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Mega Sports Events draw global attention and engagement but also result in
substantial environmental costs, primarily through significant carbon emissions
generated during the preparatory phase. This research specifically examines the
carbon emissions associated with the preparation stage of international Mega
Sports Events, assessing their environmental impacts and exploring effective
strategies for mitigation. Using the 2022 Beijing Winter Olympics as a case
study, this paper employs the Synthetic Control Method (SCM) and the
Logarithmic Mean Divisia Index (LMDI) to analyze the impact of the Olympic
preparations on Beijing’s carbon emissions. The findings indicate that from
2015 to 2022, the preparations contributed approximately 118 million tons of
additional carbon emissions. The emission rate initially rose but subsequently
decreased, corresponding to the completion of major infrastructure projects for
the event. The LMDI decomposition highlights that economic activities spurred
by the Olympics primarily drove these emissions.
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1 Introduction

Developing low-carbon practices in sports aligns with China’s dual-carbon goals and
mirrors global sustainability trends. Since the inclusion of environmental protection
principles into the Olympic Charter in 1996, sustainability has increasingly dominated
international sports event planning. Notably, events such as the Beijing Olympics,
Hangzhou Asian Games, and World University Games have prioritized ecological
sustainability.

Mega sports events (MSEs) are defined as government-hosted activities. MSEs involve
the construction of venues, personnel and logistics transportation, and are recognized as
‘carbon-intensive industries’ (Müller, 2015). Compared to the hosting phase, the
construction during the preparatory phase is more ecologically destructive (Stephen and
Chalkley, 2004). To host MSEs, the city or country hosting the event needs to refurbish and
construct sports facilities and upgrade power generation capacities, whichmay notably raise
local carbon emissions throughout the preparation stage. Furthermore, MSEs can indirectly
impact the host’s carbon emissions through urban renewal, industrial development,
structural changes, urban branding, and green behavior demonstration.

During the 75th United Nations General Assembly, China committed itself to reaching
a carbon emission peak by 2030 and achieving carbon neutrality by 2060. Consequently,
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China has implemented policies across various sectors. For instance,
during the 2022 BeijingWinter Olympics, stringent carbon emission
control measures were adopted to minimize environmental impact,
including the use of cleaner energy, improved transportation
efficiency, and other eco-friendly measures to ensure
environmental sustainability during the event. However, these
measures may not reflect the overall carbon impact, as high-
carbon activities during the long preparatory phase still exist and
could significantly affect local carbon emissions. The Beijing Winter
Olympics in 2022 occurred from February 4 to 20 February 2022,
lasting only about half a month, but the preparatory phase spanned
7 years since its successful bid in 2015.

Accounting for carbon emissions from MSEs has been a global
challenge (Gallo and Arcioni, 2020). In the sports field, as of 2022,
there were 79 English-language papers, 24 of which were conceptual
or review articles. Of these, 49 papers discussed policies,
organizational mechanisms, and green behaviors for sports
carbon reduction, while 30 focused on carbon emission
calculations in sports (Wilby et al., 2023). Research on sports
carbon emissions mainly involves specific aspects of major events
such as the Olympics, football, skiing, and golf, including travel
emissions of teams and spectators, venue construction and
operation, sports tourism, and sports equipment emissions (Wu
et al., 2011; Wicker, 2018).

Existing literature on howMega Sports Events affect host carbon
emissions remains sparse and scattered. Most studies analyze the
ecological impacts, including carbon emissions, in three main areas:
1) the impact of venue and transportation infrastructure
construction or renovation on the environment (Chen and Jin,
2013; Ventura and Ramos, 2019), 2) the effectiveness of
temporary environmental control measures during the event,
which are seen as short-term without long-term effects, and 3)
comparisons of air quality indicators before and after events at
specific locations (Wang et al., 2014).

This research takes the BeijingWinter Olympics as an example to
explore how sports events affect carbon emissions during their
preparatory stages, considering the event’s unique characteristics of
strict control during the hosting phase and an extended preparatory
phase. Through detailed analysis of data and trends, this study aims to
uncover insightful findings that not only pertain to a single sports
event but also address global environmental and sustainability issues.

This paper makes three distinct contributions to the literature.
First, it shifts attention from the widely studied hosting phase to the
preparatory phase of mega sports events, demonstrating that long-
term construction and service expansion leave a more persistent
carbon footprint than short-lived event-time measures. This study
extends the literature by bringing the underexplored preparatory
phase into the center of analysis. Second, the paper introduces a
methodological innovation by integrating the Synthetic Control
Method (SCM) with the Logarithmic Mean Divisia Index
(LMDI). SCM enables robust counterfactual analysis of single
events, while LMDI disentangles the contribution of affluence,
population, technology, and energy structure, thus offering a
more comprehensive understanding of emission drivers. Third,
by compiling detailed provincial-level fuel consumption and
energy conversion data, the study provides empirical evidence
from the Beijing Winter Olympics that not only enriches the
literature on sports and the environment but also delivers

practical implications for designing low-carbon pathways in
future mega events.

The paper’s organization is as follows: Section 2 provides
literature review; Section 3 describes research methodologies
(including SCM and LMDI) and investigates the impacts using
the Beijing Winter Olympics as a practical example; Section
4 discusses results, including the early impacts of the
2022 Beijing Winter Olympics, placebo tests, ordering tests, and
the channels through which the event influenced carbon emissions
and Section 5 ends with policy recommendations.

