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Remote sensing has become increasingly valuable for monitoring inland water
quality across space and time. However, detecting key water quality parameters
(WQPs) using satellite imagery in small water bodies remains challenging. This
study aims to (1) develop regression models for estimating arsenic (As),
ammonium (NH4

+), chemical oxygen demand (COD), water hardness
expressed as calcium oxide equivalent (CaOeq), and total suspended solids
(TSS) using Sentinel-2 imagery and in situ measurements from 2019 to
2021 in Vadkert Lake, Hungary; and (2) assess the spatial and seasonal
dynamics of these WQPs by applying the models to Sentinel-2 images from
four key dates in 2024. Themodified normalized difference water index (MNDWI)
was applied to isolate water pixels, retaining bands B2 to B8a for their high spatial
resolution and relevance. Mean reflectance values around 20 sampling sites were
extracted and correlated with measured concentrations of the five WQPs.
Stepwise multilinear regression models were developed for As, NH4

+, and
COD, which exhibited the strongest correlations with band reflectance (R2 =
0.91–0.99). These models were applied to four seasonal Sentinel-2 images from
2024 to map the spatial and temporal distribution of the WQPs. Results revealed
that As levels peaked in summer (76.8 ± 20.7 μg/L) and were spatially uniform,
while NH4

+ and COD also peaked in summer (0.2 ± 0.3 mg/L and 7.3 ± 2.01mg/L,
respectively), with elevated values at the southern and eastern lake margins.
These findings show that satellite-based seasonal water quality assessment is
feasible in small lakes and supports cost-effective environmental management.
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1 Introduction

Remote sensing serves as an effective tool for providing economical and dependable
water quality data for aquatic ecosystems, particularly due to advancements in the spatial,
spectral, and temporal capabilities of satellite constellations (Mohsen et al., 2023b). It
mitigates the constraints of in situ measurements by providing extensive spatiotemporal

OPEN ACCESS

EDITED BY

Changchun Huang,
Nanjing Normal University, China

REVIEWED BY

Pedzisai Kowe,
Midlands State University, Zimbabwe
Dung Ngo,
Joint Russian-Vietnamese Tropical Scientific
and Technological Center, Vietnam

*CORRESPONDENCE

György Sipos,
gysipos@geo.u-szeged.hu

Diaa Sheishah,
geo_diaa@nriag.sci.eg

RECEIVED 14 July 2025
ACCEPTED 19 August 2025
PUBLISHED 22 September 2025

CITATION

Sheishah D, Mohsen A, Abdelsamei E,
Babcsányi I, Alsenjar O, Magyar G, Végi VB,
Solymos K and Sipos G (2025) Remote sensing-
based modeling andmapping of seasonal water
quality dynamics in Vadkert Lake, Hungary.
Front. Environ. Sci. 13:1665776.
doi: 10.3389/fenvs.2025.1665776

COPYRIGHT

© 2025 Sheishah, Mohsen, Abdelsamei,
Babcsányi, Alsenjar, Magyar, Végi, Solymos and
Sipos. This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Environmental Science frontiersin.org01

TYPE Brief Research Report
PUBLISHED 22 September 2025
DOI 10.3389/fenvs.2025.1665776

https://www.frontiersin.org/articles/10.3389/fenvs.2025.1665776/full
https://www.frontiersin.org/articles/10.3389/fenvs.2025.1665776/full
https://www.frontiersin.org/articles/10.3389/fenvs.2025.1665776/full
https://www.frontiersin.org/articles/10.3389/fenvs.2025.1665776/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenvs.2025.1665776&domain=pdf&date_stamp=2025-09-22
mailto:gysipos@geo.u-szeged.hu
mailto:gysipos@geo.u-szeged.hu
mailto:geo_diaa@nriag.sci.eg
mailto:geo_diaa@nriag.sci.eg
https://doi.org/10.3389/fenvs.2025.1665776
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://doi.org/10.3389/fenvs.2025.1665776


coverage and accessibility for unreachable aquatic systems,
especially under severe weather conditions. This data is essential
for identifying pollution hotspots and suggesting real-time solutions
(Ma et al., 2023). The concept is based on the interaction between
water and incident light, as various water constituents reflect and
absorb wavelengths to differing extents (Mohsen et al., 2023a). Clear
water generally reflects blue light and absorbs infrared radiation, but
the addition of organic and/or inorganic substances enhances
reflectivity in the infrared spectrum. The magnitude of growth
can be utilised to deduce its concentration via empirical
(Matthews, 2011), semi-empirical (Wang and Yang, 2019), and
analytical (Jaywant and Arif, 2024) methodologies.

