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The counties in the metropolitan hinterland, due to their unique locational
advantages and pivotal functions, have emerged as crucial strategic pivots for
economic development of cities. However, the rapid pace of urbanization has
exerted considerable pressure on the ecosystems of these counties. Against this
backdrop, assessing the ecosystem service value and its driving factors in these
regions is of significant decision-making importance for promoting the
coordinated development of urban economy and ecological conservation.
Therefore, this study used the revised equivalent factor method to evaluate
the spatial-temporal variation of regional ESV by the perspective of land use
transformation in Ningxiang City during the years 2010, 2016 and 2022. The
driving mechanism of ESV spatial differentiation was explored by combining
geographic detector and geographically weighted regression (GWR) model. The
results revealed that: (1) From 2010 to 2022, the area of construction land
expanded the most, while the areas of ecological land such as forest land,
water body and grassland decreased continuously. Accordingly, the total ESV
declined consistently, dropping from 121.03 × 108 yuan to 113.93 × 108 yuan, with
notable decreases of ESV in hydrological regulation services, forest land and
water body. (2) At the grid unit and township (street) spatial scales, ESV
demonstrated a northwest-high-northeast-low distribution pattern with
significant spatial clustering effects, revealing persistent ecological degradation
risks in the northeast. (3) Geographic detector revealed that synergistic effects of
multiple natural and socio-economic driving factors shaped the spatial
differentiation of the regional ESV. The main driving factors identified were the
normalized vegetation index (NDVI), human impact index (HAI), and population
density (POP). The influence of NDVI on ESVwas generally higher in the west than
east, while the negative influence intensity of HAI and POP on ESV gradually
weakened from east to west. Based on the perspective of high-precision ESV
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assessment in small areas, this study provided scientific support for ecological
policy formulation and sustainable land-use planning in Ningxiang City as well as
similar counties.

KEYWORDS

ecosystem service value (ESV), spatial-temporal variation, driving factors, geographical
detector, GWR model

1 Introduction

Ecosystem service value (ESV) refers to the value of life-
supporting products and services directly or indirectly provided
through the functions, processes, and structures of ecosystems,
reflecting the contribution of ecosystems to human society and
the quality of the ecological environment (Sannigrahi et al., 2019; Li
C. et al., 2024). It includes the value of the supply services, regulation
services, support services and cultural services provided by the
ecosystems (Costanza et al., 2017). Land use serves as a crucial
carrier of ESV (Sutton et al., 2016; Chen et al., 2021). However, with
the growing demand for socio-economic development, human
exploitation and misuse of natural resources resulted in
alterations in land use pattern and a decline in the carrying
capacity of natural ecosystems, posing ecological environmental
issues as significant impediments to further regional development
(Arowolo et al., 2018). Therefore, conducting quantitative
assessments of ESV has become a crucial method for regional
ecosystem management, holding significant importance for
promoting environmental protection and coordinated socio-
economic development in a region.

At present, two main monetary valuation methods have been
employed to evaluate ESV: one is primary-data-based method (Hu
et al., 2020), usually adopting a series of ecology-related models to
evaluate key service functions, such as, market price method (Zhao
et al., 2003), carbon tax method (Gashaw et al., 2018), travel cost
method (Cetin et al., 2021), etc. The other is unit-value-based
method (Costanza et al., 1998; Costanza et al., 2014), mainly
including the equivalent factor method in which ESV is
estimated based on the economic value per unit area of
ecosystems with land use as the basis (Shi et al., 2012). This
method was first proposed by Costanza et al. (1997). Domestic
scholars such as Xie Gaodi adapted the Costanza’s ESV assessment
method by revising the equivalence factor approach, establishing a
set of ESV evaluation systems suitable for China (Xie et al., 2008).
This method, due to its simplicity and reliability, has gained favor
among numerous scholars and is widely applied in assessing the
spatiotemporal distribution of ESV across various scales. However,
existing studies primarily focus on large-scale regions such as
provinces, watersheds, metropolises, and typical landscape areas
(Qiang et al., 2017; He et al., 2021; He et al., 2022), while high-
precision ESV assessment in smaller-scale regions, such as
counties and lower administrative units (townships, streets), is
relatively scarce. Especially, the counties in the metropolitan
hinterland are playing an increasingly prominent role in the
economic process adjacent to cities. Strengthening the high-
precision ESV assessment of these small-scale counties not only
meets the practical needs of ecological governance but also helps
promote the coordinated development of regional economy and
ecology (An et al., 2023).