2 Literature review

Mega sports events (MSEs) are held globally and have significant
impacts on host cities, extending beyond sports to boost visibility
and tourism, enhance administrative efficiency, foster economic
development, upgrade infrastructure, and generate employment
opportunities. The relationship between sports events and the
environment is increasingly prominent in today’s world, as
climate change and environmental issues become global focal
points, these MSEs can also result in substantial carbon
emissions and depletion of natural resources resulting from
constructing large-scale facilities, significant transportation needs,
and extensive media coverage (Pourpakdelfekr and Oboudi, 2022).
Events like the Olympics and the World Cup typically involve
numerous venues requiring extensive energy resources for their
construction and operations. Additionally, the influx of large
spectator crowds places enormous pressure on transportation
systems, increasing carbon emissions. The 1964 Tokyo Olympics
exemplified the concept of “luxury,” investing significantly in urban
renewal and local ecological interventions, including a costly
Olympic village later abandoned. Following this, the International
Olympic Committee (IOC), as a prominent sports governing body,
set various criteria for cities intending to host events. Cities applying
to host must present realistic environmental objectives and detailed
action plans. Historically, host cities have implemented significant
environmental improvements, such as Beijing shutting down many
inefficient factories during the 2008 Olympics, temporarily reducing
local carbon emissions, although a significant portion of these
benefits diminished shortly after the games (Zhang et al., 2016).

This review specifically examines how MSEs influence carbon
emissions, covering four primary dimensions: emissions during
preparation, emissions during the event, emissions post-event,
and methodologies used in prior studies.

Regarding emissions during the preparatory phase, studies are
relatively scarce and typically employ qualitative methods such as
interviews and questionnaires. These investigations generally
conclude that emissions during the preparatory phase exceed
those during or after the event. Pourpakdelfekr and Oboudi.
(2022) highlighted that negative environmental impacts
predominantly occur during infrastructure development,
transport management, and waste handling, pinpointing key
environmental stress areas during preparations. For example,
Zhang et al. (2022) investigated local carbon emissions related to
the 2014 Nanjing Youth Olympics (NYO) across different event
phases, noting lower emissions during the event year compared to
the preparation years.
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Studies examining carbon emissions during the event-hosting
phase are more common, emphasizing spectators’ transportation
and participant-related activities. Dolf and Teehan. (2015) found
that spectators’ travel significantly contributes to carbon emissions,
with air travel representing a considerable share. Triantafyllidis and
Davakos. (2019) also identified self-driving as a substantial emission
source in developing cities during sports events. Edwards et al.
(2016), studying major university events, similarly observed that
travel significantly influenced emissions, followed by
accommodation and energy use. Wicker (2018) explored carbon
footprints of various sports events, finding individual sports
typically generated higher emissions than team sports, such as
marathons (Castaignède et al., 2021). McCullough et al. (2023)
similarly observed that participant travel accounted for most
emissions in North American running events.

There are discrepancies in the research on carbon emissions
after sports events. Liu and Li. (2022) indicated that the carbon
emissions of the studied province significantly decreased a year after
major events, with the reduction exceeding the increase in emissions
during the event year. However, Kellison and Casper, 2017 found
that the promised environmental improvements before the
2016 Brazil Olympics were not realized, highlighting that
minimizing the environmental impact of large events requires
substantial planning and funding. The effectiveness of post-event
environmental planning lies in its sustainability, which is a decades-
long plan that cannot be hastily executed; otherwise, it leaves behind
empty stadiums and degraded environments. Agha, Fairley, and
Gibson (2012) showed that local Olympic organizing committees
have little incentive to critically address post-event environmental
issues, as their primary responsibility is to host the Olympics. Once
the Olympics end, the organizing committee usually disbands,
informally delegating the completion of planning to the local
community. Organizational groups often propose broad but
ambitious plans, but due to a lack of incentives and
accountability, the execution is poor, or the implementation of
environmental plans may be suspended to support other projects
(Agha et al., 2012).

Research on carbon emissions utilizes multiple methodologies,
including questionnaires, environmental input-output analysis,
ecological footprint, index decomposition analysis, difference-in-
differences (DID) approach, and logarithmic mean Divisia index
(LMDI). Pourpakdelfekr and Oboudi. (2022) employed qualitative
methods, library studies, and previous literature, adopting a
snowball sampling technique to identify 15 specialists in sports
and environmental disciplines for interviews until achieving
theoretical saturation (each session lasting 20–40 min). The
World Wildlife Fund. (2006) and Wiedmann et al. (2006)
suggested two approaches for evaluating the environmental
effects of Mega Sports Events (MSEs). The ecological footprint
method provides a broader global impact assessment. Collins and
Flynn. (2008) applied the ecological footprint to assess the
environmental sustainability of the FA Cup final held in the
United Kingdom. Nevertheless, Van Kooten and Bulte (2000)
critiqued that the ecological footprint does not encompass all
human environmental impacts or adequately consider whether
reference consumption patterns affect the Earth’s biological
capacity. Moreover, the environmental input-output method’s
linear assumptions about price fluctuations and technical

coefficients in industry production neglect nonlinearities and
dynamic changes, as noted by Collins et al. (2009).

Recent scholarship has expanded beyond traditional approaches
by incorporating more advanced decomposition and efficiency
frameworks. Ang and Goh, 2019 employed index decomposition
analysis, including both Laspeyres and Divisia index analyses, to
thoroughly investigate the mechanisms influencing the
environmental impacts of MSEs. Liu and Li. (2022) used a
propensity score matching difference-in-differences (PSM-DID)
model to examine how significant national events (such as
political conferences, sports competitions, and cultural
exchanges) influenced provincial-level carbon emissions. Zhou
et al. (2019) decomposed carbon intensity into 18 factors using
the logarithmic mean Divisia index (LMDI), subsequently utilizing
the DIDmethod to assess the effect of emission trading pilot projects
on carbon intensity. Zhang et al. (2024) assessed the carbon
emissions and efficiency of tourist hotels in China by combining
the input–output method with a Super-SBMmodel, thereby offering
a perspective on tourism-related carbon impacts through supply-
chain analysis. Huang et al. (2025) applied decomposition analysis
to explore regional differences in agricultural carbon emissions
across China, revealing how spatial and economic heterogeneity
shapes emission drivers. Likewise, Du (2022) developed a hybrid
Trigonometric Envelopment Analysis model to evaluate ecological
efficiency in 248 Chinese cities, integrating DEA with DID to
capture both efficiency performance and policy impacts.