Sentinel-2 images have recently been shown to be highly useful
for monitoring lake and reservoir water quality parameters. With
high accuracy, researchers have estimated chlorophyll-a, coloured
dissolved organic matter, dissolved organic carbon, turbidity, and
other parameters using Sentinel-2 data (Toming et al., 2016; Elhag
et al., 2019; Xu et al., 2019). To improve the retrieval of water quality
information (Ciężkowski et al., 2022; Kokal et al., 2024; Toming
et al., 2024), a variety of techniques, including band ratio algorithms,
spectral indices, and machine learning approaches, have been
employed. For some parameters, particularly chlorophyll-a (Xu
et al., 2019), studies have found that Sentinel-2 performs better
than Landsat 8. Complementing conventional field sampling
approaches, remote sensing technologies allow quick, meticulous,
and cost-effective monitoring of inland waters (Llodrà-Llabrés et al.,
2023). Still, difficulties with atmospheric correction and algorithm
adaptation to local conditions (Jaelani and Ratnaningsih, 2018;
Ciężkowski et al., 2022) are numerous. In the Carpathian Basin
there is a long tradition of inland excess water (“belvíz”) mapping
with optical remote sensing, providing regional methodological
context for our water-surface delineation (Rakonczai et al., 2001;
Csendes and Mucsi, 2016).

Several remote sensing platforms and regression methodologies
have been utilised to quantify specific water quality parameters
(WQPs), including suspended sediment concentration (SSC),
chlorophyll-a (Chl-a), and nutrient concentrations. Dekker et al.
(1996) utilized the Airborne CASI platform over small lakes in the
Netherlands, employing linear regression to estimate chlorophyll-a,
total suspended solids (TSS), and turbidity, resulting in an R2 range
of 0.81–0.95. In a similar vein, Mohsen et al. (2020) established
empirical models employing stepwise multiple linear regression to
predict Chl-a, TSS, pH, iron (Fe), zinc (Zn), chromium (Cr), and
ammonium (NH4+) in Burullus Lake, Egypt, utilising Landsat
7 imagery, obtaining a R2 range of 0.6–0.86. Furthermore,
Sentinel-2 MSI was used to determine Chl-a, TSS, turbidity, and
total nitrogen (TN) in Lake Manyame, Zimbabwe, by multiple
regression analysis, attaining an R2 range of 0.63–0.95 (Chawira
et al., 2013).

While remote sensing, primarily through Sentinel-2 imagery,
has become a prevalent method for monitoring water quality in lakes
and reservoirs—facilitating the estimation of parameters like
chlorophyll-a, turbidity, and dissolved organic content with high
spatial and temporal resolution—numerous studies have employed
spectral indices, band ratio algorithms, and machine learning
models to retrieve water quality indicators accurately. However, a
significant gap persists, as few studies have focused on employing
Sentinel-2 data to detect and model non-optically active water

quality parameters such as arsenic (As), ammonium (NH4
+),

chemical oxygen demand (COD), Calcium oxide equivalent
(CaOeq), and total suspended solids (TSS) particularly in small,
shallow lakes. We focused especially on these five WQPs; As, NH4

+,
COD, TSS, CaOeq because they represent key management
concerns in small, shallow Hungarian lakes. TSS controls light
attenuation and water clarity; COD captures oxidizable organic
load, often linked to colored dissolved organic matter that affects
reflectance. NH4

+ is an indicator of nitrogen loading and potential
toxicity under warm, low-oxygen conditions typical of summer; As
is a toxic trace element of screening interest; and CaOeq
characterizes the carbonate system in this alkaline, shallow lake,
informing interpretation of optical background and buffering
capacity. Together, these analytes align with routine regional
monitoring and provide a practical set for testing whether lake-
specific empirical models from Sentinel-2 can support targeted
sampling, early-warning screening, and mitigation prioritization
at Lake Vadkert.

Also, These variables are crucial for comprehending human-
caused impacts and ecological hazards, although they are
inadequately investigated due to their feeble or indirect spectral
fingerprints. Furthermore, most prior research emphasizes single-
time or annual assessments, neglecting the seasonal variability that
might substantially affect parameter concentrations. Research
combining in situ data with regression-based techniques for
localised calibration and validation in Central European lake
systems is somewhat scarce. Therefore, the objectives of our
study are as follows:

• Create and evaluate regression models applying Sentinel-2
imaging and in situ data to estimate key water quality metrics
(As, NH4

+, COD, CaOeq, and TSS) in Vadkert Lake, by
determining suitable spectral bands and verifying model
efficacy against field measurements.

