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Floods represent themost frequent natural hazard, generating significant impacts
on people as well as considerable economic and environmental losses
worldwide. These events are particularly exacerbated by extreme climatic
phenomena, such as the 2017 Coastal El Niño, the most intense in the past
century, with the Piura region of Peru being the most affected. Flood
susceptibility mapping (FSM) are essential for mitigating the negative impacts
of floods through land-use planning, policy and plan formulation, and fostering
community resilience for the sustainable occupation and use of floodplains. This
study aimed to develop FSM in northern Peru, particularly in the Piura region,
using a hybrid methodology integrating optical and radar remote sensing (RS),
GIS, and machine learning (ML) techniques. Sentinel-1 data were used to map
flood extent using the Normalized Difference Flood Index (NDFI), while flood
susceptibility was modeled using ten topographic variables (derived from a DEM),
the Normalized Difference Vegetation Index (NDVI), geology, and
geomorphology; issues related to correlation and multicollinearity among
topographic variables were addressed through Principal Component Analysis
(PCA), selecting four principal components that explained 75.4% of the variance.
Six FSMs were generated using Support Vector Machine (SVM) and Random
Forest (RF), combined with different methods to estimate the quantitative
relationship between variables and flood occurrence: Quantiles (q), Frequency
Ratio (FR), and Weights of Evidence (WoE) (SVM-q, SVM-FR, SVM-WoE, RF-q, RF-
FR, and RF-WoE). Model validation was performed using metrics such as the Area
Under the ROC Curve (AUC), F1-score, and Accuracy, along with a cross-
validation analysis. The results revealed that the RF ensemble model with WoE
(RF-WoE) exhibited the best performance (AUC = 0.988 in training and >0.907 in
validation), outperforming the SVM-based models; the SHAP analysis confirmed
the significance of geology, geomorphology, and aspect in flood prediction. The
resulting susceptibility maps identified the lower Piura River basin as the most
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vulnerable area, particularly during the 2017 Coastal El Niño event, due to
morphological factors and inadequate land occupation. This study contributes
to the field by demonstrating the effectiveness of a hybrid methodology that
combines PCA, machine learning, and SHAP analysis, providing a more robust
and interpretable approach to flood susceptibility mapping. Finally, the findings
provide valuable inputs for local authorities, decision-makers, and organized
communities to strengthen resilience, reduce vulnerability, and enhance
preparedness against future floods, while also supporting the formulation of
public policies and the integration of flood susceptibility into land-use planning
for sustainable territorial management.
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1 Introduction

In recent decades, the global climate has experienced a
significant increase in temperatures, a phenomenon that has
intensified extreme weather patterns, including prolonged
droughts and intense precipitation events (Coumou and
Rahmstorf, 2012; IPCC, 2021). This warming trend increases the
specific humidity of the atmosphere, while relative humidity
remains nearly constant, leading to a greater availability of
atmospheric moisture (Koutsoyiannis, 2020). Consequently, this
increase in the capacity of warm air to retain greater amounts of
water vapor has exacerbated the frequency and intensity of floods,
particularly in vulnerable regions (Benoudjit, 2020).

Floods are defined as hydrometeorological or ocean-origin events
that inundate normally dry areas (Doswell, 2015; Rodriguez De La Cruz
and Moreno Arqque, 2023), manifest in various forms, including
pluvial, fluvial, and flash floods (Towfiqul Islam et al., 2021;
Bentivoglio et al., 2022); these events represent the most frequent
natural hazard worldwide, accounting for 43.4% of recorded
disasters and affecting approximately two billion people, equivalent
to 45% of the global population (Doswell, 2015; Benoudjit, 2020;
Michaelides, 2021; Pradhan et al., 2023; EM-DAT, 2025).
Additionally, floods rank third in terms of economic losses over the
past 2 decades, surpassed only by storms and earthquakes (Pascaline
and Rowena, 2018). Their impacts go beyond economic damage,
affecting social, cultural, and ecological systems by destroying
infrastructure, agricultural lands, and livelihoods (Tehrany et al.,
2014a; Cian et al., 2018a; Ahmed et al., 2023); furthermore, floods
can transport contaminants that degrade the quality of surface and
groundwater, leading to negative consequences for human health and
ecosystems (Khosravi et al., 2019; Benoudjit, 2020). Nevertheless,
floodplains, characterized by their high fertility due to nutrient
deposition and moisture retention, have historically played a crucial
role in agricultural development (Doswell, 2015).

Historically, the Peruvian coast has been affected by episodes of
the El Niño Phenomenon or the El Niño-Southern Oscillation
(ENSO), which are natural ocean-atmosphere interaction events
occurring in regions 3.4 and 1 + 2, the latter being associated with
Coastal El Niño in the Equatorial Pacific Ocean (SENAMHI, 2014).
In the last five centuries, at least 120 El Niño episodes have been
recorded (Quinn et al., 1987; SENAMHI, 2014), three of which have
been classified as extraordinarily intense and have occurred within
the last 40 years, including the 2017 Coastal El Niño event (INDECI,
2017). ENSO events trigger an abrupt rise in sea surface temperature

and torrential rainfall, causing daily river discharges to increase by
up to 500% in the northwestern watershed. In northern Peru, these
events periodically disrupt territorial development processes,
disproportionately affecting impoverished populations due to the
occurrence of landslides, debris flows, flash floods, storms, floods,
pest outbreaks, and epidemics (Rodríguez-Morata et al., 2019;
Molleda and Velásquez Serra, 2024). The economic losses from
the last three ENSO events amounted to $3.283 billion in 1982/1983,
$3.5 billion in 1997/1998 (SENAMHI, 2014), and $4.8 billion in
2017 (Gestión, 2018). The 2017 event is considered the third most
intense El Niño event in Peru in at least the past 100 years (ENFEN,
2017), therefore, areas vulnerable to recurrent flooding due to ENSO
events must be effectively managed to assess, prevent, and mitigate
disaster risks.