Among various analytical methods—including questionnaires,
environmental input-output analysis, ecological footprint, index
decomposition, DID, SCM, and LMDI—each presents certain
advantages as well as inherent limitations: Questionnaires allow
qualitative insights into perceptions, behaviors, and organizational
practices; however, they are prone to subjective bias, sample
selection issues, and limited generalizability. Environmental
input-output analysis is effective at capturing broad domestic
environmental impacts with sectoral detail, but its reliance on
fixed technical coefficients and linear price assumptions limits its
ability to reflect nonlinear technological change or sudden policy
shifts. Ecological footprint methods provide a global perspective on
resource and emission pressures, but they often oversimplify
human–environment interactions and may not align well with
local policy levers. Index decomposition analysis (such as LMDI)
offers relatively modest data demands and clean “accounting” of
drivers (affluence, population, energy intensity, etc.), making it
powerful for tracking trends, but it does not inherently establish
causality and can be sensitive to data scale and base-year selection.
Difference-in-Differences (DID) approaches are strong in
identifying policy effects when treatment and control groups are
well matched; however, they face challenges with unobserved
confounders, violation of parallel trends, and sometimes with
selection of units. Synthetic Control Method (SCM) excels at
estimating counterfactual trajectories for individual treated units,
reducing bias from confounding events, but depends heavily on
donor pool choice, pre-treatment fit, and may be vulnerable if key
comparators are missing.

To address these methodological shortcomings, this study
employs an integrated analytical framework, combining the
Synthetic Control Method (SCM) and the Logarithmic Mean
Divisia Index (LMDI). Unlike traditional parametric methods,
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SCM relies on observed data patterns to determine weights
objectively, significantly reducing subjective bias and effectively
tackling common issues of endogeneity and assumptions required
in conventional DID analyses. In parallel, the LMDI method enables
detailed breakdowns of carbon emissions, clarifying how various
contributing factors interact and influence emission trends.

Building upon the methodological approach presented by Zhou
and Zhang (2022), this research applies SCM and LMDI to explore
specific factors influencing carbon emissions during the preparation
phase of the Beijing Winter Olympics. By integrating these two
complementary methods, the research provides clearer insights
into balancing the hosting of large-scale sports events with
environmental sustainability goals. Such analysis yields valuable
recommendations for policy actions aimed at effectively managing
carbon emissions, contributing to broader environmental
management practices and advancing interdisciplinary scholarship
in environmental and sports studies.

3 Research methods

The empirical analysis in this study adopts two primary
approaches. The Synthetic Control Method (SCM) first assesses
how mega sports events influence local carbon emissions. Next, the
Logarithmic Mean Divisia Index (LMDI) decomposition method
identifies the key mechanisms and individual factors through which
mega sports events impact these emissions.

3.1 Synthetic control method (SCM)

The Difference-in-Differences (DID) approach is frequently
employed in impact evaluation research. To resolve issues where
DID may fail to fulfill random assignment criteria, this study applies
SCM to analyze the effects of hosting MSEs on local carbon
emissions. Practically, SCM assigns weights to multiple selected
Decision-Making Units (DMUs) to construct an idealized control
group. Typically, selected control units are assigned positive weights
summing to one (Temple, 1999). Researchers can design
experiments without prior knowledge of outcomes, enhancing the
robustness of this method (Rubin, 2001), hence its broad adoption.

Assume that during the period t ∈ [1,T], the carbon emissions
of DMUj+1 are observed, with one DMU influenced by the sports
event, making the remaining DMUj potential control groups. Next,
let CN

it represent the carbon emissions of DMUi at time t if the event
did not take place; Cit represents the carbon emissions of DMUi at
time t when the event takes place; Dit is a dummy indicator marking
the influence of government policy. Thus, the model is set as
Cit � CN

it + Ditait. When i = 1 and t >T0 (T0 is the time point of
the policy impact), Dit = 1, meaning DMUi is affected by the
experiment. Otherwise, Dit � 0 , indicating that DMUi is not
affected by the experiment. The goal of the experiment is to
identify ait when t >T0, thus obtaining ait � Cit − CN

it . Since only
Cit is known, a counterfactual variable needs to be created. Hence,
this research employs Abadie’s factor model to estimate CN

it (Abadie,
Diamond and Hainmueller, 2010).

CN
it � bt + gtZi + ψtmi + eit (1)

In Equation 1, bt denotes the invariant temporal effect of carbon
emissions, gt denotes an unknown parameter vector of dimension
(1×r); Zi represents the dimension of the unobserved control
variable (R×1); ψt denotes the dimension of the unobserved
common factor variable (1×F); mi represents the dimension of
the unobserved time-invariant effect (F×1); eit represents the
transient shocks averaging zero.

To evaluate the MSE’s effect on the initial DMU’s carbon
emissions, we need to simulate CN

it for the first DMU as if the
event did not occur. This involves assigning weights to the
control group to approximate the first DMU during the event
period (Chen, 2020). Consequently, identifying a vector of
weights (dimension J × 1), W � W2, . . . ,WJ+1, which satisfies
WJ ≥ 0, j � 2, . . . , J + 1 and W2 + . . . +WJ+1 � 1, ensuring that the
characteristic vector of the treatment group lies within the
convex combination of the control group vectors, thereby
avoiding estimation differences caused by significant
discrepancies between the two vectors.