• Evaluate the seasonal and local variances in water quality in
2024 by using established models based on multi-season
Sentinel-2 imagery, highlighting temporal trends and
pollution hotspots to promote informed lake management.

From a water-management standpoint, generating lake-wide maps
of As, NH4

+, and COD from freely available Sentinel-2 Level-2A data
provides decision-ready evidence for small, shallow lakes where grab
sampling is spatially sparse. These seasonal products help managers (i)
prioritize when and where to sample, (ii) implement early-warning
screening after heatwaves or low-flow periods that are expected to
become more frequent under climate change, and (iii) target source
control and remediation in sub-catchments and shoreline zones under
the greatest pressure. Because the workflow relies on simple, locally
calibrated empirical models applied to routine satellite acquisitions, it is
low-cost, repeatable, and readily transferable to nearby
lakes—supporting more sustainable and adaptive water-quality
management within real monitoring budgets.

2 Study area

Lake Vadkerti is a saline (alkaline) lake located in the sandy
area of the Danube-Tisza Interfluve (Figure 1), on the Kiskunság
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sand ridge, roughly 3 km northwest of Soltvadkert, within the
deepest section of an 8–10 km long northwest-southeast directed
depression. The lake basin is situated 1–2 m below its immediate
surroundings, at an elevation of 110 m above sea level. This
enables the passage of groundwater as well as surface waters into
the lake basin. The lake’s surface area is 67.3 ha (at an elevation of
108.5 m above sea level), with 43.7 ha of open water and 23.6 ha of
reed coverage in the eastern region. The lake often has an average
depth of 1–2 m throughout its entire length.

The lake’s hydrological equilibrium is influenced by both natural
and human factors, significantly affecting its long-term water level
stability. Atmospheric precipitation directly onto the lake surface
contributes around 350,000 m3 per year, signifying a substantial
intake with a stabilizing impact. This intake, despite interannual
variability, does not affect the decrease in water levels. Surface runoff
from the adjacent catchment is negligible; however, subsurface
inflow from aquifers contributes around 245,000 m3 per year.
This is contingent upon the comparative height of the lake’s
water surface and the adjacent aquifers. Evaporative losses are
the predominant and enduring adverse element of the lake’s
water budget, estimated at roughly 440,000 m3, with model
forecasts suggesting an additional increase of 15,000–30,000 m3

for the 21st century (Keve and Nováky, 2011; Csáki et al., 2018).

Infiltration into the sandy subsoil leads to supplementary losses,
estimated at approximately 130,000 m3 per year. This infiltration
process is gradual yet regularly diminishes the lake’s volume. To
mitigate these deficiencies, nearly 400,000 cubic meters of
groundwater are artificially replenished annually. Nevertheless,
this artificial water supply is inadequate to counteract the
prolonged decline. The combined impact of elevated evaporation
rates, restricted natural inflows, and comparatively ineffective
artificial replenishment has resulted in a consistent and
quantifiable decrease in the lake’s water level, notwithstanding
annual fluctuations (Sipos et al., 2021). This geomorphological
and use context informed the sampling design and the choice of
target parameters and retrieval bands detailed in Section 3.

3 Materials and methods

We combined two in-situ campaigns (2019, 2021) with multi-
date Sentinel-2 Level-2A processing to delineate open water
(MNDWI), extract cloud-free surface reflectance (B2–B8a),
calibrate lake-specific empirical models for As, NH4

+, and COD
against laboratory measurements, and produce seasonal maps for
2024 with associated uncertainty.

FIGURE 1
Location map of the study area, showing the positions of water sampling sites collected over 2 years (2019 and 2021) during monitoring surveys.
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3.1 Sampling design and handling

Surface-water sampling was conducted on two campaigns:
October 2019 (n = 8) and June 2021 (n = 12), with sites
uniformly distributed across the lake (Figure 1). An additional
channel site was included to characterize inflow from the long-
water region. Samples were collected at 0.30 m depth; at very shallow
locations, surface grabs were taken. Immediately after collection,
samples were placed in clean containers, stored on ice, transported
under refrigeration, and held at 4 °C in the laboratory until analysis
according to accredited holding-time procedures.

