the mineral matrix or ash after combustion (Pereira et al.,
2011). The flat topography of the RIP area may have favored ash
retention, unlike the sloped natural and graded plots, where erosion
and runoff could reduce surface metal content.

Metals such as Cr, Cu, Zn, Pb, Ni, and As tend to increase in burned
soils compared to unburned soils (Campos et al., 2016; Rao and Parsai,
2025; Ozgeldinova et al, 2025). This increase may be particularly
pronounced in wildfires involving pine trees, which have been
shown to elevate heavy metal concentrations in soil significantly
(Santorufo et al,, 2021; Rao et al, 2024). Pine trees are rich in
organic compounds such as cellulose, hemicellulose, lignin, and
proteins (Chen et al, 2022). These compounds contain functional
groups, like hydroxyl and carboxyl, which can effectively bind and
retain heavy metals (Sun et al., 2010). In our study, the concentrations
of Cr, Cu, Ni, and As were highest in the RIP plot, with mean values of
223.22 + 60.47 mg/kg for Cr, 26.24 + 7.49 mg/kg for Cu, 150.54 +
27.33 mg/kg for Ni, and 6.72 + 1.30 mg/kg for As, this pattern likely
reflects the combined effects of ash retention in flat terrain and
mechanical disturbance, which brings metal-rich subsoil to the
surface. Previous studies have also shown that salvage logging can
lead to soil compaction (Gomez et al., 2002), which may help retain
metals within the soil, especially in flat terrains, where topography
limits runoff.

Cr showed the most pronounced increase, suggesting a strong
influence from both ash input and soil mixing. Control plots also had
relatively high Cr and Ni levels, indicating naturally elevated background
concentrations in the area. In contrast, natural regeneration and graded
sites exhibited lower metal concentrations, likely due to reduced
disturbance and potential metal loss through erosion. The decline in
heavy metal concentrations is generally linked to their transport from
fire-affected areas to nearby soils and surface waters via wind, erosion,
and runoff (Rao and Parsai, 2025). Esen et al. (2023) also reported a
general increase in Cr and Ni concentrations in soils following wildfire
events, indicating that fire may enhance the mobility or surface
accumulation of these metals via ash deposition and changes in soil
chemistry. Supporting this, a study by Guveng et al. (2003) found high
background levels of these metals in Antalya, with Cr concentrations
averaging 190 + 150 mg/kg in urban areas and 260 + 100 mg/kg in rural
areas, while Ni levels averaged 81.5 + 57.6 mg/kg in urban sites.

Pb and Zn concentrations in soil varied across post-fire forest
management treatments (Figure 3). Pb levels were highest in the
control plots (19.68 + 3.38 mg/kg), followed by the RIP (15.40 +
3.56 mg/kg), graded (12.22 + 0.80 mg/kg), and natural regeneration
sites (10.34 + 1.62 mg/kg). Elevated Pb in control plots may reflect
natural background values or long-term atmospheric deposition,
while lower concentrations in natural and graded plots likely result
from post-fire erosion. Furthermore, previous studies have shown
that Pb can be released as fine particulate matter (PM,.5) during
wildfires (Holder et al., 2023), which may contribute to its reduction
in natural regeneration and graded sites due to atmospheric
dispersion. The moderately high Pb levels in RIP soils may be
attributed to the mechanical mixing of Pb-rich subsoil or the
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accumulation of ash at the surface. Regional studies showed higher
Pb levels in soil. For example, Oktiiren Asri et al., 2024 reported Pb
levels of 64.68 + 33.24 mg/kg in fruit orchards, while Guvenc et al.
(2003) found 36.5 + 21.4 mg/kg in urban soils, considerably higher
than those in forested areas.

Zn concentrations varied significantly, with the highest levels
observed in RIP plot (156.18 + 66.14 mg/kg), significantly higher
than in the control (85.54 + 28.37 mg/kg, n = 7), natural (59.68 +
14.72 mg/kg), and graded (48.42 + 8.04 mg/kg) plots, which did not
differ statistically. Elevated Zn in the RIP soils likely reflects the
retention of Zn due to the flat topography, which limits surface
runoff, and mechanical disturbance, which brings Zn-rich subsoil
back to the surface. In contrast, the graded and natural sites were
more exposed to erosion, potentially leading to the loss or lateral
transfer of Zn from the upper soil layers. The relatively consistent
levels in the other treatments suggest that, without intensive
intervention, Zn remains near background values.