Assuming the existence of a vector setW* � W2
*, . . . , WJ+1* that

satisfies Equation 2:

∑J+1
2

w*
j Cjt � C1T0

∑J+1
2

w*
j Zjt � Z1

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(2)

The derived approximate values determine the synthetic control
vector W*, minimizing mean squared prediction error (MSPE)
between the first DMU’s weighted carbon emissions and the
control group prior to the Mega Sports Event (MSE). Once W*
is established, the MSE’s impact can be represented as described by
Equation 3

âit � C1t −∑J+1
2

w*
j Cjt, t ∈ T0 + 1, . . . ,T[ ] (3)

3.2 Logarithmic mean divisia index method

To identify the pathways through which a Mega Sports Event
(MSE) shapes carbon emissions, we first apply the Logarithmic
Mean Divisia Index (LMDI) technique to break down the main
drivers of those emissions—each driver indicating a potential impact
channel. The Synthetic Control Method (SCM) is then used on these
decomposed drivers to see how the event alters them and to derive
our conclusions.

3.2.1 LMDI for analyzing potential impact channels
Previous research frequently employs the LMDI framework to

isolate the forces behind different environmental outcomes (Chen
and Lin, 2020; Jia et al., 2018; Liu et al., 2007). In this study, we use
LMDI to quantify how energy structure, energy intensity,
population, and economic output influence carbon emissions in
29 Chinese provinces and municipalities. Equation 4 expresses the
decomposition:

C t( ) � ∑29
l�1

Cl t( )
Fl t( )*

Fl t( )
GDPl t( )*

GDPl t( )
Pl t( ) *Pl t( ) (4)
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Where l � 1, 2, 3, . . . , 29 indexes the provinces or municipalities
in the sample, and t denotes the year. Variables used in the LMDI
model are defined in Table 1. Energy structure is f l(t) � Cl(t)

Fl(t), Energy
intensity is dl(t) � Fl(t)

GDPl(t), Per capita GDP is PGDPl(t) � GDPl(t)
Pl(t) .

Total emissions C(t) are, therefore, the product of these four factors
for every province, as showed in Equation 5:

C t( ) � ∑29
l�1
f l t( )*dl t( )*PGDPl t( )*Pl t( ) (5)

The intensity change in carbon emissions is expressed by
Equation 6:

C t( )
C t − 1( ) � DC t( ) � Dfl t( )*Ddl t( )*DPGDPl t( )*DPl t( ) (6)

Equation 6 shows how variations in energy structure, energy
intensity, per capita GDP, and population collectively drive year-to-
year changes in total carbon emissions. Table 2 summarizes the
individual contribution of each driver to the annual
emission change.

By examining these variations, the study pinpoints the pathways
through which Mega Sports Events may affect carbon emissions. If a
change in one of these factors significantly affects carbon emissions,
it is confirmed as a channel through which the Beijing Winter
Olympics impacted carbon emissions.

Assuming each region’s carbon emissions at time t relative to
time t0 account for the decomposed effects, we derive the total
carbon emissions C(t) .

In Equation 7, C(t) are modeled as the total carbon emissions at
time t0, multiplied by the intensity changes in the decomposed
effects: energy structure, energy intensity, population, and GDP.

C t( ) � C t0( )* ∏t
i�t0+1

C t( )
C t − 1( ) � C t0( )* ∏t

i�t0+1
DC t( )

� C t0( )* ∏t
i�t0+1

⎛⎝∑
l

Cl t( ) − Cl t − 1( )( )/ ln Cl t( ) − ln Cl t − 1( )( )
C t( )−C t−1( )

lnC t( )−lnC t−1( )

* ln
f l t( )

f l t − 1( )
⎞⎠* ∏t

i�t0+1
exp⎛⎝∑

l

Cl t( ) − Cl t − 1( )( )/ ln Cl t( ) − ln Cl t − 1( )( )
C t( )−C t−1( )

lnC t( )−lnC t−1( )

* ln
dl t( )

dl t − 1( )
⎞⎠* ∏t

i�t0+1
exp⎛⎝∑

l

Cl t( ) − Cl t − 1( )( )/ ln Cl t( ) − ln Cl t − 1( )( )
C t( )−C t−1( )

lnC t( )−lnC t−1( )

* ln
Pl t( )

Pl t − 1( )
⎞⎠* ∏t

i�t0+1
exp⎛⎝∑

l

Cl t( ) − Cl t − 1( )( )/ ln Cl t( ) − ln Cl t − 1( )( )
C t( )−C t−1( )

lnC t( )−lnC t−1( )

* ln
PGDPl t( )

PGDPl t − 1( )
⎞⎠

t ∈ t0 + 1, . . . ,T[ ]( ) (7)

This comprehensive model allows us to assess the total carbon
emissions and understand how hosting an MSE, like the Beijing
Winter Olympics, impacts the emissions through various channels.

3.3 Policy impact: the Beijing
Winter Olympics

The Beijing 2022 Winter Olympics ran from 4 to 20 February
2022, marking the 24th edition of the Winter Games. Beyond the
spectacle, it served as an international showcase for winter-sport
athletes and reaffirmed the Olympic ideals. Bringing the Games back
to China—after the 2008 Summer Olympics—re-energised domestic
winter-sport development and drew fresh global attention to
Beijing-based venues such as the Bird’s Nest, the Water Cube
and the Capital Indoor Stadium.

Although the competition lasted just over 2 weeks, preparations
stretched across 7 years. Those preparations covered far more than
stadium construction: rehearsal events, security rehearsals,

TABLE 1 Definitions of variables in the model.

