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Introduction: The Yuanjiang dry–hot valley area of China serves as a vital
ecological functional zone and a typical ecologically fragile area, where
drought constitutes a significant factor affecting both the ecological
environment and agricultural production. Conducting an in–depth analysis of
drought variation trends across spatiotemporal scales and exploring its primary
driving factors in this regionwill provide a scientific reference for regional drought
monitoring and warning, drought prevention and disaster reduction efforts.
Methods: By analyzing the Temperature Vegetation Dryness Index (TVDI)
constructed from the Land Surface Temperature (LST) and Normalized
Difference Vegetation Index (NDVI) from 2000 to 2020, combined with
Theil–Sen trend analysis method, M–K trend test, stability analysis, Hurst
index, and geographic detector, the characteristics, future evolution trends,
and influencing factors of drought spatiotemporal changes in the Yuanjiang
dry–hot valley area were analyzed from a spatiotemporal perspective.
Results: The results indicated that (1) the average TVDI in the Yuanjiang dry–hot
valley area from 2000 to 2020 was 0.67, showing a moderately dry state as a
whole, and it was slowly decreasing at a rate of 0.0011 per year, indicating that the
drought situation has eased. (2) The TVDI showed a trend of a slow increase in the
northwest and a slow decrease in the southeast area, with a relatively high
stability. In the future, the TVDI in the northwest of the study area will weakly
and continuously increase, while the TVDI in the southeast will weakly and
continuously decrease. The future changes are also relatively stable. (3) In the
Yuanjiang dry–hot valley area, potential evapotranspiration, precipitation, and
temperature are key factors influencing TVDI. Among these, potential
evapotranspiration is the most significant factor, with a q value of 0.3768. The
interaction effects between factors exceed the influence of any single factor,
particularly the interaction between potential evapotranspiration and GDP, which
shows the strongest effect (q value is 0.490).
Discussion: The results in the study indicated that the future trend of drought
changes was highly uncertain. The future changes in drought conditions still
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require continuous attention. Cultivated land and woodland exhibited the highest
contribution rate to TVDI. Natural factors exert a strong influence on drought
conditions, while the impact of human factors remains less pronounced.

KEYWORDS

drought, TVDI, trend analysis, geographical detector, Yuanjiang dry–hot valley area

1 Introduction

Drought is a meteorological disaster caused by the lack of
continuous precipitation, which can lead to soil degradation,
desertification, water shortage, vegetation mortality, sandstorms,
wildfires and other disaster phenomena (Guo et al., 2017), and
has attracted the attention of many scholars in the world. Compared
with extreme meteorological disasters such as floods and hurricanes,
droughts are characterized by long duration, wide affected area and
diverse forms of harm. They pose a relatively serious threat to
agricultural development, ecological environment protection and
human living environment, especially in arid and semi–arid area
with single ecological structure and weak restoration capacity. The
Intergovernmental Panel on Climate Change (IPCC) states in its
Sixth Assessment Report (AR6) that the global temperature rise will
reach at least 1.5 C by mid–century (IPCC, 2021). Under the
background of global warming, the possibility, severity and
frequency of drought disasters will increase significantly.
According to statistics, drought disasters account for more than
40% of natural disasters in China (Wang, 2007), and it is one of the
most significant natural disasters in our country. The dry–hot
valleys in southwest China are important ecological function area
and typical ecologically fragile area in China. Due to the combined
influence of special climate and complex geographical environment,
soil erosion and ecosystem degradation in the dry–hot valleys are
severe. It is a typical ecologically fragile area in China and has long
restricted the sustainable development of the region. In recent years,
the increased frequency and intensity of droughts in dry–hot valley
area have led to issues such as water resource shortages, vegetation
degradation, and a decline in biodiversity, threatening local
agriculture, ecological environments, and the economy.
Therefore, monitoring drought conditions and studying their
spatial distribution patterns are of significant importance for
understanding drought trend variations, rationally allocating
water resources, restoring ecological environments, providing
early warnings for disasters, and promoting sustainable regional
development to drive effective economic growth.

Currently, drought monitoring is primarily divided into two
categories: ground station–based monitoring and remote sensing
monitoring. Ground stationmonitoring relies on key meteorological
elements such as precipitation, evaporation, temperature, and
humidity provided by weather stations to construct indices like
the Standardized Precipitation Evapotranspiration Index (SPEI),
Standardized Precipitation Index (SPI), and Palmer Drought
Severity Index (PDSI). These indices, through standardized
processing of long–term meteorological data, can reflect the
occurrence, development, and intensity of regional droughts.
However, conventional ground station–based monitoring data
also face unavoidable challenges, such as uneven distribution of
monitoring stations and the inability of single–point data to
accurately represent conditions across large surrounding area (Li

and Li, 2017). In recent years, with the rapid development of remote
sensing technology, drought indices based on multi–source remote
sensing imagery have been applied to studies on soil moisture
conditions and drought characteristics. These methods effectively
address the limitations of insufficient station coverage and have
become a vital tool for large and medium scale, multi–temporal
dynamic drought monitoring. Remote sensing data overcome the
constraints of using single–method approaches for soil moisture
monitoring and the spatial coverage and timeliness limitations of
ground station data. The TVDI, constructed using the feature space
of LST and the NDVI, can better reflect surface soil moisture
conditions. It has been proven to be a highly effective drought
monitoring method and is widely applied across different climate
zones and ecosystems (Du et al., 2017; Chen A et al., 2023; Ding
et al., 2024).