For Zn, Giiveng et al. (2003) reported 189 + 118 mg/kg in urban
soils and 152 + 61 mg/kg in rural sites. Esen et al. (2023) observed Zn
concentrations of 62 + 19 mg/kg pre-fire, rising to 70 + 19 mg/kg on
north-facing areas and 104 + 11 mg/kg on south-facing areas post-
fire. These values, especially post-fire, align with our RIP site data,
suggesting that fire severity, slope, and soil disturbance play key roles
in metal mobilization and retention.

Hg concentrations in soil differed significantly between the
control and post-fire forest management treatments. The control
site had the highest mean Hg level (89.70 + 28.85 ng/g). In contrast,
lower concentrations were found in the natural (36.73 + 10.53 ng/g),
graded (31.91 + 15.05 ng/g), and RIP (32.68 + 6.13 ng/g) sites. This
suggests that wildfire caused substantial Hg loss or redistribution
(Ku et al, 2018), likely through thermal desorption and
volatilization for Hg (Burke et al, 2010). The similar Hg levels
across all burned treatments imply wildfire, not management
strategy, was the main driver of Hg reduction. These findings
align with earlier research showing fire significantly lowers Hg in
surface soils where organic matter and Hg are concentrated
(Filimonenko et al., 2024; Li et al., 2022). Guveng et al. (2003)
also reported similar values in Antalya, with urban soils averaging
90 + 100 ng/g and rural soils much lower (30 + 30 ng/g).

Opverall, our findings demonstrate that mechanical disturbance,
particularly RIP, leads to a noticeable increase in surface soil metal
concentrations. In contrast, metal levels in the natural and graded
plots remained similar to or lower than those in the control site. This
may be attributed to several factors, including (1) erosion-driven
loss of surface materials due to their slope position (Prats et al.,
2014), (2) the release of metals like Pb as fine particulate matter
(PM,.5) during wildfires (Holder et al., 2023), and (3) volatilization
or particulate-bound release of metals such as Hg during
combustion (Ku et al., 2024).

3.3 Potential roles of mineralogical
transformations and charred
material retention

Post-fire variations in soil metal concentrations are related to a

complex factors, including the severity of the fire, the depth of the
affected soil, mineralogical changes, formation of pyrogenic
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materials, post-fire erosion, and hydrological transport processes
(Fajkovic et al., 2022; Nornberg et al., 2009). The heat can alter soil-
mineral dynamics, generally leading to changes in soil properties like
increased soil pH, reduced surface area and cation exchange capacity
of clay (Fajkovi¢ et al,, 2022; Nornberg et al., 2009), potentially
reducing their capability to retain metals (such as Al, Cd, Co, Cr, Fe,
Mn, Z) due to the loss of functional groups (i.e., hydroxyl and
carboxyl) (Fajkovi¢ et al.,, 2022; Guerin et al., 2024).

Wildfires produce charred residues and pyrogenic carbon (PyC),
which may function similarly to engineered biochar by retaining
metals through surface complexation, ion exchange, and
electrostatic interactions (Bodi et al., 2014; Joseph et al, 2021;
Lehmann and Joseph, 2012).

Furthermore, metals such as Cr, Cu, Zn, Pb, and Ni are
known to exhibit increased sorption onto charred materials
due to the presence of oxygen-containing functional groups
and the high surface area of PyC (Ahmad et al., 2014; Mohan
et al.,, 2007). However, after a fire, precipitation and runoff can
quickly mobilize ash and particulate char, especially on sloped or
disturbed terrains, leading to the physical removal or lateral
redistribution of these metal-binding materials (Santin et al,
2015b; Wagenbrenner and Robichaud, 2014). This process might
elucidate the seemingly paradoxical observation that unburned
control plots occasionally exhibit higher concentrations of
certain metals, such as Pb and Hg, compared to their burned
counterparts.