Variable Definition

C(t) Carbon emissions of the DMU in year t

Cl(t) Carbon emissions of province l in year t

Fl(t) Total energy consumption of province l in year t

GDPl(t) Gross domestic product of province l in year t

Pl(t) Population size of province l in year t

f l(t) Energy structure of province l in year t

dl(t) Energy intensity of province l in year t

PGDPl(t) Per capita GDP of province l in year t

TABLE 2 Changes in the effects of each factor on carbon emissions.

Factor Variable Change amount

Energy Structure Effect f l(t)
Dfl(t) � exp(∑

l

(Cl(t)−Cl(t−1))/(ln Cl(t)−ln Cl(t−1))
C(t)−C(t−1)

lnC(t)−lnC(t−1)
* ln f l(t)

f l(t−1))
Energy Intensity Effect dl(t)

Ddl(t) � exp(∑
l

(Cl(t)−Cl(t−1))/(ln Cl(t)−ln Cl(t−1))
C(t)−C(t−1)

lnC(t)−lnC(t−1)
* ln dl(t)

dl(t−1))
Population Effect Pl(t)

DPl(t) � exp(∑
l

(Cl(t)−Cl(t−1))/(ln Cl(t)−ln Cl(t−1))
C(t)−C(t−1)

lnC(t)−lnC(t−1)
* ln Pl(t)

Pl(t−1))
GDP Effect PGDPl(t)

DPGDPl(t) � exp(∑
l

(Cl(t)−Cl(t−1))/(ln Cl(t)−ln Cl(t−1))
C(t)−C(t−1)

lnC(t)−lnC(t−1)
* ln PGDPl(t)

PGDPl(t−1))
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transport-network upgrades and environmental-protection projects
all demanded extensive planning. Such sustained activity inevitably
carried an environmental cost—particularly in terms of
carbon output.

Because climate policy now sits at the forefront of world debate,
every stage of the Beijing Games came under scrutiny. Separating the
carbon footprint of an 18-day sporting festival from the multi-year
build-up is difficult, yet it is clear that the long preparation
window—new venues, energy-supply upgrades and large-scale
logistics—left a measurable mark.

To explore that mark, our analysis treats Beijing municipality as
the primary decision-making unit (DMU) influenced by the
Olympics; the remaining provinces form a comparison pool. We
take 2015—the year Beijing secured hosting rights—as the start of
the “preparation period” and follow annual data through to 2021.
This window allows us to isolate how the run-up to the Games
shaped local carbon-emission trajectories.

3.4 Variables and data sources

Because Beijing last staged a major Olympic event in 2008, the
city had already experienced a range of environmental, economic,
and social after-effects. To avoid conflating those residual impacts
with the preparations for the 2022 Winter Games, we limit our
sample period to the years after 2008. Earlier work (Chen and Jin,
2013; Zhang et al., 2016) suggests that post-event environmental
signals can linger for up to 2 years, so we adopt 2011–2021 as the
most conservative window for modelling Beijing’s carbon trajectory.

Geographically, Beijing occupies just 0.17% of China’s landmass
on the North-China Plain yet ranks among the country’s most
urbanised and prosperous regions. In 2021, the municipality
produced roughly 821 million t of CO2 while generating RMB
4.1 trillion of GDP—about 3.6% of the national total.

Carbon emissions are the primary variable in this study,
calculated as terminal fuel use (all sectors except household) and
energy conversion consumption. The fuels considered include coal,
coke, oil, crude oil, gasoline, kerosene, diesel, fuel oil, liquefied
petroleum gas, natural gas, and electricity consumption.
According to the IPCC Fourth Assessment Report (2007), the
burning of fossil fuels is a major source of greenhouse gas
emissions. Therefore, this study estimates CO2 emissions based

on annual terminal energy consumption data for each province,
following the calculation methods outlined in the 2006 IPCC
Guidelines for National Greenhouse Gas Inventories (IPCC, 2006).

Explanatory variables fall into three broad buckets, following the
STIRPAT logic (Dietz and Rosa, 1994), which models
environmental impacts as a function of Population (P), Affluence
(A), and Technology (T):

Population (P): both size and structure. Prior studies
(Asumadu-;Asumadu-Sarkodie and Owusu, 2016; Cole and
Neumayer, 2004) link larger or more urbanised populations to
higher emissions, although the relationship may be non-linear.

Affluence (A): proxied by GDP. Empirical evidence (Begum
et al., 2015) often shows an inverted-U pattern between income and
per capita CO2.

Technology (T): captured by energy intensity (energy use per
unit of GDP). A downward trend in energy intensity usually signals
efficiency gains and lower emissions (Xiao et al., 2015).

Given the recognized importance of energy structure and
regulatory pressure in cutting emissions, we also control for (i)
the coal share in each province’s energy mix and (ii) the ratio of local
government spending on industrial-pollution abatement to GDP
(Environmental Regulation Intensity).

Finally, descriptive statistics for all variables appear in Table 3.
Provincial emissions range widely—from roughly 4.4 million t in
Tibet to over 110 million t in Inner Mongolia—underscoring the
diversity of China’s regional energy profiles. Data originate from the
China Energy Yearbook, the China Statistical Yearbook, and
individual provincial yearbooks. Hong Kong, Macau, Taiwan, and
Tibet are excluded from the donor pool because of incomplete
energy-balance information.

4 Results

4.1 Impact of the 2022 Beijing Winter
Olympics preparation phase

4.1.1 Validating the synthetic control method
Our first task is to check whether the “synthetic Beijing” we built

looks like the real city beforeWinter-Games planning began. Table 4
reports the empirical outcome of the Synthetic Control Method
(SCM), where weights are determined by minimizing the

TABLE 3 Decriptive statistics.