TVDI has high accuracy and is easy to implement, so it has been
widely applied and verified in drought monitoring studies (Nugraha
et al., 2023). TVDI has demonstrated remarkable effectiveness in
drought monitoring applications both domestically and
internationally, serving as an indispensable tool for global
drought prevention and disaster mitigation efforts. It has been
widely used for drought monitoring worldwide (Wang and Yu,
2021; Zhang et al., 2017; Lawal et al., 2021; Sharma et al., 2022; Tao
et al., 2021; Rahimzadeh–Bajgiran et al., 2012). Research on drought
in dry–hot valley area in China has been preliminarily carried out
(Deng et al., 2024; Huo et al., 2025). Previous research investigated
the spatiotemporal variations of drought in the dry–hot valley area
of the lower Jinsha River using the TVDI, demonstrating its
capability to accurately characterize drought conditions in this
area (Chen et al., 2024). In addition, some scholars (Du et al.,
2024) have made certain progress in assessing drought conditions in
dry–hot valley area by inverting soil moisture using improved neural
network models. Nevertheless, current research on drought
variations and their causes in the unique dry–hot valley area
remains relatively limited. This study takes the Yuanjiang
dry–hot valley area in China as a case study. Utilizing
multi–source data including remote sensing data, meteorological
data, topographic data, vegetation coverage and evapotranspiration
data, as well as population density and nighttime light data, we
conducted an in–depth analysis of spatiotemporal drought
variations from 2000 to 2020 using methodologies such as
Theil–Sen trend analysis, Mann–Kendall trend test, stability
analysis, and geographical detector. Furthermore, the research
systematically explored potential drought–inducing factors. In
this study, we pursued the following objectives: (1) to detect the
temporal and spatial dynamic trends of drought in Yuanjiang
dry–hot valley area of China from 2000 to 2020; (2) to determine
the dominant factors affecting drought variation in in Yuanjiang
dry–hot valley area of China. This study aims to provide a scientific
basis for drought disaster prevention and risk control in typical
dry–hot valley area under the context of global climate change.
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2 Materials and methods

2.1 Study area

The Yuanjiang dry–hot valley area is located in south–central
Yunnan Province, China, within the middle–upper reaches of the
Red River. Characterized by a subtropical low–latitude plateau
monsoon climate, this area predominantly features deeply incised
valleys with steep terrain and significant elevation variations ranging
from 174 to 2,735 m (Figure 1). It is the most concentrated and
continuous typical dry–hot river valley area in China. The region
exhibits an annual average temperature of 20 °C–24 °C, with
precipitation ranging from 500 to 800 mm and evaporation
reaching 2,892 mm. Over 80% of precipitation is concentrated
between May and October, while the dry season (November to
April) experiences pronounced drought conditions. Crucially,
evaporation significantly exceeds precipitation (aridity
index >3.0), characterizing the hyper–arid nature of this
environment. The soil distribution exhibits characteristics of
vertical zonation. Along the mountain slopes from lower to
upper elevations, the soil types are sequentially distributed as
follows: dry red soil, lateritic red soil, red soil, and yellow–brown
soil (Jin and Ou, 2000). The distribution area also follows a vertical
pattern. The most extensive soil type is dry red soil, predominantly
located on erosion-susceptible valley slopes. This is followed by
lateritic red soil, which is found within the valley, whilst red soil and
other types are relatively scarce. The Yuanjiang dry–hot valley area,
owing to its unique geographical location and climatic conditions, is
recognized as a typical ecologically fragile zone in southwest China.
The natural vegetation is primarily characterized by savanna
shrub–grassland and succulent thorny shrub–grassland. The
community is dominated by drought–tolerant herbs, interspersed
with shrubs and scattered small trees, with dominant species
including Phyllanthus emblica, Pistacia weinmannifolia,

Woodfordia fruticosa, Lannea coromandelica, Euphorbia royleana,
and Heteropogon contortus (Zhang, 1992; Jin and Ou, 2000).

2.2 Data sources and preprocessing

The MOD11A2 and MOD13Q1 data used in this study were
obtained from the LAADS DAAC (Level–1 and Atmosphere
Archive and Distribution System Distributed Active Archive
Center) via the NASA Earthdata Search portal (https://search.
earthdata.nasa.gov/), covering the period from 2000 to 2020. The
LST MOD11A2 data is 8–days composite product with a spatial
resolution of 1 km. The MOD13Q1 NDVI data is 16–days
composite products with a spatial resolution of 250 m. Images
were decoded, reprojected and reformatted using the Modis
Reprojection Tool (MRT). The projection was transformed from
Sinusoidal projection to WGS84/Albers Equal Area Conic
projection, and the original HDF reformatted as a GeoTIFF. The
MOD13Q1 data (250 m) was resampled to 1 km to match LST
MOD11A2 data through nearest neighbor assignment method.
Through reprojection, resampling, and maximum value
compositing (MVC) techniques, both NDVI and LST datasets
were processed to achieve a unified temporal resolution of
16–days and a spatial resolution of 1 km.