The reliable determination of flood extent during extreme events
such as ENSO, at the watershed scale, is a valuable tool for decision-
making, enabling the reduction, management, and mitigation of
flood-related losses (Towfiqul Islam et al., 2021; Pedzisai et al.,
2023). Several studies have delineated flood extent using approaches
such as field observations supported by geographic information
systems (GIS) and RS (Cian et al., 2018b; Singh and Kansal, 2022).
Over the past decades, the accessibility of free optical and radar
imagery has significantly improved the accuracy of flood mapping.
However, in the case of optical imagery, cloud cover poses a
limitation during extreme flooding events, whereas radar imagery
remains unaffected by meteorological conditions (Xue et al., 2022;
Pedzisai et al., 2023). Therefore, to accurately map the historical
extent of flooding during the 2017 Coastal ENSO event—a period
characterized by persistent cloud cover—the Normalized Difference
Flood Index (NDFI) was applied using radar imagery (Cian et al.,
2018a); this method, commonly used to delineate open water and
inundated vegetation in similar environments, provides a reliable
dataset on flood dimensions. Another approach involves
reconstructing flood extent through hydrodynamic modeling
(Afshari et al., 2018; Zhang et al., 2022), which requires field data
for model calibration and is computationally expensive (Teng et al.,
2017; Kumar et al., 2023), making it challenging to implement in
data-scarce regions like our study area. In recent years, there has
been a surge in modeling flood extent and water levels using artificial
intelligence (AI) and machine learning (ML) techniques, which
include various classification and regression algorithms such as
random forest (RF), Support Vector Machine (SVM), naive Bayes
(NB), and gradient boosting (GB), multilayer perceptron (MLP),
among others (Towfiqul Islam et al., 2021; Brill, 2022; Elkhrachy,
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2022; Chen et al., 2023; Uzzal Mia et al., 2023). As highlighted by
Rozos et al. (2022), the application ofMLmodels in hydrology is well
established, not only for direct flood mapping but also for assessing
the performance of hydrological models, offering a computationally
efficient and robust alternative to traditional evaluation methods.
These approaches enable the objective handling of complex
nonlinear problems while covering large study areas at a lower
computational cost (Zhao et al., 2024).

On the other hand, flood susceptibility mapping have been
significantly improved, ranging from qualitative methods such as the
geomorphological approach (CORCUENCAS, 2014), to semi-
quantitative approaches employing hierarchical analysis processes or
multi-criteria analysis (VanWesten et al., 2003; Vilchez et al., 2013), and
quantitative statistical models such as frequency ratio and weight of
evidence methods (Rahmati et al., 2016; Natarajan et al., 2021).
Additionally, machine learning-based flood susceptibility mapping
(Al-Aizari et al., 2022; Elkhrachy, 2022), including hybrid
approaches (Tehrany et al., 2014b; Shafizadeh-Moghadam et al.,
2018; Towfiqul Islam et al., 2021), have demonstrated higher
accuracy and lower bias (Singha et al., 2022) compared to
traditional models. However, their widespread adoption by
stakeholders has been limited due to their black-box nature
(Pradhan et al., 2023). This issue is being addressed by quantifying
the contribution of each variable to machine learning-based flood
susceptibility mapping using the SHapely Additive exPlanations
(SHAP) method proposed by Lundberg and Lee, (2017).

Although ML has been increasingly applied to FSM, many models
still operate as black boxes, limiting their interpretability and practical
application. Moreover, few studies have explored hybrid approaches in
ENSO-affected regions, and even fewer have incorporated explainable
AI techniques such as SHAP to enhance model transparency. This
study addresses these gaps by integrating SAR-based flood mapping,
hybrid machine learning approaches, and SHAP analysis, providing a
comprehensive and interpretable methodology to support flood risk
management. In this context, this research has twomain objectives: first,
to map the flooded areas during the 2017 Coastal ENSO event using the
NDFI applied to radar imagery, following the approach proposed by
Cian et al. (2018a); and second, to identify the areas most susceptible to
flooding through the application of ML models, including Random
Forest (RF) and Support Vector Machine (SVM), both in their simple
forms (RF-q, SVM-q) and in hybrid approaches combined with
Frequency Ratio (RF-FR and SVM-FR) and Weights of Evidence
(RF-WoE and SVM-WoE). Additionally, the SHAP method was
employed to quantify the contribution of each variable in the
susceptibility models, providing greater transparency and robustness
to the results. Ultimately, this study seeks to contribute to flood risk
management in northern Peru by providing innovative, accurate, and
interpretable tools to strengthen resilience, support land-use planning,
and inform disaster risk reduction strategies.

2 Materials and methods

2.1 Study area

The department of Piura is located in the most northwestern region
of Peru, between 4.089° and 6.372° south latitude and 81.328° and 79.210°

west longitude. It covers an area of 35,837.6 km2 and borders the

department of Tumbes to the north, Ecuador and the department of
Cajamarca to the east, the department of Lambayeque to the south, and
the Pacific Ocean to the west (Figure 1). Elevations in Piura range from
sea level to 3,881ma.s.l., with twodistinct altitudinal zones: a coastal plain
in the western sector, below 400 m a.s.l., characterized by slopes of less
than 5°, and an eastern foothill zone of the Andes Mountains (Vilchez
et al., 2013), extending from 400 m a.s.l. to approximately 3,860 m a.s.l.
More than 70% of the lithology in Piura consists primarily of loose to
semi-consolidated soils, with a predominance of alluvial, fluvial, and
aeolian deposits composed of sands and gravels. Additionally, to a lesser
extent, the region contains volcanic-sedimentary rocks, intrusive rock
outcrops, clastic or carbonate sedimentary rocks, and metamorphic
formations (Vilchez et al., 2013; INGEMMET, 2023). From a
geomorphological perspective, alluvial plains or floodplains are the
predominant landforms, followed by geomorphological units of hills
and low ridges, andfinallymountain units. AlthoughPiura is located near
the equatorial line, which suggests a warm, humid climate with high
precipitation, the Andes Mountains and the Humboldt and El Niño
currents significantly modify the climatic conditions, creating a climate
with distinct characteristics (Vilchez et al., 2013). According to the climate
classification by Thornthwaite, the region of Piura exhibits eleven climate
types. The most extensive is the arid type, which is characterized by
moisture deficiency throughout the year. Precipitation in this zone ranges
from 20 mm to 50 mm in the Sechura Desert and increases to values
between 700mmand 900mm in the interior and highland areas of Piura.
Additionally, the region includes a semiarid climate with annual
precipitation between 200 mm and 500 mm, as well as a rainy
climate in the highest elevations, where precipitation can reach up to
3000 mm per year (SENAMHI, 2020).