Variables 1) (2) (3) (4) (5)

N Mean sd min max

Carbon emissions (million tonnes) 319 44,871 23,690 4,386 110,528

Environmental regulation intensity 319 0.00300 0.00299 8.88e-05 0.0280

Urban population proportion (%) 319 59.84 12.24 34.96 89.60

Energy structure 319 0.605 0.177 0.0176 0.947

Population (million) 319 4,239 2,995 32 12,624

GDP (billion RMB) 319 26,377 22,437 770.7 124,369

Energy intensity (RMB/Tonne) 319 2.488 1.752 0.504 10.18
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Root Mean Squared Prediction Error (RMSPE). Out of thirty
candidate provinces, only Shanghai, Liaoning, and Hainan receive
positive weights, with Shanghai taking the dominant share (0.565).
The RMSPE of the synthetic Beijing before 2015 is 308.76, which
represents less than 0.1% of Beijing’s annual carbon emissions
(ranging from 689 Mt in 2015 to 821 Mt in 2021). This confirms
a very close fit between the actual and synthetic series.

This weighting outcome is economically plausible. Shanghai
shares Beijing’s high level of urbanization, advanced service sector,
and stringent environmental regulation, making it the closest
structural analogue. Liaoning represents heavy industry and an
energy-intensive economy that mirrors aspects of Beijing’s pre-
2015 profile, while Hainan captures the rapid expansion of service
and tourism sectors. Although Shanghai’s weight is relatively high,
robustness checks (including placebo and ordering-rank tests)
demonstrate that the results are not driven by any single donor
province, lending confidence to the validity of the synthetic Beijing.

When we line up the two CO2 series and the main covariates
(Table 5), the fit is tight: the geometric-mean gap in carbon output
prior to 2015 is roughly 0.22 percent. Six auxiliary
indicators—including the log of per capita GDP and the
proportion of the secondary sector—also match closely, and their
discrepancies are much smaller than those obtained by simply
averaging all donor provinces. In short, the weighted combination
reproduces Beijing’s pre-bid economic and energy profile with high
fidelity, giving us a credible counterfactual for gauging how Winter-
Olympics preparations altered the city’s carbon trajectory.

4.1.2 Main findings
Figure 1 contrasts observed and synthetic CO2 trajectories for

Beijing over 2011–2022, and Figure 2 plots their gap. We interpret

that gap as the net effect of the Winter-Games project. From the
2015 bid announcement onward, measured emissions in Beijing
outpace the synthetic counterfactual each year, implying that
Olympics-related activity added to the city’s carbon load during
2015–2021. Cumulatively, the extra output is estimated at roughly
118 million t.

Although this value may appear modest in relative terms, it is
statistically significant. The ordering-rank test (Section 4.2.3) shows
that Beijing’s divergence from its synthetic control consistently ranks
at the upper bound of placebo cases, confirming that the identified
effect is unlikely to result from random variation or model artifacts.

It is also practically significant. The additional 118 Mt occurred
during a period when Beijing was under policy pressure to peak
emissions and demonstrate tangible progress toward its dual-carbon
commitments. This increase represented a substantial offset to the
city’s planned decarbonization pathway, underscoring the fact that
mega-event preparations can impose a material burden on urban
climate governance.

TABLE 4 Synthetic weights and pre-treatment fit for Beijing.

Synthetic weights

Province Shanghai Liaoning Hainan

Weight 0.565 0.253 0.182

Pre-treatment Fit Statistics

RMSPE 308.76

TABLE 5 Results of the Applicability test for the synthetic control method.

Variable Treated Synthetic

Environmental regulation strength 0.0011484 0.0027333

Urban population share at year-end 86.345 76.56732

Energy structure 0.314,931 0.3,877,902

Population 1,306.275 1921.941

GDP (Log) 11.08174 11.06347

Energy intensity 3.43823 3.874,089

co2 (2012) 62,936.96 62,917.68

co2 (2014) 67,022.84 67,032.1

FIGURE 1
Actual and synthetic carbon emissions for Beijing (2011–2022).

FIGURE 2
Difference between actual and synthetic carbon emissions for
Beijing (2011–2022).
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The build-up in emissions is linked to a surge in local demand
for construction inputs—steel, cement, glass, and other
materials—needed to refurbish and expand Winter-Games
venues. Manufacturing those inputs raised industrial energy use.
With the municipality funnelling large sums into venue upgrades
after the successful bid, annual city-wide emissions climbed from
689 Mt in 2015 to 821 Mt in 2021, an average rise of
2.9 percent per year.

4.2 Robustness checks

The preceding comparison shows a clear post-2015 divergence
between actual and synthetic Beijing. Yet we must test whether that
divergence truly stems from the Games rather than unobserved
shocks. To reinforce confidence in the result, we run three auxiliary
experiments to screen out random noise.

4.2.1 Placebo test by region
The regional placebo exercise, originally advanced by Abadie

and co-authors (Abadie et al., 2015; Hall et al., 2020), serves as a
randomisation check on causal claims. Its logic is straightforward:
pick provinces that, in principle, felt no influence from the
2022 Games, rebuild their synthetic controls, and then inspect
whether the real-versus-synthetic gap diverges after the policy
year. A large post-treatment divergence would suggest that our
baseline synthetic-control evidence might be spurious.

For this study we examined two contrasting provinces. Shanghai
received the heaviest donor weight in the main SCM, meaning its
pre-2015 emission profile most closely mirrored Beijing’s.
Chongqing, by contrast, carried a weight of zero, representing the
greatest structural distance from the capital in terms of energy mix
and economic composition. We therefore generated new synthetic
emission paths for both Shanghai and Chongqing using the exact
same SCM specification employed for Beijing.