3.2 Laboratory analyses

All determinations were performed at the Soil and Water
Testing Laboratory, Department of Physical and Environmental
Geography, University of Szeged (accredited laboratory NAH-1-
1437/2018) under standard operating procedures. Methods were as
follows: total suspended solids (TSS)—gravimetric determination
after filtration through 0.45 µm pre-weighed membrane filters and
drying to constant mass; total water hardness (reported as CaOeq)—
EDTA titration with Eriochrome Black T, results expressed as mg L-1

CaOeq; chemical oxygen demand (COD)—permanganate oxidation
with 10 min boiling and oxalic-acid back-titration; ammonium
(NH4

+)—flow-injection spectrophotometry (FOSS FIAstar 5000);
arsenic (As)—ICP-OES after 0.45 µm filtration (PerkinElmer
Optima 7000 DV).

3.3 Quality assurance and quality control
(QA/QC)

All measurements were performed in triplicate with analytical
precision ≤10% (laboratory records). Sampling, preservation, and
analysis followed accredited SOPs, including refrigerated handling,
analysis within prescribed holding times, and metals measured on
filtered aliquots. Instrument performance was verified through the
laboratory’s QA/QC program (calibration standards, blanks, and
continuing checks). Detection limits are reported where relevant
(e.g., NH4

+ < 0.25 mg L-1 in 2021).

3.4 Acquisition and pre-processing of
remote sensing data

Google Earth Engine (GEE), specifically the “COPERNICUS/S2-
SR-HARMONIZED” dataset, was utilized to identify Sentinel-2
images covering Vadkert Lake during the in situ measurements
conducted in 2019 and 2021. The images were filtered to include
only those with less than 20% cloud cover. The closest images to the
in situ campaigns were acquired on 13 August 2019, and 9 May
2021, corresponding to the 34TCS tile and a relative orbit 36.
Additionally, four images representing different seasons in
2024 were selected: January 29, May 13, July 17, and November
09. All scenes were used in Level-2A surface reflectance (SR) form
produced by the ESA Sen2Cor atmospheric-correction processor.
We used the Scene Classification Layer (SCL) to remove pixels

flagged as cloud shadow, cloud (high and medium probability),
cirrus, and snow/ice. We selected L2A/Sen2Cor—rather than per-
scene empirical corrections such as QUAC—to ensure sensor-
consistent, physically based SR across dates and to leverage the
integrated SCL for masking. The modified normalized difference
water index (MNDWI), developed by Xu (2006) (Equation 1), was
applied with a threshold of 0 to mask water pixels, and the lake area
was subsequently clipped. Predictor bands for retrieval were B2–B8a
(10–20 m). Bands B1, B9, B10, and B12 were excluded due to lower
spatial resolution and/or limited sensitivity to the targeted WQPs.
Band B11 (SWIR, 1610 nm) was used only forMNDWI (Equation 1)
and was not included in the regression models.

MNDWI � RB3 − RB11

RB3 + RB11
(1)

where MNDWI: modified normalized difference water index; RB3:
surface reflectance in the green band (B3, ≈560 nm); RB11: surface
reflectance in the shortwave-infrared band (B11, ≈1610 nm).

3.5 Derivation of water quality
parameter models

A window of 2 × 2 pixels was placed around the sampling sites
(8 sites in 2019 and 12 sites in 2021), and the reflectance values of bands
(B2 to B8a) were extracted and averaged. The correlation between band
reflectance and measured WQPs (i.e., COD, CaOeq, TSS, As, and
NH4

+H was assessed through the Pearson correlation coefficient.
Regression models were subsequently developed for parameters with
strong correlations, employing the stepwise multilinear regression
technique. These models were applied to historical images from
2024 to investigate the spatial and temporal dynamics of the selected
water quality parameters. The analysis was conducted using a
combination of Sentinel Application Platform (SNAP, version 8.0),
Python 3.0, and Quantum GIS (QGIS 3.34). Our choice of WQPs
therefore spans parameters with direct optical coupling (TSS, COD)
and indirect, management-relevant indicators (NH4

+, As, CaOeq),
reflecting both the monitoring priorities for Hungarian small lakes
and the environmental pressures pertinent to Lake Vadkert.

3.6 Retrieval algorithms and equations

We retained Sentinel-2 Level-2A bands B2–B8a as predictors
and used B11 only for water masking via MNDWI (Equation 1).
Around each in-situ sample (2019: n = 8; 2021: n = 12), we extracted
mean surface reflectance from a 2 × 2-pixel window and fitted
stepwise multiple linear regressions for parameters that showed
strong band–WQP relationships. The following lake-specific
empirical models Equations 2–4 were used to generate maps:

For As (µg L-1):

As � 55.497 + 0.056RB5 − 0.116RB4 + 0.059RB3 R2 � 0.99( ) (2)

For NH4
+ (mg L-1):

NH+
4 � −0.219 + 0.001RB5 − 0.002RB4 + 0.001RB3 R2 � 0.98( )

(3)
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For COD (mg L-1):

COD � 5.21 + 0.010RB5 − 0.009RB4 R2 � 0.91( ) (4)

We explored models for CaOeq and TSS; however, these did not
generalize reliably (weak to moderate correlations, limited
variability and range-coded values for TSS).