In the region of Piura, ENSO, and Coastal ENSO occur periodically,
altering meteorological conditions depending on their intensity and
duration. During the extraordinary ENSO events of 1982/1983, 1997/
1998, and 2016/2017, extreme precipitation was recorded, ranging from
1,000 mm per quarter to 3000 mm between September and May. The
highest rainfall concentrations were observed in Piura, with precipitation
anomalies exceeding 2000% (SENAMHI, 2014; INGEMMET, 2023),
these anomalies triggered floods and mass movement processes, leading
to significant socio-economic impacts, including loss of human lives,
dehydration, hunger, disease outbreaks, and damage or destruction of
housing, infrastructure, and livelihoods. The most affected sectors
included agriculture, livestock, industry, mining, fishing,
transportation, and electricity, among others. At the national level,
economic losses in terms of Gross Domestic Product (GDP) were
7.0%, 4.5%, and 1.5% for the El Niño events of 1982/1983, 1997/
1998, and 2016/2017, respectively (Galarza et al., 2012;
COMEXPERÚ, 2024). In Piura and Tumbes, 85% of agriculture was
irreparably lost, with estimated losses of 10 billion soles in crops such as
banana, rice, and soy; additionally, Piura was the most affected region,
with 28,560 damaged homes, the largest loss of crop hectares, and the
greatest impact on infrastructure (Galarza et al., 2012). The 2017 event,
classified as the most intense in the last 100 years, confirmed Piura as the
most severely affected region (Scipión et al., 2018), therefore, it is crucial
to map fluvial and pluvial floods at a regional scale in both urban and
rural areas of Piura during extraordinary events. Thismappingwill enable
risk assessment and the establishment of effective measures for disaster
reduction, preparedness, response, rehabilitation, and reconstruction,
thus mitigating catastrophic impacts on the population, livelihoods,
and infrastructure.
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2.2 Data

Table 1 presents the data used in this research. All variables were
standardized to the same spatial resolution of 30 m per pixel,
including geological and environmental variables, and the scale of
the susceptibility mapping was 1:10,000. All input variables are
shown in Figure A1.

2.3 Methods

The methodology was divided into seven steps (Figure 2). Step
1: It involved collecting geospatial information from national and
international institutional repositories. Step 2: The extent of the
flooding was determined using multitemporal radar analysis. Step
3: The geospatial information of the conditioning factors was

FIGURE 1
Map ubication of the study area.

TABLE 1 Variables for research.

Class Name Variable PCA Type of variable Source

Conditioning factor

Geological and environmental Geology Geol - Categorical INGEMMET

Geomorphology Geom - Categorical INGEMMET

NDVI NDVI - Continuous LANDSAT 8

Topographical Stream Power Index SPI PC-1
PC-2
PC-3
PC-4

Continuous DEM ALOS PALSAR

Terrain Roughness Index TRI Continuous DEM ALOS PALSAR

Topographic Wetness Index TWI Continuous DEM ALOS PALSAR

Aspect ASP Continuous DEM ALOS PALSAR

Flow accumulation FA Continuous DEM ALOS PALSAR

General curvature GC Continuous DEM ALOS PALSAR

Plan curvature PLC Continuous DEM ALOS PALSAR

Profile curvature PFC Continuous DEM ALOS PALSAR

Slope SLP Continuous DEM ALOS PALSAR
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standardized and processed. Step 4: The independence of the
topographic factors was determined using Pearson correlation,
multicollinearity elimination, and principal component analysis.
Step 5: The weight of the conditioning factors in relation to flood
occurrence was determined using the frequency ratio and weights
of evidence methods. Step 6: The flooding point vectors were
divided randomly into flood and non-flood zones in an 80/
20 proportion to obtain the training and validation datasets.
Additionally, six FSM were constructed, including RF-q, RF-FR,
RF-WoE, SVM-q, SVM-FR, and SVM-WoE. Step 7: The
performance of each model was analyzed and compared using
evaluation metrics such as AUC value, F-1 score, and accuracy.
Additionally, overfitting issues were avoided by applying cross-
validation. Finally, the contribution of each conditioning factor to
the susceptibility model with the best evaluation metrics was
determined using SHAP.

2.3.1 Flood extent mapping
To map the extent of flooding during the 2017 Coastal ENSO

event, Sentinel-1 radar images were analyzed. These images included
two periods: before the rainfall event (July 17 and 27 September
2016) and during the rainfall event (March 20, 23, 26, and April 4).
The radar images were downloaded from the Copernicus portal, and
preprocessing was carried out, including radiometric and geometric
corrections. Additionally, a 3 × 3 adaptive Lee filter was applied to
eliminate speckle effects in the images using SNAP software
(European Space Agency). Once the radar images were filtered,
the Normalized Difference Flood Index (NDFI) was estimated (see
Equation 1), aiming to highlight temporal changes in open water
areas (Cian et al., 2018a).

NDFI � mean ϑ0 ″ref erence″( ) −min ϑ0 ″ref erence + f lood″( )
mean ϑ0 ″ref erence″( ) +min ϑ0 ″ref erence + f lood″( )

(1)

FIGURE 2
Research flow chart.
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Where mean ϑ0(″reference″) is the average pixel value of the
pre-event raster, and min ϑ0(″reference + flood″) represents the
minimum values of the maximum flood images, i.e., during the
rainy stage. The threshold value for distinguishing flooded areas
from non-flooded areas was established using an empirical approach
set by (Cian et al., 2018a), which for the purposes of this study was
set to 0.35. Finally, two additional filters were applied, which
included removing all pixels smaller than 100 m and flooded
areas located on slopes greater than 5°.

2.3.2 Flood susceptibility mapping (FSM)
Flood susceptibility is defined as the probability of a flood

occurring in a given area based on the local physical conditions
that determine its predisposition (Vojtek and Vojteková, 2019; Hao
et al., 2021). FSM is a crucial tool for identifying areas prone to
flooding, land-use planning, preparedness (Kaya and Derin, 2023),
and for reducing and reconstruction in emergency or disaster
situations. Additionally, 10 variables were selected from previous
studies (Khosravi et al., 2019; Gudiyangada Nachappa et al., 2020;
Kaya and Derin, 2023; Maharjan et al., 2024), including topographic,
hydrological, geological, and environmental variables as
independent variables for the models, which are detailed in
Table 1. The topographic and hydrological variables were derived
from the Copernicus Digital Elevation Model with a spatial
resolution of 30 m. Furthermore, the NDVI was processed using
Landsat-8 images from March 2017, applying Equation 2, and
downloaded from the Google Earth Engine platform. All
additional variables were obtained from repositories of technical
and scientific institutions and rasterized to the same spatial
resolution of 30 m.

NDVI � nearinf rared − red
nearinf rared + red

(2)

2.3.3 Positive and negative flood samples
The positive flood sample layer, in point format, used for

training and evaluating the flood susceptibility mapping, was
digitized based on the flood extent from Step 2. The points were
randomly extracted from the centroid of the flood polygons,
ensuring full coverage of the study area. On the other hand, the
digitization of negative samples was done under two criteria: first, by
digitizing negative samples in areas of very low, low, and medium
flood susceptibility based on a prior heuristic susceptibility model
developed by INGEMMET. Additionally, since floods do not occur
in high-elevation and slope areas such as hillside zones, these were
randomly digitized, ensuring that a large portion of the study area
was covered. This hybrid approach for negative samples improves
the performance and reliability of the models (Khabiri et al., 2023). It
is important to note that a total of 182 positive and negative samples
were used, with an equal proportion between them, and 80% of the
data was used for training and 20% for model evaluation. Although
the sample size may appear limited, it reflects the absence of a
detailed flood inventory in the region (only 58 events officially
reported by INGEMMET as of 2025) and remains consistent with
watershed-scale studies employing similar sample sizes (Rahmati
et al., 2016; Khosravi et al., 2019; Yariyan et al., 2020; Singha
et al., 2022).