Figure 3 summarises the results. After the 2015 bid
announcement, the distance between observed and synthetic
emissions for both placebo regions remains essentially flat. In

other words, neither Shanghai nor Chongqing displays the post-
2015 surge that characterises Beijing’s actual data. The absence of
any pronounced divergence lends credibility to our main finding: the
rise in emissions is tied to Olympic preparations unique to Beijing
rather than to unobserved nationwide shocks or quirks in the SCM
algorithm itself.

4.2.2 Placebo Test Based on Time
Because SCM cannot capture every underlying

driver—particularly long-run trends—we also conduct a time-
based placebo. The idea is to imagine that Beijing’s winning bid
occurred 2 years later, in 2017, and to rerun the synthetic-control
exercise under that counterfactual. Figure 4 presents the outcome.
Even with the bid date pushed forward, the synthetic series still
separates from the observed Beijing trajectory beginning in 2015,
and the gap continues to widen thereafter, echoing the pattern in
Figure 1. The persistence of this divergence suggests that the extra
emissions we identify stem from the Olympics shock itself, not from
quirks of the SCM specification or from unmodelled temporal drift.
In short, the Winter-Games preparations remain the most plausible
explanation for the post-2015 rise in Beijing’s carbon output.

4.2.3 Ordering-rank test
The preceding evidence points to a post-2015 surge in Beijing’s

CO2 output that coincides with Winter-Games preparations. To
confirm that this rise is not only visible but also statistically robust,
we adopt Abadie’s ordering-rank procedure (Abadie et al., 2010),
which functions like a league-table comparison of treatment effects.
The method imagines that every province in the donor pool secured
the 2015 Winter-Games bid and then applies the same SCM routine
to track its “pseudo-treatment” path. If Beijing’s actual-versus-
synthetic gap consistently outranks those of the placebo regions,
the Olympic effect is deemed significant.

Before running the ranking, we screen out control provinces
with poor pre-2015 fits, using the RMSPE threshold recommended
by Abadie. Any province whose pre-event RMSPE is more than five
times Beijing’s is removed, following Kim and Kim (2016). This filter
leaves seventeen credible comparators. Figure 5 plots their synthetic

FIGURE 3
Results of the placebo test based on regions.

FIGURE 4
Results of the placebo test based on time.
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gaps alongside Beijing’s. Prior to the bid year, the capital’s emission
trajectory overlaps the control curves; after 2015, however, Beijing’s
line moves steadily to the upper margin, while most placebo gaps
hover near zero. Only once in the sample do any placebo provinces
exceed Beijing’s divergence. Consequently, the chance that a
randomly chosen region would display an Olympic-sized jump is
roughly 6 percent (1/17), meeting the 10 percent significance rule of
thumb, which confirming that the post-treatment gap is highly
unlikely to result from chance. This result also demonstrates the
stability of the cumulative 118 Mt estimate: the observed effect does
not hinge on the inclusion or exclusion of any single donor province,
but rather reflects a systematic and statistically robust divergence
between actual and synthetic Beijing.

4.3 Channels of carbon emissions impact
due to the 2022 Beijing Winter Olympics

This section critically explores the channels through which the
2022 Beijing Winter Olympics influenced carbon emissions,
drawing on a detailed comparison between Beijing’s actual
emissions and those of its synthetic control. We treat the annual
gap between observed Beijing emissions and synthetic Beijing as the
Olympic-preparation effect and apply an adaptive Logarithmic
Mean Divisia Index (LMDI) to decompose this gap into four
primary determinants: energy structure, energy intensity,
population, and per capita GDP. Consistent with the SCM

identification of the preparation window, the decomposition
covers 2016–2021. The quantitative outcomes are summarized
in Table 6.

Preparations for Beijing’s Winter Olympics left a clear imprint
on the city’s carbon ledger. Four broad influences—fuel choices,
energy productivity, demographic pressures, and rising
incomes—shaped that footprint, each with distinct timing and
intensity. According to the LMDI, framework, coefficients greater
than 1 indicate that the factor contributed to emission increases,
while coefficients less than 1 indicate that the factor helped reduce
emissions. Most of these channels correspond directly to the
STIRPAT, framework, where emissions are driven by population
(P), affluence (A), and technology (T).

Affluence (A): Affluence was the dominant upward driver
during the early preparation years. 2016–2017 (1.44), 2017–2018
(1.17), and 2018–2019 (1.22) all show values greater than 1,
indicating that rising incomes and consumption fueled emissions
through waves of venue construction, hotel development, and
service expansion. In contrast, during 2019–2020 (0.72, <1),
affluence shifted to a dampening role: the COVID-19 shock
curtailed household incomes, restricted consumption, and
delayed investment, thereby suppressing demand-side emissions.
By 2020–2021 (1.69, >1), affluence rebounded sharply, reflecting
economic recovery and the final sprint to complete
Olympic projects.

Population (P): Population effects were limited in most years
and turned negative during the first COVID year. Specifically:
2016–2017 (0.988 ≈ 1) was neutral; 2017–2018 (1.030 > 1) and
2018–2019 (1.022 > 1) were mildly positive. In 2019–2020 (0.656 <
1), population reduced emissions—consistent with strict mobility
restrictions, interruptions to service employment, and partial
demobilization on worksites at the onset of COVID-19. By
2020–2021 (1.417 > 1), population became a strong amplifier,
reflecting the remobilization and concentration of on-site labor
needed for the final sprint to complete Olympic projects under
compressed timelines.