To further grasp the root causes of ecological and environmental
issues and obtain the ESV aligned with societal needs, it is crucial to
identify the driving factors behind the variation in ESV. Existing
research on the spatiotemporal variation and driving factors of ESV
predominantly rely on conventional statistical methods, including
correlation analysis, redundancy analysis, and regression analysis
(Zhang and Gao, 2015; Zhang et al., 2020; Liao et al., 2023).
However, in practice, ESV is typically influenced by a
combination of natural and socio-economic factors, with the
impacts of these drivers often being spatially heterogeneous.
Moreover, there are usually strong interactions among these
factors. Conventional methods only reveal the strength of the
impact of each driving factor on ESV, but fail to the interactions
between multiple factors and their respective spatial heterogeneity,
leading to potentially biased interpretations of the relationship
between ESV and its driving factors (Wang et al., 2022). The
geographical detector model, as a novel spatial statistical
approach, not only detects spatial stratification and identifies
influencing factors but also quantifies the interactions between
multiple factors. It has become a key tool for uncovering the
underlying drivers of ESV (Qiang et al., 2017). Additionally,
introducing the geographically weighted regression (GWR) model
allows for the effective revelation of localized differences in ESV
drivers from a spatial perspective (Chen et al., 2020), facilitating
targeted governance measures for major underlying issues in
specific regions.

Ningxiang City, located in Hunan Province, China, stands as a
representative metropolitan hinterland county of the Chang-Zhu-
Tan region and functions as an industrial hub in the western part of
Changsha. Its unique location renders it not only a vital factor flow
channel supporting the coordinated industrial development of the
Chang-Zhu-Tan urban agglomeration, but also a green foundation
ensuring regional ecological security. However, in recent years, due
to economic growth and intensified human activities, negative
ecological impacts such as forest land encroachment and
shrinking water body have become increasingly apparent (Yang
and Liu, 2022). These trends weakened the function of the
ecosystems, posing a significant threat to the long-term economic
viability of this region, but also potentially affecting the overall
progress of promoting the rise of central China strategy.

Consequently, this study utilized land use data from 2010 to
2022 to evaluate the spatiotemporal variation of ESV in Ningxiang
City, and elucidated the driving mechanism behind ESV spatial
differentiation through a combination of geographic detector and
GWR model. The main objectives of this study were: (1) analyzing
the conversion of land use types in Ningxiang City from 2010 to
2022; (2) quantify ESV and reveal the spatiotemporal variation
characteristics of ESV; (3) identifying the driving forces and their
impacts that led to changes in the ESV. This study not only enriched
the high-precision ESV assessment results at county-level, but also
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aimed to provide scientific support for land use planning and
ecological construction in Ningxiang city as well as other
counties in the metropolitan hinterland.

2 Materials and methods

2.1 Study area

The City of Ningxiang, Hunan Province (27°55′N~28°29′N,
111°53′E~112°46′E), located at the junction of the Chang-Zhu-
Tan urban agglomeration and the ecological and economic circle
around Dongting Lake, borders Changsha City to the east and
Dongting Lake to the north (Figure 1). It serves as both a
suburban county and a sub-center city of the provincial capital in
Hunan. The region belongs to the subtropical continental monsoon
humid area, characterized by distinct seasons, abundant rainfall, and
moderate sunshine. The multi-year average temperature is 16.8 °C,
with an annual precipitation of 1358.3 mm. Covering a total area of
2906 km2, Ningxiang administers 4 streets, 21 towns, and
4 townships, and the local economic level is a leading position
within the county.

Ningxiang City features a typical hilly landscape, with hills
accounting for approximately 88% of its terrain. The area also
includes mountains, terraces, and plains, presenting a
topographic pattern that is higher in the west and lower in the
east. The region boasts a well-developed river network, dominated
by the Weijiang and Jinjiang river systems that traverse the entire
area. The county possesses a dual advantage of natural resource
reserves and economic development. With a forest coverage rate of

48.79%, the abundant forest resources in this area serve as an
ecological barrier for the Chang-Zhu-Tan region. Economically,
the region enjoys prominent locational and functional advantages,
including the main urban area with active human construction
activities, which is the core and supporting circle of county
economic development. Consequently, this paper chose
Ningxiang city as a representative county located in metropolitan
hinterland to analyze the spatial-temporal variation of ESV and its
driving factors.