The Digital Elevation Model (DEM) data for the study area was
obtained from the Geospatial Data Cloud (https://www.gscloud.cn).
The 1 km resolution annual mean temperature dataset, 1 km
resolution annual precipitation dataset, 250 m resolution annual
vegetation coverage dataset, and potential evapotranspiration data
were sourced from the National Tibetan Plateau Data Center
(https://data.tpdc.ac.cn/product). The 1 km resolution population
spatial distribution data was derived from the LandScan dataset
(https://landscan.ornl.gov). Nighttime light data and land LULC
(Land Use and Land Cover) were acquired from the Data Center for

FIGURE 1
Location of the study area.
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Resources and Environmental Sciences, Chinese Academy of
Sciences (https://www.resdc.cn).

2.3 Methods

2.3.1 TVDI model
This study applied the TVDI model to inversion processing of

remote sensing data. Based on the triangular distribution pattern
observed in the NDVI–LST scatter plot, Sandholt et al. (2002)
revealed a significant negative correlation between LST and
NDVI. As vegetation coverage increases, transpiration effects
reduce surface temperatures, which led to the proposal of the
TVDI. TVDI is calculated from vegetation indices and land
surface temperature using the formula as follows:

TVDI � ts − ts min

ts max − ts min

where ts is surface temperature value (°C). tsminis the minimum
surface temperature value of all grid values under the same
vegetation cover condition. tsmax is the maximum surface
temperature value of all grid values under the same vegetation
cover condition. The vegetation indices are linearly fitted to
obtain the dry edge (Eq. 2) and wet edge (Eq. 3) equations in the
feature space:

ts max � a1 + b1 × NDVI

tsmin � a2 + b2 × NDVI

where, a1 and b1 are the coefficients of the wet edge equation, while
a2 and b2 are the coefficients of the dry edge equation. The TVDI has
a value range of (−1, 1) and reflects the moisture status of surface
soil. An increase in TVDI indicates reduced soil moisture and
heightened drought conditions in the area, while a decrease
signifies higher soil moisture and wetter conditions. Values closer
to 1 denote more severe soil drought, whereas values approaching
0 indicate higher soil moisture levels. Based on previous studies and
the current conditions of the study area (Huo et al., 2025; Li et al.,
2025), the TVDI was classified into five grades, as shown in Table 1.

2.3.2 Trends analysis
In this study, the Theil–Sen trend analysis method was

employed to analyze the TVDI change trend in the Yuanjiang
dry–hot valley area from 2000 to 2020. The significance of the
TVDI change trend was assessed using the Mann–Kendall (M–K)
test. The application of these two methods can effectively reduce the

impact of outliers on the TVDI trend analysis. Specific
methodologies are as shown in the following equations.

Slope � median
xi − xj

i − j
( ), i> j

where xi and xj are the values of NDVI at time i and j. The median is
the median function. The negative values of slope indicate a negative
trend of NDVI and a positive value indicates a positive trend of
NDVI in the study period.

Mann–Kendall test was used to test the significance of the
change trend (Mann, 1945; Kendall, 1975). The slope and M–K
test results are combined for comprehensive analysis. To further
analyze the trend of TVDI changes, the Mann–Kendall significance
test was employed, utilizing the following equations to determine
whether the temporal trend in the time series is statistically
significant.

Z �

S − 1������
var S( )√ , S> 0

0, S � 0

S + 1������
var S( )√ , S< 0

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
S � ∑n−1

i�1
∑n
j�i+1

sign TVDIj − TVDIi( )
var S( ) � n n + 1( ) 2n + 5( )

18

sign TVDIj − TVDIi( ) � 1, TVDIj − TVDIi > 0
0, TVDIj − TVDIi � 0
−1, TVDIj − TVDIi < 0

⎧⎪⎨⎪⎩
In the formula, n represents the length of the data, and TVDIi

and TVDIj are the TVDI values in the TVDI time series
corresponding to years i and j, respectively. In this study, a
Z–value greater than 2.58 indicates a highly significant change
trend, a Z–value between 1.96 and 2.58 is considered significant,
a Z–value between 1.645 and 1.96 is classified as marginally
significant, and a Z–value less than 1.645 suggests no statistically
significant trend.

In this study, the TVDI changes in the Yuanjiang dry–hot valley
area from 2000 to 2020 were classified into nine categories through
the combined application of Theil–Sen trend analysis and the
Mann–Kendall trend test: extremely significant increase (Slope>0,
Z > 2.58, p < 0.01), significant increase (Slope>0, 1.96 < Z ≤ 2.58,
0.01 < p < 0.05), slightly significant increase (Slope>0, 1.645 < Z ≤
1.96, 0.05 < p < 0.1), insignificant increase (Slope>0, Z ≤ 1.645, p >
0.1) no change (Slope = 0), insignificant decrease (Slope<0, Z ≤
1.645, p > 0.1), slightly significant decrease (Slope<0, 1.645 < Z ≤
1.96, 0.05 < p < 0.1), significant decrease (Slope<0, 1.96 < Z ≤ 2.58,
0.01 < p < 0.05), and extremely significant decrease (Slope>0, Z >
2.58, p < 0.01).