2.3.4 Exploratory method of variables
In this study, both simple and hybrid quantitative flood

susceptibility mapping were compared using bivariate
statistical techniques and ML methods. Simple models of RF-q
and SVM-q were constructed, along with two hybrid models
combining RF with FR (RF-FR) and WoE (RF-WoE); and SVM
with FR (SVM-FR) and WoE (SVM-WoE). Prior to including the
variables in the models, an exploratory variable analysis was
conducted to ensure the linear independence of each topographic
variable derived from the DEM, to reduce noise and enhance the
predictive capability of the models (Hu et al., 2020). To ensure
independence and avoid relationships between two or more
independent variables in the models, a Pearson correlation
analysis was performed, and multicollinearity was discarded
(Chan et al., 2022) using the variance inflation factor (VIF).
Pearson correlation values higher than ±0.8 and VIF values
greater than five or 10 indicate issues of interrelationship and
multicollinearity between topographic variables (Menard, 2002;
Field, 2009). To address this problem, Principal Component
Analysis (PCA) was applied, with the primary goal of ensuring
independence and reducing the number of variables into a set of
mutually independent principal components (Kelkar, 2017)
without the need to eliminate variables (Badillo-Rivera et al.,
2024). The number of principal components that summarize the
original data was established based on the cumulative variance
explanation threshold, which ranges from 0 to 1. For this study, a
minimum value of 0.6 was used, similar to previous studies
(Goyes-Peñafiel and Hernandez-Rojas, 2021; Ahmed et al.,
2023; Badillo-Rivera et al., 2024). Once the dimensionality of
the topographic variables was reduced and the geological and
environmental variables were standardized to the same format
and spatial resolution, the quantitative relationship or true
weight between each class of the conditioning factors
(independent variables) and flood occurrence (dependent
variable) was estimated using bivariate statistical techniques,
FR, and WoE.

2.3.5 Statistical models
2.3.5.1 Frequency ratio (FR)

Regarding FR, it refers to the relationship between the
percentage of flooded area for each class of each conditioning
factor and the percentage of the area of that specific class
(Tehrany and Kumar, 2018). Equation 3 was used to calculate
the FR value for each class of each conditioning factor (Dey
et al., 2024).

FRi �
Fpixi∑n

i�1Fpixi
Tpixi∑n

i�1Tpixi

(3)

Where FRi is the frequency ratio value for each class i of each factor
of the variable, Fpixi is the number of flooded pixels for each i class, and
Tpixi represents the total number of pixels for each i class. Finally, n is
the total number of classes for each conditioning factor. Flood
susceptibility is equal to the sum of all FR values for each factor, as
shown in Equation 4 (Natarajan et al., 2021). FR values greater than one
indicate a strong correlation with floods, while values below one
indicate a weak correlation (Tehrany and Kumar, 2018).
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FS � ∑ FRi (4)

2.3.5.2 Weight of evidence (WoE)
On the other hand, the WoE is a quantitative, data-driven

Bayesian probability model (Bonham-Carter, 1995; Rahmati
et al., 2016). Using the flood layer and conditioning factors, WoE
was applied to determine the relationship and weight of each
relevant factor. The weights for each flood conditioning factor
(A) can be calculated by analyzing the spatial relationship
between the presence or absence of flooding (B) within a specific
area (Bonham-Carter, 1995; Van Westen, 2002; Tehrany et al.,
2014b). The method assigns a positive (W+

i ) or negative (W−
i )

weight to each class of the conditioning factor based on the degree of
association between the class of the factor and the spatial
distribution and density of flood evidence (Badillo-Rivera et al.,
2024). If W+

i is positive (see Equation 5), it indicates that the
presence of the causative factor is favorable for the occurrence of
flooding, and the magnitude of this weight indicates the positive
correlation between the presence of the causative factor and
flooding. If W+

i is negative, it is not favorable. On the other
hand, W−

i is used to assess the importance of the absence of the
conditioning factor for the occurrence of flooding. If W−

i is positive
(see Equation 6), the absence of the conditioning factor is favorable
for flooding occurrence, and when it is negative, it is not, with the
magnitude indicating the level of negative correlation (Van Westen,
2002; Meten and Bhandary, 2020).

Wi+ � ln P A|B( )/P A
∣∣∣∣�B( )( ) (5)

Wi− � ln P �A
∣∣∣∣B( )/P �A

∣∣∣∣�B( )( ) (6)

Where P is the probability, ln is the natural logarithm, A and �A
represent the presence and absence of the conditioning factor,
respectively, and B and �B represent the presence and absence of
flooding. The difference between Wi+ and Wi− is known as the
contrast factor (Bhandari et al., 2024), and it reveals the spatial
association between the conditioning factor. A positive value
indicates a positive relationship, while a negative value indicates
a negative or unfavorable relationship for the occurrence of flooding
(Van Westen, 2002; Gentilucci et al., 2023).

2.3.6 Machine learning models
2.3.6.1 Random forest (RF)

The RF algorithm is a combination of predictive trees such that
each tree depends on the values of a random vector sampled
independently and with the same distribution for all the trees in
the forest (Breiman, 2001). The model, proposed by Breiman,
combines the theory of Bagging, which refers to bootstrap
aggregation (Murphy and Murphy, 2012), random split selection,
and the random feature selection process (Sharafat et al., 2024). RF
can be used in regression and classification problems using a
majority voting scheme (Bhattacharya, 2021), and it has the
capability to predict dependent variables using independent
variables. Additionally, unlike linear modeling tools, RF is a
nonlinear tool that can handle multivariate prediction problems
and is not sensitive to outliers. Therefore, RF models achieve high
accuracy in classification by reducing overfitting errors reported in
models (Farhadi and Najafzadeh, 2021; Ghosh and Dey, 2021; Li

et al., 2023; Liao et al., 2024; Sharafat et al., 2024). Equation 7
represents the RF algorithm.

Ĉrf � majority vote{Ĉn x( )}N
n�1 (7)

Where Ĉrf is the final predicted class of RF, Ĉn is the predicted
class for the nth decision tree in a forest for the observation (x), and
N indicates the number of decision trees in the forest (Nurwatik
et al., 2022).