4 Results

4.1 Water quality of Lake Vadkerti

A comparative analysis of five water quality parameters—COD,
CaOeq, TSS, As, and NH4

+—between 2019 and 2021 reveals notable
temporal variations that reflect changes in the lake’s hydrological
and biogeochemical conditions. Varying precipitation patterns,
surface and subsurface inflows, and seasonal dynamics likely
influence the observed differences. This section analyzes the
specific trends and implications associated with each parameter,
highlighting potential sources of pollution and shifts in water quality
status over the 2 years (Table 1).

In 2019, the COD values ranged between 9.00 and 11.20 mg/
L, indicating relatively elevated levels of organic matter. In
contrast, the COD values in 2021 significantly decreased,
ranging from 5.8 to 6.6 mg/L. This decline suggests an overall

improvement in water quality and a reduction in organic
pollution, potentially due to changes in land use, wastewater
input, or hydrological conditions. Similarly, total hardness
(CaOeq) values showed a notable reduction from 196 to
216 mg/L in 2019 to 129–171 mg/L in 2021, except for one
outlier (290 mg/L in 2021). This reduction could be attributed to
dilution effects from increased precipitation or surface inflow,
supporting the hypothesis of wetter conditions in 2021.

The TSS values were generally lower in 2021 compared to 2019.
While 2019 values ranged between 21.0 and 29.0 mg/L, most
2021 samples were below 21 mg/L, with only a few reaching
31 mg/L. This decrease indicates reduced erosion, sediment
resuspension, or runoff, possibly due to calmer hydrodynamic
conditions. NH4

+ concentrations further support this pattern:
values in 2019 ranged from 0.66 to 0.78 mg/L, while all
2021 samples were below the detection limit (<0.25 mg/L). This
dramatic reduction implies lower levels of nutrient pollution or
improved nitrification, both of which are signs of better
ecological status.

Concentrations showed amarked decline between the 2 years. In
2019, As ranged from 108.2 to 111.4 μg/L, but it dropped to
39.1–83.5 μg/L in 2021. The lower As levels suggest a potential
change in geochemical dynamics, input sources, or mobilization
processes, possibly influenced by hydrological conditions or
seasonal shifts.

TABLE 1 Measured water quality parameters in Lake Vadkerti during two sampling campaigns in October 2019 and June 2021. Parameters include COD,
CaOeq, TSS, As, and NH4

+.

Year ID COD (mg/L) CaOeq (mg/L) TSS (mg/L) As (µg/L) NH4
+ (mg/L)

2019 1 9.00 196.00 29.00 110.20 0.69

2 10.80 197.00 26.00 108.20 0.72

3 10.00 204.00 23.00 108.70 0.76

4 10.40 209.00 23.00 110.50 0.77

5 11.20 203.00 24.00 108.30 0.66

6 10.40 216.00 27.00 108.70 0.72

7 11.20 211.00 <21.0 111.40 0.78

8 10.00 203.00 21.00 110.80 0.77

2021 1 5.8 132 25 79 <0,25

2 5.8 131 31 80.8 <0,25

3 6 290 26 80.2 <0,25

4 6.6 131 <21,0 80.6 <0,25

5 5.8 171 <21,0 39.1 <0,25

6 6 131 <21,0 80.9 <0,25

7 6 130 24 76.7 <0,25

8 6.6 131 26 79.1 <0,25

9 6.6 132 31 78.3 <0,25

10 6 131 25 79.3 <0,25

11 5.8 134 <21,0 80.1 <0,25

12 5.8 129 27 83.5 <0,25
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Overall, the comparison reveals a consistent trend of improving
water quality from 2019 to 2021. This improvement may be driven
by climatic factors (e.g., increased rainfall and dilution), reduced
anthropogenic input, or internal lake processes stabilizing over time.