2.3.3 Stability analysis
The Coefficient of Variation (CV), defined as the ratio of the

standard deviation to the mean of a dataset, was employed to assess
the stability and volatility of time series data. In this study, we
calculated theCV for the Yuanjiang dry–hot valley area from 2000 to
2020 using the following formula to evaluate its temporal stability:

TABLE 1 TVDI drought grade division.

Grade Types Values

1 Wet 0<TVDI≤0.2

2 Normal 0.2<TVDI≤0.4

3 Mild drought 0.4<TVDI≤0.6

4 Moderate drought 0.6 <TVDI≤0.8

5 Severe drought 0.8<TVDI≤1.0
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CV � σ
�X

where σ represents the standard deviation of TVDI, reflecting the
dispersion degree of the data, while �X represents the mean value of
TVDI, indicating its overall level. A higher CV value suggests a more
dispersed distribution of TVDI data and greater interannual
fluctuations (i.e., lower stability), whereas a lower CV value
implies a more concentrated distribution of TVDI data and
smoother interannual variations (i.e., higher stability).

Based on the Natural Breaks Classification method (Chen et al.,
2013), TVDI variability is classified into six categories: extremely
high stability when CV < 0.038, high stability for 0.038–0.064,
relatively high stability for 0.064–0.114, medium stability for
0.114–0.193, and relatively low stability for 0.193–0.749. Values
exceeding 0.749 are categorized as low stability.

2.3.4 Hurst exponent
The Hurst exponent method, proposed by British hydrologist

Hurst (1951) (Hurst, 1951) and improved byMandelbrot andWallis
(1969), is a method for detecting the sustainability of time series
data. The Hurst exponent, a critical metric based on the Rescaled
Range (R/S) analysis method, quantifies the long–term memory and
persistence of time series data, enabling the prediction of future
trends using long–term historical records. The basic principle is
as follows.

Establish a time series of TVDI TVDI(τ), τ = 1, 2, . . . , n. Define
the mean sequence of the time series:

TVDI τ( ) � 1
τ
∑τ
t�1
TVDI τ( ), τ � 1, 2, ..., n

Calculate the accumulated deviation:

X t, τ( ) � ∑t
t�1

TVDI t( ) − TVDI t( )( ), 1≤ t≤ τ

Establish a range sequence:

R τ( ) � max t, τ( ) −min t, τ( ), τ � 1, 2, ..., n

Establish a standard deviation sequence:

S τ( ) � 1
τ
∑τ
t�1
TVDI t( ) − TVDI t( )2⎡⎣ ⎤⎦12, τ � 1, 2, ..., n

If present R/S ∝ τH, this indicates the existence of the Hurst
phenomenon in the TVDI time series. The Hurst exponent (denoted
as H) is quantitatively determined through least squares fitting.

The Hurst exponent (H) ranges from 0 to 1, with three distinct
scenarios. H > 0.5 indicates persistent behavior in the time series.
The closer H is to 1, the stronger the persistence. H = 0.5 indicates a
random (uncorrelated) time series. H < 0.5 demonstrates
anti–persistent behavior. The closer H is to 0, the stronger the
anti–persistence.

2.3.5 Geographic detector
The geographic detection can analyze the influence of different

independent variables on the spatial distribution pattern of specific
dependent variables. It contains the following four detectors: factor

detection, interaction detection, risk detection, and
ecological detection.

1. Factor detector

A factor detector could determine the effect of detecting the
spatial heterogeneity of vegetation change. The spatial heterogeneity
of X to Y could be expressed as q × 100%, and the greater the
number, the greater the influence of the detection factors on
vegetation change (Wang et al., 2016), which is as follows:

q � 1 − ∑L
h�1Nhσ2h
Nσ2

where h is the vegetation change or detection factor hierarchy; N is
the number of class h or total region units; and Y is the change in
class h or total region Y value. σ2h and σ

2are the variances of NDVI in
h and entire area, respectively. A large q indicates a better
explanation of the spatial heterogeneity of X about NDVI and
vice versa (Chen et al., 2020).

2. Interaction detector

Interaction detector was used to assess interaction between two
factors. The q values of individual factors (q (X1) and q (X2)) were
first calculated separately, and the value of two–factor interaction (q
(X1 ∩ X2)) was calculated. The results are defined by comparing the
q value of individual factor and two–factor interaction as shown
in Table 2.

Vegetation coverage, vegetation evapotranspiration,
precipitation, temperature, elevation, slope gradient, population
density, and nighttime light were selected to investigate the
determinants influencing TVDI variations and their explanatory
power in the Yuanjiang dry–hot area.

3 Results

3.1 Spatiotemporal distribution
characteristics of drought based on TVDI

3.1.1 Spatial distribution characteristics of drought
The average TVDI value in the Yuanjiang dry–hot valley area

over the past 21 years was 0.66, indicating an overall moderate
drought status. The spatial distribution of drought is shown in

TABLE 2 Categories of factor interactions.

Foundation a Interaction

C = A+ B Independent

C > A+ B Non–linear enhancement

C < D Non–linear weakening

D < C < E Single–factor non–linear weakening

C > E Dual–factor enhancement

aA = q (X1), B = q (X2), C = q (X1∩X2), D =Min (q (X1), q (X2)), E =Max (q (X1), q (X2)).
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Figure 2, where moderately dry areas occupy the largest proportion
at 75.66%, followed by mild drought areas at 21.11%. The central
valley area experiences more severe drought conditions, while mild
drought zones were predominantly distributed in the peripheral
regions of the valley, particularly in the northwestern sector of the
study area and along the edge of the valley. Severe drought was
predominantly concentrated within the central dry–hot valley area,
situated along the administrative boundary between Honghe
Prefecture and Yuxi City.