2.3.6.2 Support vector machine (SVM)
On the other hand, SVM is a supervised ML method capable of

solving classification and regression problems, as proposed by
(Cortes and Vapnik, 1995). It is based on class discrimination in
a high-dimensional feature space generated through nonlinear
transformations of the predictors. For two-class classification
problems, SVM aims to find an optimal separating plane, known
as a hyperplane in the feature space, whichmaximizes the separation
between the two classes of samples (Merghadi et al., 2020; Li et al.,
2023). Consider a matrix of conditioning factors, X = (X1, X2, Xn);
Yj = (Y1, Y2) is a vector of non-flooding and flooding classes, and
the optimal hyperplane can be obtained by solving the classification
function as follows (see Equation 8).

f X( ) � sign ∑n
i�1
αiY jk X,Xi( ) + c⎡⎣ ⎤⎦ (8)

Where c is the offset from the origin of the hyperplane, n is the
number of flood conditioning factors, αi is a positive real constant,
and k (X, Xi) is the kernel function, which can be linear,
polynomial, radial basis or sigmoidal (Pham et al., 2016). The
solution can be further reviewed in (Zhang et al., 2021). In this
study, the Python scikit-learn module was applied to implement the
RF and SVMmodels. It is worth mentioning that the hybrid RF and
SVM models with FR and WoE were modeled based on the weights
assigned to each conditioning factor class derived from Step 5.

In this study, hyperparameters for RF and SVM were adopted
from commonly used configurations reported in the literature, as an
exhaustive optimization was not the focus, as highlighted by Liu
et al. (2023b), manyMLmodels achieve robust accuracy with default
parameters, and exploring all possible hyperparameter
combinations is computationally impractical. Table A1 presents
the hyperparameters used for SVM and RF.

2.3.6.3 Shapely additive exPlanations (SHAP)
The construction of FSM based on ML techniques has been

improved using hybrid approaches, as demonstrated in (Tehrany
et al., 2014b; Gudiyangada Nachappa et al., 2020; Towfiqul Islam
et al., 2021). However, stakeholders do not widely use these models
despite their higher accuracy compared to traditional models, due to
their black-box nature (Pradhan et al., 2023). In this research, the
SHAP technique was incorporated to quantify the degree of
influence of each conditioning factor in the FSM that presented
the best evaluation metrics. This was done in order to create a more
interpretable and transparent machine learning model to explain the
black-box model (Aksoy et al., 2024; Tripathi and Prakash, 2024).
SHAP is a technique introduced by (Lundberg and Lee, 2017) that is
based on game theory to estimate the importance of each player in
relation to their contributions in a coalition game (Tripathi and
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Prakash, 2024). For each predicted sample, the SHAP technique
generates a value, which is the sum of the values assigned to each
feature (see Equation 9) (Wang et al., 2023).

g �z( ) � ∅0 +∑M
j�1
∅j�zj (9)

Where g is each variable, �z is the explanation model ∈ {0, 1}M, is
the number of simplified input features, and ∅j ∈ R, is the
attribution of the feature for feature j, which represents the
Shapley value. A deeper explanation can be found in (Lundberg
and Lee, 2017).

2.3.7 Evaluation metrics
The receiver operating characteristic curve (ROC) is widely

used in geosciences (Rahmati et al., 2016; Khosravi et al., 2019). It
can be constructed by plotting specificity (false positive rate, FPR,
Equation 10) on the X-axis and sensitivity (true positive rate,
TPR, Equation 11) on the Y-axis (Towfiqul Islam et al., 2021).
The area under the curve (AUC, Equation 12) of the ROC curve
indicates the accuracy in predicting flooded and non-flooded
areas and is a useful tool for measuring discriminatory power,
evaluating, and quantitatively comparing several models
(Gudiyangada Nachappa et al., 2020). It is also the most
commonly applied criterion for determining the most suitable
model for susceptibility mapping (Sun et al., 2018). FSMs can be
evaluated qualitatively based on their accuracy and predictive
capacity, as follows: a poor model for AUC values between
0.5 and 0.6, an average model with AUC values between
0.6 and 0.7, a good model for AUC values between 0.7 and
0.8, a very good model for AUC values between 0.8 and 0.9, and
an excellent model for values above 0.9 (Pourghasemi et al., 2013;
Rahmati et al., 2016). On the other hand, evaluation metrics such
as accuracy (Equation 13) and F-1 score (Equation 14) have been
used to assess the predictive capacity of FSMs.

x � 1 − specif ity � FPR � 1 − TN
TN + FP

( ) (10)

y � sensitivity � TPR � TP
TP + FN

( ) (11)

AUC � ∑TP + ∑TN
P + N

(12)

Accuracy � TP + TN
TP + FP + TN + FN

(13)

F − 1score � 2 × TP
2 × TP + FP + FN

(14)

Where TN and TP are the true negatives and true positives,
respectively, and indicate the number of pixels that were classified
correctly; FN and FP are the false negatives and false positives,
respectively, and indicate the number of pixels that were classified
incorrectly; N and P are the total number of negative and positive
samples, respectively (Rahmati et al., 2016; Chen et al., 2018).
Accuracy (ACC) indicates the proportion of correct predictions
in relation to the total number of predictions made, while the F-1
score represents the model’s performance by combining precision
and recall. Higher values of accuracy and F-1 score indicate a better
model, with a value of one representing a perfect model (Chen et al.,
2018; Pradhan et al., 2021; Li et al., 2023).

2.3.8 Cross validation (CV)
CV is a resampling technique used to assess the robustness of a

model prediction and to aid in model selection (Chung and Fabbri,
2008; Friedl and Stampfer, 2012). It is often applied to prevent
overfitting, enhance robustness, and ensure stability in ML models
(Khosravi et al., 2019; Chen et al., 2020; Liu et al., 2023a). In CV, a
subset of the sample is reserved to validate the model performance
(Chan et al., 2022). In this study, the data was randomly divided into
five equal parts (k = 5 folds) using the scikit-learn module in Python.
The ML models were trained and validated k times, and the mean
and standard deviation of AUC (AUC-CV), accuracy (ACC-CV),
and F-1score (F-1score-CV) were obtained.

3 Results

3.1 Flood extent mapping and flood
susceptibility mapping

The spatial distribution of flooded areas due to intense rainfall
generated by the 2017 coastal ENSO is shown in Figure 3. The blue-
colored surfaces represent the maximum recorded flooding between
March 20 and 4 April 2017, covering a total of 1,637.2 km2, mainly in
areas at or near sea level. These floods affected agricultural, urban,
and rural areas. It is important to mention that the flood extent is
limited by the availability of Sentinel-1 data for the analyzed
flood event.

The results of the exploratory analysis of the topographic
variables reveal issues of correlation (Figure 4) and
multicollinearity (Table 2) between the terrain ruggedness index
(TRI) and the slope. The Pearson correlation test confirms a high
correlation between these two variables.