Technology (T): Technology generally mitigated emissions in
the early years, with Eff_T < 1 across 2016–2017 (0.83), 2017–2018
(0.88), and 2018–2019 (0.83), showing that efficiency improvements
offset some of the upward pressure from affluence and population.
During 2019–2020 (Eff_T = 1.01, ≈1), efficiency gains stalled under
pandemic disruptions, leaving technology essentially neutral in its
impact. In 2020–2021 (Eff_T = 0.91, <1), mitigation returned,
reflecting the reactivation of energy-efficiency measures and a
partial normalization of industrial operations.

Energy Structure (extension of STIRPAT):Energy structure
strongly reduced emissions in the early years, with Eff_ES = 0.12

FIGURE 5
Ordering-rank test.

TABLE 6 LMDI decomposition of the Olympic-preparation emission (2016–2021).

From To Energy structure Energy intensity Population Pergdp

2016 2017 0.1,151,168 0.8,295,270 0.9,880,564 1.443,986

2017 2018 0.2,414,138 0.8,764,856 1.029962 1.172,902

2018 2019 0.5,609,765 0.8,313,532 1.021631 1.216,906

2019 2020 0.6,574,064 1.011877 0.6,562,902 0.717,011

2020 2021 1.374,932 0.9,088,367 1.417,013 1.692,875
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(2016–2017), 0.24 (2017–2018), and 0.56 (2018–2019), consistent
with coal-to-clean energy substitution and “Blue Sky Defense”
initiatives. In 2019–2020 (Eff_ES = 0.66, <1), the mix continued
to alleviate emissions, partly because the pandemic reduced coal use
and energy demand from heavy industry. However, in 2020–2021
(Eff_ES = 1.37, >1), the effect reversed, as reliance on coal-based
electricity and diesel-powered machinery increased under
compressed construction timelines, while renewable contributions
remained limited.

Overall, the decomposition shows that affluence was the
principal upward driver, while technology and energy structure
provided intermittent relief but were vulnerable to shocks from
construction surges and the pandemic. Population was normally
secondary. The COVID-19 period thus produced a dual effect:
temporary reductions in affluence-driven emissions and stronger
mitigation from energy structure, but also weakened efficiency
improvements and elevated population pressures. Moreover, in
the post-pandemic phase, the need to accelerate construction and
compensate for delays intensified energy demand, thereby further
amplifying carbon emissions. These patterns underscore that mega-
event preparations can interact with external shocks to generate
complex emission dynamics.

5 Conclusion

Beijing’s successful bid for the 2022 Winter Olympics set in
motion a sweeping program of construction and service expansion
that left a measurable carbon imprint well before the opening
ceremony. By pairing the synthetic-control technique with
logarithmic mean Divisia decomposition, this paper traces that
imprint and disentangles the roles played by affluence,
population, technology, and energy structure.

Annual city-level emissions climbed steadily after 2015, the year the
bid was approved, and the cumulative addition attributable to Olympic
preparations is estimated at roughly 118 million tonnes through 2022.
The trajectory, however, was not uniform: emissions spiked during the
early construction surge, moderated as projects approached
completion, and then shifted again during the COVID years. The
decomposition shows that per capitaGDP (affluence) was the principal
upward driver, with strong increases in 2016–2019, a temporary decline
below unity during the first COVID shock in 2019–2020, and a sharp
rebound in 2020–2021 as recovery and deadline pressures accelerated
demand. Population effects were usually modest, but turned negative in
2019–2020 under mobility restrictions and strongly positive in
2020–2021 when labor was remobilized to catch up with delayed
projects. Technology (energy intensity) typically mitigated emissions,
but efficiency gains stalled during the pandemic, showing how external
shocks can blunt policy effectiveness. Energy structure initially reduced
emissions through coal-to-clean transitions, yet reversed in
2020–2021 as coal-fired power and diesel machinery were
redeployed under compressed timelines.

Taken together, these results show that mega-event preparations
interact with external shocks to generate complex, shifting emission
dynamics. The pandemic produced both temporary mitigation
(through suppressed affluence and constrained mobility) and
subsequent rebound (through intensified labor demand and
reliance on high-carbon fuels to make up lost time).

These findings point to several actionable lessons for future
mega events:

Early integration of carbonmanagement. Emission control must
begin as soon as a bid is secured, not only in the final run-up to the
event. Long lead times for construction and infrastructure
development should be factored into carbon budgets.

Low-carbon supply chains. Venue and infrastructure design
should prioritize materials and processes with verified low-carbon
footprints, supported by green procurement standards.

Staggered labor mobilization. To avoid concentrated surges in
population-driven emissions, workforce inflows should be
smoothed and coordinated with project timelines.

Resilient efficiency policies. Efficiency standards for machinery,
construction sites, and energy systems should be enforced
continuously, with contingency plans to prevent backsliding
during disruptions such as pandemics.

Accelerated energy transition. Event-related facilities
should be tied directly to renewable energy sources.
Temporary reliance on coal or diesel to meet compressed
deadlines should be strictly avoided, with grid planning
aligned to renewable expansion.

Legacy planning. Beyond the event itself, infrastructure should
be designed for post-event use to ensure that investments deliver
long-term social value while minimizing “stranded” carbon costs.

When implemented together, these measures can substantially
reduce the carbon footprint of showcase events while maintaining
their symbolic and cultural significance.

While this paper provides robust evidence on the carbon
impacts of Olympic preparations, several limitations should be
acknowledged. The analysis relies on provincial-level energy
consumption data, which may mask finer-grained spatial
heterogeneity within Beijing. In addition, the SCM and LMDI
frameworks, though powerful, are sensitive to data quality and
donor pool selection. Future research could benefit from
integrating high-resolution datasets, such as satellite-based energy
proxies or firm-level activity data, and from applying alternative
causal inference methods to triangulate the findings. Comparative
studies across different mega-events would also help to generalize
the insights and refine policy recommendations.
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