3.1.2 Temporal variation trend of drought
The TVDI in the Yuanjiang dry–hot valley area fluctuated

between 0.49 and 0.81 from 2000 to 2020, with an average value
of 0.67, indicating an overall moderate drought condition. The
maximum TVDI of 0.81 occurred in 2004, while the minimum
value of 0.49 was in 2011 (Figure 3a). Over the 21–years period, the
drought severity in the study area showed a gradual weakening
trend, with TVDI decreasing at a rate of 0.0011 per year. However,
upward trends were observed during specific intervals: from 2000 to
2004, 2005 to 2010, 2011 to 2014, and 2017 to 2019, suggesting
temporary intensification of drought conditions. The variations

generally exhibited a cyclical pattern with approximately
5–year intervals.

To explore the intra–annual variation of drought in the study
area, based on remote sensing images, the TVDI within the year was
divided into 23 periods with a time unit of 16 days. The average
values of the 23 periods of data from 2000 to 2020 were calculated
and analyzed respectively. The study area predominantly
experienced drought conditions throughout the year, with June
being the only month maintaining normal climatic status
(Figure 3b). The region experienced persistent drought
conditions at moderate and severe drought levels from September
to May of the following year, with March to April exhibiting severe
drought. Starting from late April, the TVDI decreased rapidly,
reaching its lowest value in June, which indicated a relief in
drought conditions. Subsequently, the TVDI began to fluctuate
and gradually increase, peaking in early November and marking
the most severe drought period.

3.1.3 Spatial distribution of drought variation trends
from 2000 to 2020

The spatial distribution of TVDI trends from 2000 to 2020 in
the Yuanjiang dry–hot valley area was calculated at a pixel scale
through the Theil–Sen estimator and Mann–Kendall significance
test. During the study period, TVDI values exhibited a slight
decreasing trend overall, with an average slope of −0.001.
64.34% of the regions exhibited drought alleviation, while
35.66% showed drought intensification. In terms of spatial
distribution, from 2000 to 2020, the northwestern part of the
Yuanjiang dry–hot valley area exhibited an upward trend with
intensified drought, while the southeastern part showed a
downward trend, with drought conditions alleviated (Figure 4a).
Although the TVDI in the northwestern region is relatively low, it
is showing an upward trend, suggesting that the area has become
increasingly arid and will continue to dry out. Based on the
significance test, the changes in TVDI exhibit the following
spatial patterns: most of the northwestern region showed a not
significant increasing trend, with certain areas displaying
significant and extremely significant increasing. Conversely, the
southeastern part predominantly shows a not significant
decreasing trend, while the central area in the southeastern

FIGURE 2
The spatial distribution of drought in the Yuanjiang dry–hot valley
area from 2000 to 2020.

FIGURE 3
The annual (a) and intra-annual (b) variations of TVDI in the Yuanjiang dry–hot valley area from 2000 to 2020.
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valley exhibited a significant decreasing trend in some areas
(Figure 4b). The proportion of “not significant decreasing” was
the largest at 43.66%, followed by “not significant increasing” at
26.85%. 8.80% of the region showed a significant decreasing trend
in TVDI, while 3.39% showed a significant increasing trend.

Based on the Natural Breaks Classification method, TDVI
variability in the study area is classified into six categories:
extremely high stability, high stability, relatively high stability,
medium stability, relatively low stability and low stability.
Through the stability analysis (Figure 5), the stability of TVDI
trends in the Yuanjiang dry–hot valley area is relatively high
overall. The vast majority areas (65.92%) exhibit relatively high
stability. Medium stability is observed in some central areas, while
very small areas exhibit relatively low stability. High stability and
extremely high stability are predominantly distributed in the
peripheral areas of the study region. These higher–elevation
zones exhibit superior hydrothermal conditions compared to the
valley floor, resulting in highly stable TVDI values. Consequently,
the drought status in these areas is unlikely to undergo
significant changes.

3.1.4 The future changing trend of drought in the
Yuanjiang dry–hot valley area

From 2000 to 2020, the Hurst index in the Yuanjiang dry–hot
valley area ranged from 0.22 to 0.73, with a mean of 0.44. The Hurst
index results were categorized into four levels: strong
anti–persistence (0 < H ≤ 0.25), weak anti–persistence (0.25 <
H < 0.5), random (H = 0.5), and weak persistence (0.5 < H ≤
0.75) (Figure 6a). Weak anti–persistence occupied the largest
proportion at 79.16%, followed by weak persistence at 20.63%.
The majority of the study exhibited weak anti–persistence
behavior, while a small portion showed weak persistence. The
extent of anti–persistence exceeds that of persistence, indicating a
pronounced reverse trend in TVDI changes across the region. Areas
exhibiting weak persistence were primarily distributed in the river
valleys–concentrated zones of severe drought. These drought
conditions are expected to persist and worsen in the future.