Consequently, graded and naturally regenerating plots, which
undergo less mechanical disruption and are more prone to post-fire
erosion, may show lower concentrations of most metals. This
phenomenon is likely attributable to the removal of fine
adsorptive materials, which have previously adsorbed metals,
through processes such as surface runoff and leaching (Rhoades
et al,, 2011). This supports the hypothesis that, while fire initially
increases metal availability through combustion and ash deposition,
subsequent hydrological processes may deplete surface metal pools.
In conclusion, charred materials produced by wildfires can adsorb
and temporarily retain metals, particularly in areas where ash and
PyC accumulation is prevalent. Nevertheless, these materials are
rapidly displaced by runoff and erosion, especially in disturbed or
sloped environments, potentially leading to lower post-fire metal
concentrations compared to undisturbed controls.

3.4 Relationship between soil organic matter
and heavy metal concentrations

A surprising distinction emerged in the relationship between
SOM and metal concentrations in RIP treatments post-fire. As
shown in Figure 4, a consistent positive correlation was observed
between several metals exclusively in the RIP plots. However, only a
few metals showed trends in the control (Hg: R* = 0.60, p = 0.003),
natural regeneration, or graded sites, without consistent correlations
across all treatments. For instance, strong positive correlations were
detected in RIP soils for Fe (R*> = 0.56, p = 0.01), Pb (R> = 0.63, p =
0.01) Ni (R* = 0.58, p = 0.01), As (R* = 0.60, p = 0.01), and Co (R* =
0.48, p = 0.01), indicating that heavy metal concentrations increased
with these disturbed
plots (Figure 4).

rising organic matter content in
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Previous studies have similarly reported positive associations
between SOM and heavy-metal levels across diverse environments.
(1995)
significant correlations with Fe and Pb in lake sediment, Ulus

For example, Coquery and Welbourn documented
et al. (2022) reported the same trend for Hg in wetlands, and Li
et al. (2018) further extended this pattern to Ni and As in mining
areas. Fire can destroy organic matter, potentially leaving behind
certain metals and altering metal-organic matter (Ku et al., 2018)
relationships compared to pre-fire conditions. Therefore, further
investigation is needed to understand these postfire dynamics.

A positive correlation between SOM and heavy metals at the RIP
site likely reflects the mechanical mixing of ash residues and organic-
rich topsoil during subsoiling with ripper. Deep ripping with heavy
excavators mechanically mixed wildfire-derived ash residues
(enriched in Fe, Ni, As, Co) with the underlying organic-rich
topsoil. This homogenization dispersed metal-rich particulates
throughout the

concentrations in coincidence with SOM. Moreover, the physical

subsoiling layer, directly increasing metal
disruption of soil aggregates during tillage may have exposed fresh
sorption sites on organic particles (Jastrow et al., 1996), enhancing
metal complexation with SOM. This is particularly evident for Hg,
Pb, and Fe, which are known to form stable organo-metallic
complexes under aerobic conditions (Majumdar et al., 2024).

4 Conclusion

This study provides valuable insights into the effects of post-fire
forest management strategies on heavy metal concentrations in soils.
Our findings demonstrate that management interventions such as
subsoiling with ripper can significantly alter the distribution and
concentration of trace metals, with the RIP plot exhibiting the
highest levels of several elements, including Co, Cu, Ni, Zn, and As.
These results highlight the
contamination risks when planning forest restoration and land

importance of considering soil

management practices after wildfires. Furthermore, while charred
materials resulting from wildfires can temporarily sequester heavy
metals through sorption processes, their rapid removal by post-fire
runoff and erosion, particularly in disturbed or sloped areas, ultimately
reduces surface metal concentrations. Collectively, these underscore the
transient and spatially variable nature of metal enrichment following
fires. This study has some limitations. Limited soil samples prevented
detailed analysis of physical properties affecting metal mobility (e.g.
porosity and bulk density). Ash was not collected due to the 2.5-year
post-fire delay, and downslope samples from regenerating and graded
plots, where metal runoff may accumulate, were not taken. Future
studies should include ash and hydrologically active areas to understand
post-fire metal dynamics in Mediterranean forests better.
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