Furthermore, in the multicollinearity test, variance inflation
factor (VIF) values range from 1.1 (for aspect and plan
curvature) to 56.4 (TRI), indicating interrelation and
multicollinearity issues between slope and TRI. These VIF values
are significantly higher than 5, confirming the presence of
multicollinearity among the variables derived from the digital
elevation model (DEM).

Given the above, it is recommended to proceed with
dimensionality reduction using PCA. This approach aims to
eliminate variable correlation and resolve the multicollinearity
issue before performing susceptibility mapping. Figure 5 shows
the variance contribution of the nine principal components (PC).
Assuming a variance explanation level above 0.65, four PC are
required, collectively explaining 75.4% of the variance. Each of these
components is independent, ensuring the elimination of correlation
and multicollinearity.

Table 3 presents the importance and contribution of each
influential variable in the four PC. The higher the absolute value,
the greater the contribution to the PC.

Finally, the four PC (Figure 6) and the NDVI were reclassified
into quintiles to be included in the FSM.

The FSM were generated using ensemble models of SVM and
RF. Three main approaches were developed:

First model: Seven variables (PC-1, PC-2, PC-3, PC-4, NDVI,
Geology, and Geomorphology) were used for both SVM and RF.
This approach generated the initial flood susceptibility maps
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FIGURE 3
Flood extent. Images from (Miñán-Ubillús and Fahsbender-Céspedes, 2017).

FIGURE 4
Pearson correlation of topographic variables.
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without considering the relative weight evidenced in flood
occurrence.

Second model: The quantitative relationship between the
variables and flood occurrence was estimated using the FR
technique. The new variables obtained from this analysis were
used to generate FSM, namely, SVM-FR and RF-FR.

Third model: A second method was applied to estimate the
quantitative relationship between the variables and flood
occurrence, known as WoE. With these new variables, the FSM
were modeled, namely, SVM-WoE and RF-WoE.

In total, six FSM models were generated, combining the two
algorithms (SVM and RF) with the three approaches described
earlier. The results of the FSM (Figure 7), expressed as flood
probability, ranged from 0 to one for all models. Based on these
values, susceptibility was reclassified into five levels: very low, low,
medium, high, and very high, using equal intervals. This
reclassification allows for a better identification of areas with
higher flood susceptibility. The spatial distribution of flood

susceptibility levels is illustrated in Figure 7. Areas with high and
very high susceptibility are primarily located along rivers, streams,
and areas with low slopes. On the other hand, higher slope areas,
such as hills and mountains, correspond to low susceptibility areas.

Table 4 presents the spatial distribution in terms of area and
percentage of the susceptibility levels for all the FSM models.

The area with the highest flood susceptibility level (classified as
“very high”) was generated by the RF-WoE model, representing
7.4% of the total area. Following this, in descending order, are the
models SVM-q (5.2% of the total area), SVM-WoE (4.6% of the total
area), RF-q (4.5% of the total area), and RF-FR (4.4% of the total
area). Finally, the most conservative model was the SVM-FR, with
only 3.6% of the total area classified as “very high” susceptibility.
These results are shown in detail in Figure 8.

The analyzed models agree that areas close to river courses in the
lower basin have a higher probability of flooding, while more distant
zones, located in the middle and upper basin, exhibit a lower flood
risk. Areas classified with high and very high susceptibility levels are
particularly vulnerable to flooding, mainly due to the influence of the
Piura River. This river carries a high sediment load and generates
significant runoff during events associated with the El Niño
phenomenon, particularly in the lower basin. In this area,
complex issues related to changes in river morphology are
observed, such as the presence of levees, groynes, and sedimented
floodplains. Additionally, inadequate land use exacerbates the
situation, increasing vulnerability and the risk of recurrent floods.
These conditions make the lower basin especially prone to repetitive
flooding events (IAHR, 2020). To complement the interpretation of
flood susceptibility in relation to urban settlements, the RF–WoE
FSM results were overlaid with a geospatial layer of urban and rural
population centers in the Piura department. This analysis identified
19 urban and rural settlements, 21,264 population, and
6524 households located within areas classified as very high flood
susceptibility. Although the DEM used in this study (30 m
resolution) does not explicitly represent urban structures, this

TABLE 2 Inflation value of the variance of the topographic variables.

Variable VIF

Intercept 11.7

TRI 56.4

TWI 1.7

Aspect 1.1

Flow accumulation 1.3

General curvature 2.7

Plan curvature 1.1

Profile curvature 2.3

Slope 55.5

FIGURE 5
Explanation of the variance of the principal components.
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approach provides an indirect assessment of urban exposure to flood
hazards in the study area.

3.2 Evaluation metrics

Validation criteria were applied to assess the accuracy and
effectiveness of the six FSM, during the training phase and the
evaluation phase. For this purpose, the AUC value was used; the
closer the AUC value is to one, the better the model performance
for flood prediction. The training results show that all FSM
models reached AUC values greater than 0.850 (Figure 9A).
The ensemble model RF-WoE stood out particularly, achieving

an AUC = 0.988, outperforming all other models analyzed in the
study. Regarding the validation dataset (Figure 9B), it was
observed that all models performed well in classifying the
presence and absence of floods, with AUC values >0.800.
Finally, it was evident that, in both the training and
evaluation datasets, the RF-based models, both in their simple
and ensemble versions, demonstrated better performance
compared to the simple and ensemble SVM models.

A CV analysis was conducted (Table 5) to mitigate overfitting
and reduce variability in the models. The CV was calculated as the
average of the values obtained from five partitions (k-folds) to
facilitate comparison between the different datasets. The AUC-
CV values obtained were high in all cases, ranging from

TABLE 3 Weights of topographic variables in the principal components.

Principal component Weight T1 T2 T3 T4 T5 T6 T7 T8 T9

PC-1 0.300 −0.084 0.559 −0.301 0.013 0.179 −0.372 −0.022 −0.342 0.549

PC-2 0.209 −0.305 0.185 −0.483 0 −0.42 0.425 0.221 0.438 0.207

PC-3 0.136 −0.195 0.111 0.209 0.758 0.413 0.193 −0.167 0.285 0.12

PC-4 0.110 0.047 −0.078 0.02 0.328 0.014 −0.133 0.908 −0.188 −0.085

FIGURE 6
Reclassified principal components with quintiles.
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FIGURE 7
Simple and ensemble flood susceptibility mapping.

TABLE 4 Area percentages of susceptibility levels in the flood models.