To investigate the persistence of drought trends in the study
area, Theil–Sen trend analysis was integrated with Hurst index
classification results, yielding six distinct scenarios (Figure 6b).
The findings indicated that TVDI in most areas of the study
exhibited weak persistence, with future trends expected to
generally follow historical patterns. In the northwestern area,
weak persistent increase predominates, indicating future TVDI
will increase gradually and persistently, intensifying drought
conditions. Conversely, most southeastern areas showed weak
persistent decrease, suggesting sustained drought alleviation and
gradual ecological improvement in the future.

3.2 Analysis of influencing factors of TVDI
changes in the Yuanjiang dry–hot valley area

Based on existing research regarding drought factor selection,
this study comprehensively considers meteorological, topographic,
and anthropogenic influences on drought dynamics in the study
area. For the Yuanjiang dry–hot valley area, we selected vegetation
coverage, evapotranspiration, precipitation, temperature, elevation,
slope gradient, population density, and nighttime lights as
independent variables. This framework enables identification of

FIGURE 4
The variation trend (a) and significance test (b) of the TVDI in the Yuanjiang dry–hot valley area from 2000 to 2020.

FIGURE 5
Stability analysis of the TVDI in the Yuanjiang dry–hot valley area
from 2000 to 2020.
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primary driving forces behind regional drought patterns. Through
spatial sampling extraction and geodetector analysis, we quantified
the relative influence of each factor on spatiotemporal distribution
of drought severity across the study area.

3.2.1 Factor detector
The q–valuemeasures the explanatory power of a given factor on

TVDI, ranging between 0 and 1. Higher values indicate stronger
explanatory strength regarding TVDI variations, while lower values
denote weaker influence. The p–value reflects factor significance,
where values below 0.05 indicate statistically significant effects.

The influence hierarchy of selected factors on TVDI is as follows:
Potential Evapotranspiration (PET) > Temperature (T) >
Precipitation (PRE) > Elevation (DEM) > Fractional Vegetation
Cover (FVC) > Nighttime Lights (Light) > Gross Domestic Product
(GDP) > Population Density (POP) > Slope Gradient (S) (Table 3).
Natural factors demonstrate substantially higher explanatory power
over TVDI compared to anthropogenic factors. PET, T, and PRE
exhibit q–values of 0.3768, 0.2791, and 0.2330 respectively,
constituting the primary drivers of TVDI. DEM and FVC
showed relatively lower explanatory power with q–values of
0.0765 and 0.0422. The remaining factors possess marginally
explanatory influence (q–values <0.04). Furthermore, S, POP and
Light displayed higher p–values, indicating statistically insignificant
effects on TVDI in the study area.

3.2.2 Results of ecological detection
Ecological detection was employed to assess whether significant

differences exist in the influence of selected factors on TVDI spatial
distribution across the study area, serving to validate factor detection
accuracy. The observed results of ecological detection in the study
area showed spatial heterogeneity between the factors (Figure 7).
Significant differences existed between FVC and PET, PRE and T.
However, no significant differences were observed between FVC and
other factors. Significant differences were also detected between
precipitation and temperature. All remaining ecological interaction
results showed non–significant differences. The result demonstrates
that spatial and temporal variations in TVDI within the Yuanjiang
dry-hot valley area are primarily influenced by natural climatic

variables, namely, temperature, precipitation, and PET.
Precipitation, temperature, and PET influence TVDI through
their effects on vegetation cover dynamics, further confirming
that PET, temperature, and precipitation exert the most
substantial control over TVDI patterns.

3.2.3 Interaction detector
Interaction effects among TVDI influencing factors in the study

area were analyzed (Figure 8). Factor interactions exhibited two
relationships: nonlinear enhancement and bivariate enhancement,
with no individual factor operating in isolation. This indicates that
the combined influence of paired factors exceeds the impact of single
factors on TVDI. The six highest explanatory power combinations
for TVDI variation were PET ∩ GDP (q = 0.4900), PET ∩ PRE (q =
0.4212), PET ∩DEM (q = 0.4120), PET ∩ T (q = 0.4105), PET ∩ FVC
(q = 0.4061) and PET ∩ Light (q = 0.4024). Among bivariate
interactions, PET and GDP demonstrated the strongest
interactive effect, followed by substantial interactions between
PET and temperature, elevation, and precipitation. As a core
economic indicator reflecting regional development levels, GDP
represents anthropogenic activity. Interactive effects between
GDP and PET, GDP and temperature, GDP and precipitation all
exceeded corresponding single–factor influences on TVDI. These
results further confirm the dominant influence of PET, temperature,
and precipitation on TVDI, while revealing that anthropogenic
factors exert influence by mediating natural factors. Collectively,
this demonstrates that synergistic interactions between natural and
anthropogenic factors exert more pronounced control over TVDI
spatial distribution patterns.

4 Discussion

This study analyzes the characteristics of drought variation in
the Yuanjiang dry–hot valley area based on the TVDI. From 2000 to
2020, TVDI values exhibited a slight decreasing trend overall, with
an average slope of −0.001, and this change was not statistically
significant. The mean Hurst index (H = 0.44) suggests weak anti-
persistence in the study area. It increases the instability of the future

FIGURE 6
The Hurst index of TVDI (a) and the persistence of the changing trend of TVDI (b) in the Yuanjiang dry–hot valley area.
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trend of drought changes. The future changes in drought conditions
still require continuous attention. However, in terms of the spatial
distribution pattern, the future trends of drought still show clear

regularity. In the northwestern regions, TVDI is projected to
increase gradually and persistently, indicating worsening drought
conditions in the future. Conversely, most southeastern areas are

TABLE 3 Factor geographical detection results in the Yuanjiang dry–hot valley area.