2.2 Data sources and processing

The land use data of Ningxiang City in 2010, 2016 and 2022 were
obtained from the Chinese Academy of Sciences’ Resource and
Environmental Science and Data Center (https://www.resdc.cn),
with a spatial resolution of 30 m. Based on the characteristics of
land use within the study area, it was categorized into six major
types: forest land, cultivated land, grassland, water body,
construction land, and bare land. The grain price data used in
this study were sourced from the official website of the National
Development and Reform Commission (https://www.ndrc.gov.cn),
while data on grain production and sowing area from 2010 to
2022 were extracted from the Changsha Statistical Yearbooks
(https://data.stats.gov.cn/).

The driving factors of ESV are primarily divided into natural
factors and socio-economic factors (Li et al., 2022). Considering data
availability, representativeness and actual situation of the study area,
combined with relevant research results (Wang et al., 2024; Hu et al.,
2025), a driving force indicator system was constructed for both

FIGURE 1
The geographical location of Ningxiang City.
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natural and socio-economic aspects. Natural factors included Digital
Elevation Model (DEM), slope, annual precipitation (PRE), average
annual temperature (TEM), Normalized Difference Vegetation
Index (NDVI), soil bulk density (SBD), and soil organic matter
(SOM). Socio-economic factors comprised per capita gross domestic
product (GDP), population density (POP), distance to roads (DTR),
and the Human Activity Index (HAI). Annual precipitation and
average annual temperature data were obtained from the National
Meteorological Science Data Center (https://data.cma.cn/). Road
vector data from OpenStreetMap (https://www.openstreetmap.
org/), and the HAI was calculated using methods referenced
from previous studies. Other indicator data were all sourced
from the Chinese Academy of Sciences’ Resource and
Environmental Science and Data Center (https://www.resdc.cn).

The driving factors were rasterized and subsequently reclassified
employing natural breaks classification method utilizing ArcGIS.
Considering the size of the study area and the resolution of the data,
we used Fishnet to build a 500 × 500 m grid covering the study area.
Based on the fishnet grid, the total amount of ESV and each index in
the grid unit were sampled, so as to obtain the type data set for
geographical detector analysis.

2.3 Methods

2.3.1 ESV evaluation
Our study calculated ESV by referring to the China ESV

equivalent factor table formulated by Xie et al. (2015). However,
the ESV equivalence factor table established by Xie et al. is targeted
at the national level, so it needs to be revised for regional application
to adapt to actual situations. Referring to the revised method of
equivalent factor table in the research area proposed by Gao et al.
(2018), a more natural condition-compliant ecological value
equivalent factor table for Ningxiang City was developed through
comparative analysis of ecosystem service value ratios from relevant
literature on Ningxiang City and surrounding areas (Peng et al.,
2021; Wang and Tang, 2021; Zhao et al., 2023). The economic value
of an ESV equivalent factor was set as 1/7 of the average grain per
unit production market economic value in the study area (Equation
1) (Liu et al., 2023). The average grain yield in Ningxiang from
2010 to 2022 was used as the unit yield (6.715 t/hm2), and the
average grain price was the national minimum average purchase
price of mid-late indica rice from 2010 to 2022 (2683.84 yuan/t). The
economic value of the ESV equivalent factor per unit area of was
calculated to be 2574.57 yuan/hm2.

Ea � 1
7
∑
n

i�1

mi × pi × qi
Mi

(1)

Where, Ea represents the economic value of the ESV equivalent
factor per unit area (yuan/hm2). i is the crop species. Pi is the average
grain price (yuan/t). qi is the average grain yield of i (t/hm2). Mi

refers to the area of the i-th grain (hm2). M is the total area of
grains (hm2).

Referring to the research of Xie et al. (2015), the ESV equivalent
coefficient per unit area of each land ecosystem in Ningxiang City
was obtained and displayed in Table 1, and the total ESV was
ultimately determined by adding together the ESVs of each land

ecosystem (Li et al., 2010). Following previous studies, construction
land was excluded from ESV calculations with a assigned value of 0
(Shang et al., 2022). The calculation equations for ESV are as follows.

VC � Ea × Q (2)

ESV � ∑
n

i�1
∑
m

j�1
Aj × VCij (3)

Where, VC represents the ESV equivalent coefficient per unit
area (yuan/hm2/year).Q is the revised ESV equivalent coefficient per
unit area for the study area. ESV is the total ecosystem service value
of the study area (yuan). i is the ecosystem service function type. j is
the number of land use type. Aj is the area of land use type j (hm2).
VCij is the ESV per unit area of the land use type i.