Model Very low Low Moderate High Very high

km2 % km2 % km2 % km2 % km2 %

RF-WoE 25,018.1 70.5 2726.7 7.7 2835.9 8.0 2285.5 6.4 2632.1 7.4

SVM-WoE 20,632.7 58.1 1953.6 5.5 6886.2 19.4 4385.7 12.4 1,640.4 4.6

RF-FR 17,616.0 49.6 9441.6 26.6 4312.6 12.1 2550.1 7.2 1,578.2 4.4

SVM-FR 14,101.9 39.7 5784.0 16.3 7470.5 21.0 6857.9 19.3 1,284.2 3.6

RF-q 17,311.7 48.8 9614.0 27.1 3738.4 10.5 3244.4 9.1 1,590.0 4.5

SVM-q 13,654.6 38.5 5122.9 14.4 9053.1 25.5 5822.6 16.4 1845.4 5.2
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0.828 for the SVM-q model to 0.936 for RF-WoE. Regarding the F1-
score-CV and Accuracy-CV metrics, the values ranged from 0.757
(SVM-FR) to 0.851 (RF-WoE) for the former, while accuracy
(Accuracy-CV) varied from 0.728 (SVM-FR) to 0.848 (RF-WoE).

The evaluation and CV metrics applied to the models showed
that the RF-WoE hybrid model achieved the best performance
compared to the SVM model in all its hybrid combinations, and
it is the most stable model for zoning flood-prone areas in the study
area, as shown in Figure 10.

Figures 11A,B present the variable importance analysis and the
influence of features on the RF-WoE model using the SHAP
technique on the training dataset. This model was selected due
to its superior performance in terms of AUC, F1-score, and
accuracy. In Figure 11A, the variable importance ranking is

shown. The Y-axis (ordinate) displays the most relevant
features for model prediction in descending order, while the
X-axis (abscissa) represents the impact of each variable on the
prediction. Additionally, the color of the points indicates the
intensity of the feature value for each data point. The results
indicate that the most influential variable in the FSM prediction is
geology, followed by geomorphology and PC-3. In contrast,
PC1 and NDVI show values close to zero or have a slightly
positive or negative impact on the predictions. On the other
hand, Figures 11B,C illustrate the contribution of each variable
to the prediction of a specific observation. Higher scores lead the
model to predict a value of 1 (greater flood susceptibility), while
lower scores result in a prediction of 0 (lower susceptibility). The
size of the blue bars represents features that decrease the likelihood
of flooding, while the red bars indicate variables that increase this
likelihood. Specifically, low values of PC-3, geology, PC-2, and
geomorphology push the models prediction towards a score of 0.03
(Figure 11B), suggesting low flood susceptibility. In contrast, high
values of geology, geomorphology, PC-2, PC-3, and PC-4 increase
the models score up to 0.92, indicating high susceptibility for a
specific observation.

FIGURE 8
Area expressed as percentages of the different levels of flood
susceptibility.

FIGURE 9
ROC curve and AUC values for the training data (A) and evaluation data (B). The dashed black line represents the no-discrimination line.

TABLE 5 Evaluation metrics for FSM.

Models AUC F-1score Accuracy

Train Test CV Train C-V Train C-V

RF-q 0.994 0.932 0.917 0.958 0.847 0.957 0.837

SVM-q 0.868 0.821 0.828 0.810 0.776 0.783 0.744

RF-WoE 0.998 0.907 0.936 0.979 0.851 0.978 0.848

SVM-WoE 0.945 0.866 0.910 0.878 0.802 0.877 0.793

RF-FR 0.995 0.919 0.911 0.800 0.830 0.971 0.837

SVM-FR 0.858 0.805 0.833 0.800 0.757 0.783 0.728
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4 Discussion

FSM play a key role in decision-making related to land-use
planning, as they help identify flood-prone areas and reduce
economic losses and risks to human life. Zoning and land-use
management, supported by appropriate tools and technologies,
are essential for reducing flood risks, protecting the environment,
and safeguarding vulnerable communities. The main objective of
this study was to generate FSM for the Piura region in northern Peru
by integrating optical and radar RS data with GIS-based analysis. To
address dimensionality and multicollinearity among variables, PCA
was applied, enabling the selection of key factors, which proved
effective in constructing FSM. ML techniques, specifically RF and
SVM, were used to develop six model variants, with a hybrid
approach demonstrating improved predictive capability over
simpler statistical or single-method approaches (Shahabi et al.,
2021; Kaya and Derin, 2023; Badillo-Rivera et al., 2024).
However, most machine learning-based susceptibility models still
function as black boxes, offering limited interpretability for

decision-making. To address this, this study incorporates
explainable AI techniques, particularly SHAP analysis, alongside
SAR-based flood mapping and statistical integration, creating a
comprehensive and interpretable modeling framework designed
to strengthen flood risk management in ENSO-affected regions.

The spatial distribution of flooded areas observed during the
Coastal ENSO 2017 event reveals significant patterns that highlight
the vulnerability of certain areas, especially those with elevations
near sea level and close to river courses, particularly the lower Piura
River basin, where morphological factors and improper land use
exacerbate risk. The floods, covering a total of 1,637.2 km2, mainly
affected agricultural, urban, and rural areas; however, the reliance on
Sentinel-1 data limits a full understanding of the phenomenon,
suggesting that future research should consider integrating multiple
data sources.

The input variables for the susceptibility models, which showed
correlation and multicollinearity issues, indicated that applying
techniques such as PCA is crucial to reducing dimensionality and
improving the accuracy of susceptibility models. Omitting this

FIGURE 10
AUC value for the training, testing, and CV data (A), F1-score and accuracy values for training and CV (B).

FIGURE 11
(A), SHAP summary plot; (B,C) SHAP individual force plot.
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procedure in flood susceptibility studies, as seen in some research
(Tehrany et al., 2014b; Gudiyangada Nachappa et al., 2020; Yariyan
et al., 2020), could lead tomodels where the reliability of the results is
questionable (Waleed and Sajjad, 2025). The proper selection of PC
is essential, as it allowed explaining 75.4% of the variance using only
four PC, which is consistent with similar values reported by (Ahmed
et al., 2023; Badillo-Rivera et al., 2024). This approach optimizes the
models without losing critical information, mitigates overfitting, and
reduces the impact of outliers (Shojaeian et al., 2024). It was
highlighted that the variables with the greatest influence on the
PC are TRI and slope for PC-1, TWI and profile curvature for PC-2,
aspect and flow accumulation for PC-3, and plan curvature for PC-4.
The six models analyzed in this study resulted in similar
susceptibility distribution patterns, revealing significant
differences in the extent of high-susceptibility areas.