4.2 Correlation analysis and water
quality models

The correlation analysis demonstrated a very strong relationship
between band reflectance and As, NH4

+, and COD, a moderate
correlation with CaOeq, and a weak correlation with TSS (Table 2).
Focusing on the correlation among the WQPs, As, NH4, and COD
were the most correlated parameters, showing the highest
correlation magnitude (r = 0.962–0.994), while CaOeq and TSS
were less correlated with these parameters, and they showed the
highest correlation with NH4

+ (r = 0.585) and COD (r = −0.218),
respectively. In terms of band reflectance, typically, B2 and
B4 showed negative correlations with WQPs, while the other
bands showed positive correlations. COD showed its highest
correlation with B7, CaOeq with B2, TSS with B4, and both As
and NH4

+ with B5.
Regression models were developed for the most correlated

WQPs with Sentinel-2 bands—namely, As, NH4
+, and COD. The

models demonstrated promising accuracy, with R2 values ranging
from 0.91 (COD) to 0.99 (As). The analysis revealed that specific
Sentinel-2 bands, particularly B4 (red) and B5 (red edge), were the
most influential contributors to the three WQPs. Besides, B3 (green)
showed a notable contribution to the models for As and NH4

+.

The three models used for mapping (As, NH4
+, and COD) are

reported in materials and methods (Equations 2–4) and are applied
to the seasonal Sentinel-2 scenes described below.

4.3 Spatiotemporal distribution of water
quality parameters in the lake

The spatiotemporal distribution of the threeWQPs was depicted
across seasons by applying the developed models to Sentinel-2
images acquired on specific dates in 2024 (Figure 2). The maps
in Figure 2 were generated using the retrieval equations listed in
materials and methods (Equations 2–4). The seasonal variability of
the parameters was evident, especially when comparing summer
with the other seasons. The As concentration slightly increased from
64.7 ± 9.1 μg/L in winter to 66.3 ± 10.2 μg/L in spring, then surged by
15% (76.8 ± 20.7 μg/L) in summer, before recording the lowest
concentration in autumn (63.9 ± 8.3 μg/L). Notably, the spatial
distribution of As was almost uniform across seasons (Figures
2A,D,G,J). A similar temporal trend was noticed for NH4

+ since
it slightly increased from 0.001 ± 0.0 mg/L in winter to 0.008 ±
0.0 mg/L, reached its peak in summer (0.2 ± 0.3 mg/L), and declined
again in autumn to return to winter’s mean value of 0.001 ± 0.0 mg/
L. However, its spatial distribution was non-uniform in winter and
autumn, with relatively higher concentrations observed in the
southern and eastern peripheries of the lake (Figures 2B,K). In
contrast, a uniform distribution occurred in spring and summer
(Figures 2E,H). The COD declined slightly from 5.6 ± 0.67 mg/L in
winter to record its lowest concentration in spring (5.5 ± 0.48 mg/L).

TABLE 2 Pearson correlation coefficient among water quality parameters (WQPs) and reflectance of Sentinel-2 bands (B2–B8a).

Parameter Water-quality parameters Sentinel-2 MSI bands

COD CaOeq TSS As NH4+ B2 B3 B4 B5 B6 B7 B8 B8a

COD 1

CaOeq 0.556a 1

TSS −0.218 −0.055 1

As 0.962b 0.594a −0.178 1

NH4+ 0.964b 0.585a −0.195 0.994b 1

B2 −0.778b −0.697b 0.126 −0.823b −0.811b 1

B3 0.673b 0.205 −0.085 0.662b 0.671b −0.155 1

B4 −0.102 −0.564a 0.135 −0.137 −0.125 0.641b 0.576a 1

B5 0.931b 0.398 −0.098 0.956b 0.954b −0.668b 0.773b 0.126 1

B6 0.887b 0.274 −0.030 0.889b 0.886b −0.575a 0.773b 0.233 0.977b 1

B7 0.894b 0.289 −0.073 0.897b 0.895b −0.617a 0.733b 0.177 0.974b 0.994b 1

B8 0.853b 0.213 −0.065 0.848b 0.841b −0.477 0.828b 0.335 0.948b 0.981b 0.963b 1

B8a 0.808b 0.162 0.017 0.798b 0.786b −0.497a 0.710b 0.282 0.912b 0.976b 0.968b 0.970b 1

aCorrelation is significant at the 0.05 level (2-tailed).
bCorrelation is significant at the 0.01 level (2-tailed).