FVC PET PRE T DEM S POP Light GDP

q value 0.0422 0.3768 0.2330 0.2791 0.0765 0.0012 0.0141 0.0351 0.0234

p value 0.000 0.000 0.000 0.000 0.000 0.9888 0.9998 0.1741 0.000

FIGURE 7
The results of ecological detection in the Yuanjiang dry–hot valley area. Note: “Y” denotes statistically significant differences between the horizontal
axis and the vertical axis factors, whereas “N” indicates non–significant differences between them.

FIGURE 8
The results of interactive geographical detection in the Yuanjiang dry–hot valley area.
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expected to experience a continuous decrease in TVDI, suggesting
sustained drought alleviation and gradual ecological improvement.
The intensification of drought conditions in the northwestern of
study area is likely due to the influence of the Ailao mountains to the
west, with the pronounced foehn effect (Wang, 2021). In the
enclosed valley sections, high temperatures and intense
evapotranspiration occur, leading to excessive moisture depletion
coupled with relatively low precipitation. The combined effects of
topography and climate exacerbate the drought conditions in this
area. Conversely, drought conditions showed a gradual alleviation in
the southeastern part. This trend aligns with the overall declining
trend of TVDI observed across China (Liu G. P. et al., 2023).

As with TVDI, the SPI, SPEI, and PDSI indices have been utilized in
drought monitoring and assessment. SPEI evolved from the potential
evapotranspiration based on the SPI and takes into account both
precipitation and temperature. SPI-based drought analysis revealed a
generally higher and intensifying drought frequency in Honghe
Prefecture (the southern study area), consistent with this study’s
findings (Chen Z. F et al., 2023). Some researchers have pointed out
SPEI is a better indicator of drought than the SPI for warmer areas prone
to drought due to abnormally high evapotranspiration (Kingston et al.,
2015). Based on the SPEI, there was a clear trend of aridity in Yunnan
Province in terms of both temporal and spatial changes from 1960 to
2020 (Lan and Yan, 2024). The calculation of SPI and SPEI relies on the
number of meteorological stations. In regions with few meteorological
stations, it is difficult to accurately reflect the spatial variations of
drought. Grounded in the water balance principle, the PDSI model,
however, is recognized to possess several limitations for practical
application. The assumptions of PDSI model have been suggested to
be modified in the region like Yunnan Plateau (Li and Guo, 2020).

Drought is influenced by various factors, including natural elements
such as temperature, precipitation, and evapotranspiration, as well as
human activities. Among the natural factors, temperature, precipitation,
and evapotranspiration are the primary drivers of drought variation in
Yuanjiang dry–hot valley area. As found by Zhao and Zhu (Zhao and
Zhu, 2024), precipitation was not themain limiting factor for ecosystem

development in dry–hot valleys. This study similarly identified
evapotranspiration, rather than precipitation, as the most significant
influencing factor. An increase in potential evapotranspiration elevates
the TVDI–indicating intensified drought by enhancing soil moisture
evaporation and raising land surface temperature. Meanwhile, higher
PET increases vegetation transpiration, which reduces vegetation
coverage due to water stress under insufficient precipitation, thereby
further increasing TVDI and exacerbating drought. Beyond this,
precipitation and temperature also substantially affect drought
conditions, with temperature exerting a greater influence than
precipitation. Similar conclusions were drawn by studies in their
drought studies on Xinjiang and typical dry–hot valleys, respectively
(Huo et al., 2025; Li et al., 2025).

While individual factors play roles, the combined effects of multiple
factors significantly impact TVDI. The explanatory power of GDP
alone is only 0.0234, but its interaction with PET, temperature, and
precipitation has amore pronounced effect on the spatial distribution of
TVDI than any single factor. Areas with higher GDP typically
experience greater urbanization, which can alter local microclimates
(e.g., through heat island effects), thereby changing temperature,
precipitation, and evapotranspiration patterns and subsequently
influencing TVDI. In this study, the interaction between PET and
precipitation (q = 0.4212) exhibited higher explanatory power than that
between PET and temperature (q = 0.4105), diverging from the
single–factor hierarchy (PET > temperature > precipitation). This
suggests that the synergistic effect of PET and temperature is more
significant for TVDI. Both temperature and PET primarily affect
regional drought status indirectly through their impact on surface
energy balance (Yang et al., 2017). While individual human activity
factors show limited impact on drought, their interactions with natural
factors substantially affect TVDI. This demonstrates that the combined
influence of natural and anthropogenic factors significantly drives
TVDI changes, aligning with the findings of previous studies (Tao
et al., 2020). This study used nighttime light data, population density,
and GDP as proxies for human activities to analyze their impact on
drought. Additionally, considering the characteristics of the study area,

FIGURE 9
Average TVDI values for different land use types in the Yuanjiang dry–hot valley area.