The RF-WoE model generated the largest area classified as
very high susceptibility, covering 2632.1 km2, followed by the
SVM-q model with 1,640.4 km2. Other models, such as RF-FR,
SVM-FR, RF-q, and SVM-WoE, showed a similar distribution in
terms of the area classified within the highest susceptibility levels.
These results suggest that the RF-WoE model may be more
sensitive to very high susceptibility conditions, especially in
areas near rivers. Overall, the analyzed models clearly identify
the zones with the highest flood susceptibility, located along
rivers and in low-slope areas within the lower Piura River basin.
These areas are particularly vulnerable during extreme
precipitation events, such as those associated with ENSO,
which generate high levels of runoff and sedimentation,
causing rivers to overflow into flat areas, including
floodplains, low and middle terraces, with slopes lower than
5°. Additionally, the anthropogenic modification of the Piura
River channel through channelization, bridge construction, and
inadequate occupation of vulnerable areas significantly increases
the damage during extreme events (Vílchez Mata, 2018). On the
other hand, areas with steeper slopes, such as hills and
mountainous regions, exhibit lower susceptibility levels since
the terrain inclination hinders water accumulation, reducing
the likelihood of flooding. However, it is important to note
that during extreme events, erosion and sedimentation can
pose a risk to lower basins, affecting the dynamics of the
fluvial system and exacerbating the impacts of flooding.

The validation of the models in terms of AUC, F-1 score, and
accuracy, for both the training and validation datasets, indicates
an outstanding performance of the ensemble RF models,
particularly the RF-WoE model, which achieved an AUC of
0.988, outperforming the SVM-based models. Although the
SVM models show acceptable performance (AUC >0.805 in
training, evaluation, and cross-validation), they are inferior
compared to RF. This is attributed to the use of a linear kernel
in SVM, which limited its ability to capture the nonlinear
relationships governing flood susceptibility, a finding consistent
with Khodaei et al. (2025). While it is recognized that employing
nonlinear kernels (radial basis function (RBF), polynomial) and
systematic hyperparameter tuning could potentially enhance
SVM performance, studies such as Tehrany et al. (2015) found
only a marginal improvement of RBF over a linear kernel in flood
susceptibility contexts. This suggests that even after optimization,
SVM may not surpass RF in this specific domain. In contrast, RF

demonstrated the ability to handle highly complex, nonlinear
relationships and exhibited robustness to outliers among input
variables (Liao et al., 2024), which contributed to its superior
predictive performance. Similar results have been reported in
previous studies, such as Plataridis and Mallios, (2023), where
the RF-WoE model achieved an AUC of 0.968, outperforming
other approaches designed for flood prediction. Additionally, in
problems related to landslides and mass movements, RF-WoE
models have proven to be the best performing in terms of AUC
compared to other models used (Chen et al., 2019; Wei et al., 2023;
Badillo-Rivera et al., 2024). The CV analysis supports the
robustness of the models, with AUC-CV values ranging from
0.828 to 0.936, suggesting that the models are not overfitted and
demonstrate good overall performance in different scenarios
(Goetz et al., 2015; Chen et al., 2018).

SHAP values help validate the model by confirming that the
most influential features align with factors associated with flooding,
such as geology (alluvial, fluvial, eolian, lacustrine deposits, among
others); geomorphology (floodplains, alluvial plains, depression
reliefs, alluvial terraces, estuaries, dune fields, etc.), where higher
probability values for flooding are associated with flat surfaces; and
aspect, which is the variable with the greatest influence on PC3,
indicating the direction of maximum slope and being related to the
direction of water flow, pointing to flat areas (Seleem et al., 2022)
prone to flooding. According to the force plot in Figures 11B,C, low
values, mainly from geology and geomorphology, significantly push
the prediction towards no floods in the RF-WoE model output,
while high values of these same variables reveal the opposite,
meaning they strongly influence the model to predict floods. This
demonstrates their critical relevance in the decision-making process
within the model.

The spatial distribution of flooding during the 2017 Coastal
ENSO may be limited by the availability and quality of Sentinel-1
data, which restricts the ability to capture all flooding events due
to limited temporal resolution and availability. It is therefore
recommended to integrate multiple data sources to improve the
understanding of the flooding phenomenon. The developed
FSMs are specific to the northern region of Peru, particularly
Piura, which may limit their applicability to other regions with
different geographical and climatic characteristics. Additionally,
the study focuses on floods associated with the 2017 Coastal
ENSO event, and other extreme events or climatic conditions
were not considered. The models may not represent other areas
that could be affected, although a visual validation was performed
with the flood footprint from other extreme events, such as the
1983/84 and 1997/98 ENSO events. A large portion of the flood
footprint coincides with the findings reported in this study for
2017. Future studies should integrate multiple data sources, such
as LiDAR and high-resolution optical imagery, to improve the
accuracy and temporal resolution of flood mapping.
Furthermore, no transformation pre-treatments were applied
in this study to force a normal distribution in the data, given
their topographic nature and the risk of distorting the original
information, as reported by Reid and Spencer (2009). Future
studies are encouraged to explore the impact of different
normalization techniques through sensitivity analyses to
evaluate their effect on the stability of principal components
and derived susceptibility models.
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5 Conclusion

This study demonstrated that combining optical and radar RS
with GIS and ML techniques significantly improves flood
susceptibility mapping, offering a robust framework for risk
assessment and land-use planning in flood-prone areas. The
application of PCA was crucial to address multicollinearity issues
and improve the accuracy of the models. Areas near rivers and
surfaces with low slopes showed the highest susceptibility,
confirming the importance of morphological configuration and
land use in the occurrence of flooding. By integrating SAR-
derived flood mapping with a hybrid modeling approach (RF and
SVM combined with statistical techniques), this research provides a
novel, transparent, and replicable methodology for regions affected
by ENSO-driven floods, where cloud cover and data scarcity have
historically limited reliable mapping. The ensemble RF-WoE model
proved to be the most effective in predicting flood susceptibility in
northern Peru, Piura, achieving AUC values greater than 0.9 for
training, evaluation, and cross-validation data, indicating a high
level of accuracy. The use of SHAP analysis further strengthened the
interpretability of the models by validating that geological,
geomorphological, and DEM-derived variables, such as aspect,
play a dominant role in flood prediction, making the model
outputs more transparent and actionable for decision-makers.
This aligns with the understanding that flood processes,
configuration, and surface deposit types play a crucial role in
water accumulation and flow.

Overall, this study demonstrates the value of combining
explainable AI, ML, and RS to develop robust tools for disaster
risk reduction, bridging a critical gap in flood susceptibility studies
in ENSO-affected areas. It is essential to conduct further research
that integrates multiple data sources and diverse
hydrometeorological events to improve the generalization and
applicability of the models at regional and national levels. The
generated models provide valuable information for land zoning
and the planning of both gray and green infrastructure, aiming
to minimize flood risks and protect vulnerable populations.
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Appendix A

FIGURE A1
Input variables used in the research.

TABLE A1 Hyperparameters used in this research.

Model Hyperparameters

SVM Kernel = “linear”

RF n_estimators = 360
max_depth = 11
criterion = “gini”

min_samples_split = 5
min_samples_leaf = 1
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