Notes: Values are Pearson correlation coefficients (r). Boldface indicates band–parameter pairs retained as predictors in the final stepwise regression models (Equations 2–4). Significance: * p <
0.05; ** p <0.01 (two-tailed).
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FIGURE 2
Seasonal Sentinel-2 maps of water-quality parameters for Lake Vadkerti (Hungary). Columns show parameters: arsenic (As, μg L-1), ammonium
(NH4

+, mg L-1), and chemical oxygen demand (COD, mg L-1). Rows show seasons/dates: winter (29 January 2024), spring (13 May 2024), summer (17 July
2024), and autumn (9 November 2024). Panels: (A–C) winter As, NH4

+, COD; (D–F) spring As, NH4
+, COD; (G–I) summer As, NH4

+, COD; (J–L) autumn
As, NH4

+, COD. Open water was delineated with MNDWI (threshold = 0) and a 10 m shoreline buffer; retrieval equations are given in Methods
(Equations 2–4). Color scales are fixed by parameter across seasons; north arrow and 100 m scale bar shown. Lake-wide mean values for each date are
annotated in the panels.
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Then, it peaked in summer (7.3 ± 2.01 mg/L) and recorded a
relatively high concentration in autumn (5.75 ± 0.79 mg/L). The
spatial distribution of COD mirrored that of NH4

+, with higher
concentrations observed in the southern and eastern lake
peripheries (Figures 2C,L), and a more uniform distribution in
spring and summer (Figures 2F,I).

5 Discussion

5.1 Drivers of seasonal water-
quality dynamics

Integrating Sentinel-2 MSI surface reflectance with in-situ
WQPs via regression yielded spatially explicit, multi-date maps
that enable continuous lake monitoring, with high predictive
accuracy (R2 = 0.91–0.99) across the study period. The seasonal
patterns align with established process controls: wind-driven
resuspension and shoreline disturbance episodically elevate TSS,
while organic loading and in-lake production/decay shape COD,
particularly in warm months. Although As and NH4

+ are not
directly optically active, they display strong associations with the
red/red-edge bands (B5, B7), indicating indirect coupling through
co-variation with optically active constituents and shoreline/inflow
influences. These dynamics are consistent with observations from
other systems (e.g., Mohsen et al., 2022; Mallick et al., 2014).

5.2 Human pressures and management
implications

The spatiotemporal variability mapped for 2024 highlights
localized impacts from both natural and anthropogenic activities.
Elevated As, NH4

+, and COD in summer likely reflect increased
evaporation, intensified microbial activity, and heightened
agricultural/urban pressures around peak season aligned with Li
et al. (2019). These maps enable managers to prioritize sampling,
deploy early-warning screening after heatwaves or low-flow periods,
and target mitigation at shoreline and inflow hotspots.

5.3 Climate-change sensitivity of seasonal
fluctuations

In our study, summer increases in NH4
+ and COD and the

concentration of shoreline/inflow hotspots are consistent with
climate-driven mechanisms that intensify water-quality stressors:
warmer conditions and lake heatwaves strengthen stratification,
extend residence time, and elevate oxygen demand, fostering
ammonification and organic-matter processing that raise NH4

+

and COD, while low water levels heighten resuspension along
shallow margins. These pathways align with evidence of
widespread lake deoxygenation under recent warming (Jane et al.,
2021) and with projections that lake heatwaves are becoming more
frequent and severe, shifting biochemical regimes at sub-seasonal
scales (Woolway et al., 2021a; Woolway, Anderson and Albergel,
2021b). Within this context, our multi-date Sentinel-2 workflow
functions as a repeatable early-warning screen, capturing within-

season shifts—including post-heatwave rises in NH4
+/COD—and

guiding adaptive sampling toward emergent hotspots in small,
shallow alkaline lakes like Vadkert.

5.4 Comparison with water-quality
standards and guidelines (WFD context)

For management context, we benchmarked our observations
against typical EUWater Framework Directive (WFD) “good status”
ranges: As ≤ 10 μg L-1, NH4

+ ≈ ≤ 0.5 mg L-1 (type-specific), COD ≈ ≤
25 mg L-1 (noting method alignment, CODMn vs. CODCr, and TSS
typically < 25–50 mg L-1; CaOeq is not directly regulated under
WFD and is used contextually as alkalinity/hardness (commonly
~20–200 mg L-1 as CaCO3 equivalents) (ERA-COMM EU Water
Law training; Austrian Federal Ministry—BMLUK,WFD guidance).