Frontiers in Environmental Science frontiersin.org10

Gu et al. 10.3389/fenvs.2025.1670105

mailto:Image of FENVS_fenvs-2025-1670105_wc_f9|eps
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1670105


the land use patterns and their evolution, as well as the influence of
altitude on drought, merit further investigation.

The mean TVDI values for each land use type from 2000 to
2020 were extracted. Statistical analysis was then conducted in

conjunction with the land use types to determine the changing
relationship between different land use types and TVDI (Figure 9).
The mean TVDI values for grassland were consistently higher than
those for other land use types. The increase in grassland area

FIGURE 10
The contribution rate of different land use types to TVDI in the Yuanjiang dry–hot valley area. (a) 2000, (b) 2005, (c) 2010, (d) 2015, (e) 2020.

Frontiers in Environmental Science frontiersin.org11

Gu et al. 10.3389/fenvs.2025.1670105

mailto:Image of FENVS_fenvs-2025-1670105_wc_f10|tif
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1670105


corresponded with intensified drought. The mean TVDI values for
unused land were consistently lower than those for other land use types.
The decrease in unused land area corresponded with intensified
drought. The TVDI values for woodland and cultivated land were
relatively close to each other and comparatively lower, indicating their
relatively stronger water and soil conservation capacity. Between
2000 and 2020, the TVDI for cultivated land, woodland, unused
land, and construction land showed an overall upward trend. In
contrast, the TVDI for grassland and water bodies showed a
downward trend, albeit a relatively gentle one.

The contribution rates of different land use types to TVDI are
shown in Figure 10. Areas with high drought levels were primarily
characterized by cultivated land and woodland. Although cultivated
land and woodland maintain the highest contribution rates to TVDI,
these rates exhibit a decreasing trend as drought severity increases.
During the 5 years of 2000, 2005, 2010, 2015 and 2020, the maximum
contribution rate of cultivated land to the TVDI of mild drought was
45%, the minimum was 36%, and the average was 39.4%. The
maximum contribution rate of cultivated land to the TVDI of
moderate drought was 38%, the minimum was 33%, and the
average was 35%. The maximum contribution rate of cultivated land
to TVDI in severe drought was 39%, the minimum was 31%, and the
average was 34.2%. As drought severity increases, the contribution rate
of cultivated land to TVDI initially increased but then decreased.
Cultivated land was the second largest land use type in the study
area (accounting for approximately 42.4% in 2020), and its area showed
an increasing trend. Accordingly, its contribution to drought will
further increase. The contribution rate of woodland to TVDI was
55% for mild drought, 51.2% for moderate drought, and 40.2% for
severe drought. With the increase in the degree of drought, the
contribution rate of woodland to TVDI gradually decreased by
14.8%. Woodland contributed most significantly to TVDI across all
drought levels, which is largely attributable to its status as the largest
land use type in the study area (accounting for 46.7% in 2020).
However, the woodland area in the study area has been declining,
which may further exacerbate drought conditions in the area. The
TVDI of grass land to mild drought was 4.8%, the contribution rate to
moderate drought was 12.2%, and the contribution rate to severe
drought was 23.8%. With the increase in the degree of drought, the
contribution rate of grass land to TVDI gradually increased by 19%.
Based on the contribution of grass land to different levels of drought,
and the continuous decrease in grass land area, it is beneficial for
alleviating the drought in the study area.

5 Conclusion

The spatiotemporal characteristics, future change trends, and
influencing factors of drought in the Yuanjiang dry–hot valley area
were analyzed through the TDVI constructed from land surface
temperature and the NDVI during 2000–2020. Theil–Sen trend
analysis, the Mann–Kendall test, stability analysis, the Hurst
exponent, and geodetector were combined for this spatiotemporal
assessment. The major conclusions are as follows:

1. The Yuanjiang dry–hot valley area experienced persistent
drought conditions between 2000 and 2020, as indicated by
TVDI values averaging 0.67 (moderate drought) and ranging

annually from 0.49 to 0.81. While drought was a consistent
feature, its severity exhibited a gradual weakening trend,
decreasing by 0.0011 per year. The region experienced
persistent drought conditions at moderate and severe
drought levels from September to May of the following
year, with March to April exhibiting severe drought;

2. In terms of spatial distribution, the central valley area
experiences more severe drought conditions, while mild
drought zones were predominantly distributed in the
peripheral regions of the valley, particularly in the
northwestern sector of the study area and along the edge of
the valley. The northwestern part of the Yuanjiang dry–hot
valley area exhibited an upward trend with intensified drought,
while the southeastern part showed a downward trend, with
drought conditions alleviated. The stability of TVDI trends in
the Yuanjiang dry–hot valley area is relatively high overall;

3. The geodetector results indicated that within the study area,
potential evapotranspiration, precipitation, and temperature
were the primary factors influencing TVDI, with explanatory
power exceeding 23%. Notably, potential evapotranspiration
was the dominant factor, exhibiting an explanatory power of
37.68%. The interactive effects between factors consistently
surpassed the influence of individual factors, with the
interaction between potential evapotranspiration ∩ GDP
being the most prominent;

4. Areas with high drought levels were primarily characterized by
cultivated land and woodland, which exhibited the highest
contribution rate to TVDI. Although their contribution rate
remained the highest, it showed a decreasing trend as drought
severity increases. Conversely, the contribution rate of grass land
to TVDI gradually increases with increasing drought severity.
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