5.5 Methodological limitations and future
directions

Our lake-specific stepwise multilinear regressions on Sentinel-2
L2A reflectance achieved high predictive skill for As, NH4

+, andCOD in
a small, shallow alkaline lake—matching or exceeding accuracies often
reported for band-ratio or machine-learning schemes in comparable
settings (Ciężkowski et al., 2022; Kokal et al., 2024). The linear
framework remains transparent and reproducible, with performance
confirmed by k-fold cross-validation and by-year (withheld-year) tests.
Because As and NH4

+ are inferred indirectly via co-variation with
optically active constituents, model validity is context-dependent and
can weaken under domain shift (e.g., atypical hydrology or loading). As
with MSI data generally, multicollinearity among red/red-edge bands
and limited sample size can inflate apparent fit; our diagnostics mitigate
but cannot eliminate this risk. Potential saturation at high
concentrations and adjacency/atmospheric residuals near shorelines
also warrant caution; using L2A/Sen2Cor and explicit QA/QC reduces,
but does not remove, these effects (cf. Jaelani and Ratnaningsih, 2018).
Overall, the results indicate that well-calibrated linear baselines can
deliver strong, interpretable performance for management use, while
future work should broaden seasonal/hydrologic coverage, test non-
linear learners against these baselines under rigorous external
validation, and incorporate pH/temperature to contextualize
ammonia risk. Future work should quantify high-stage
groundwater–lake exchange using Hungary-proven geophysical
levee-diagnostic techniques to test seepage-driven inputs to Lake
Vadkert (Sheishah et al., 2022; 2023; Abdelsamei et al., 2024).

5.6 Comparison with recent Sentinel-2 work

Our findings align with recent demonstrations of Sentinel-2
capability for inland-water WQPs. Studies such as Toming et al.
(2016) and Xu et al. (2019) reported accurate retrievals of
chlorophyll-a and turbidity, and our R2 = 0.91–0.99 for As,
NH4

+, COD indicate that—when locally calibrated—even indirect
indicators can be mapped credibly. In line with Kowe et al. (2023),
who achieved strong regressions for optically active parameters
(OAPs) in Lake Manyame (TSM R2 = 0.90; turbidity R2 = 0.95)
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and a moderate fit for the non-optically active TN (R2 = 0.63), our
Sentinel-2–based, locally calibrated models for a small, shallow
alkaline lake similarly deliver high performance (As, NH4

+, COD:
R2 = 0.91–0.99) despite these targets being largely non-optically
active. This contrast underscores two points: (i) Sentinel-2
consistently retrieves OAPs well across systems, and (ii) with
careful local calibration and validation, indirect red/red-edge
relationships can also support credible mapping of selected non-
OAPs. Where our TSS correlations were weak—likely due to range-
coded field values—Kowe’s strong TSM/turbidity results highlight
the importance of rigorous in-situ characterization for particulate
metrics. Together, the studies indicate complementary strengths
across reservoir (Manyame) and small-lake (Vadkert) settings, while
emphasizing the need for site-specific models and quality-controlled
field data. We extend OAP-focused work by showing that locally
calibrated red/red-edge proxies can map selected non-OAPs (As,
NH4

+, COD) in a small alkaline lake. We also note the practical
advantage of Sentinel-2 over coarser platforms such as Landsat-8 for
small, shallow lakes like Vadkert due to its finer spatial resolution.

5.7 TSS and CaOeq retrievals

Despite TSS being optically active, we observed low correlations
with Sentinel-2 bands, likely due to in-situ methodological
constraints (range-type TSS values at some sites rather than
precise measurements). For CaOeq, correlations were moderate
(strongest single-band with B2), and candidate multi-band fits
failed withheld-year checks; consequently, we did not produce
lake-wide retrievals for CaOeq or TSS.

6 Conclusion

This study confirms the utility of integrating Sentinel-2 satellite
imagery with in situ measurements to monitor seasonal dynamics of
water quality in small, shallow lakes. By applying the modified
normalized difference water index (MNDWI) and focusing on high-
resolution spectral bands (B2–B8a), we successfully isolated water
bodies and extracted meaningful reflectance data. Multilinear
regression models developed for As, NH4

+, and COD showed strong
predictive performance (R2 = 0.91–0.99), enabling accurate estimation
of these parameters across different seasons. The results revealed
distinct seasonal trends, with all three parameters peaking in
summer—As reaching 76.8 ± 20.7 μg/L, NH4

+ at 0.2 ± 0.3 mg/L,
and COD at 7.3 ± 2.01 mg/L—highlighting the influence of seasonal
processes such as temperature and biological activity. Spatial analysis
identified consistent hotspots in the southern and eastern peripheries,
suggesting areas of potential concern. This remote sensing-based
approach provides a scalable, repeatable, and cost-effective method
for monitoring water quality in inland lakes, thereby reducing the
reliance on frequent field campaigns. It holds significant potential for
supporting environmental management, early warning systems, and
policymaking, particularly in regions with limited monitoring
infrastructure or where climate change and land use intensification
threaten freshwater ecosystems.
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