2.3.2 Sensitivity test
The sensitivity coefficient was adopted to verify the

reasonableness of the revised ESV coefficients. Adjust the unit
area ESV value coefficient (VC) for each land use type by 50% to
measure the degree of ESV response to changes in VC (Pan et al.,
2021). The equation is as follows:

CS � ESVj − ESVi( )/ESVi

VCjk − VCik( )/VCik

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
(4)

Where, CS is the sensitivity coefficient, VCik and VCjk are initial
and adjusted VC for the land use type k, respectively. ESVi and ESVj

represent initial and adjusted total estimated ESV, respectively. If
CS < 1, it indicates the ESV is low in elasticity relative to VC and
reflects that the revised ESV coefficients are reliable, while if CS > 1,
it indicates the ESV is high in elasticity relative to VC and reflects
that the revised ESV coefficients are unreliable.

2.3.3 Human activity index (HAI)
The HAI reflects the impact of human social activities on the

changes of ecosystems. The equation of the HAI is as follows (Yan
et al., 2014):

HAI � ∑
n

i�1
AiPi/TA( ) (5)

Where, Ai is the total area of the land use type i. Pi is the
coefficient of human activity intensity reflected by the land use type
i. TA is the total area of the study area. Using Delphi method (Liang
and Liu, 2011) to determine the Pi of various land use types:
cultivated land (0.61), forest land (0.12), grassland (0.09), water
(0.12), construction land (0.94) and bare land (0.08).

2.3.4 Spatial autocorrelation analysis
The spatial autocorrelation method can identify whether a

variable in a region has similar or dissimilar patterns, and
identify the spatial dependence between adjacent positions.
Moran’s index (Moran’s I) is used to measure whether there is
correlation in the spatial distribution of ESV. Moran’s index is
divided into global Moran’s index and local Moran’s index. The
former is used to test whether there is spatial correlation between
variables as a whole, and the latter reveals the aggregation and
dispersion of variables in local areas (Zhang et al., 2023). The
equations of the two are as follows:
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I � n × ∑n
i�1∑

n
j�1Wij xi − �x( ) xj − �x( )

∑n
i�1∑

n
j�1Wij( ) × ∑n

i�1 xi − �x( )2 (6)

Ii �
n xi − �x( ) × ∑n

j�1Wij xi − �x( )
∑n

i�1 xi − �x( )2 (7)

Where, I and Ii represent the global and local Moran’s index. n is
the observation region. xi and xj are the coupling coordination values
of regions i and j, andWij is the adjacency space weight matrix. If Ii is
positive, it indicates that units with similar attribute values are
clustered in space, which can be high clustering or low clustering. If
Ii is negative, it indicates that units with different attribute values are
clustered in space.

2.3.5 Geographic detector model
Geographic detector is a new spatial analysis method for

accurately identifying and analyzing spatial heterogeneity and
driving forces behind various geographical phenomena (Wang
and Xu, 2017). The influence mechanism of each factor and its
interaction on the spatial heterogeneity of ESV in the study area can
be quantitatively analyzed by using the factor detection and
interactive detection of geographical detector (Ding et al., 2019).
The equation used is as follows:

q � 1 − ∑L
h�1Nhσh2

Nσ2
(8)

Where, q is the explanatory power for a driving factor on the
spatial differentiation characteristics of ESV, which takes the range
[0, 1]. h = 1, . . . , L are the stratification of y or factor x, that is,
classification or partition. Nh and N are the number of units in h and
the whole region, respectively. σℎ

2and σ2 are the variances in layer h
and the whole region, respectively.

2.3.6 Geographically weighted regression (GWR)
GWRmodel is a spatial analysis technique that extends the OLS

model to estimate parameters. The model combines spatial
correlation with linear regression, considers the local effect and
spatial non-stationarity of spatial objects (Zhu et al., 2020). The
evaluation results have the reliability of spatial scale, so it is widely
adopted in geography and other spatial analysis research fields
(Windle et al., 2010). In this study, GWR method is used to
explore the spatial heterogeneity of the dominant factors of ESV.
The equation is as follows:

yi � β0 μi, υi( ) +∑
k

i�1
βk μi, υi( )xik + εi (9)

Where, yi is the explanatory variable, (μi,υi) is the coordinate of
the center position of sampling point I. β0 (μi,υi) is the intercept, βk
(μi,υi) is the regression coefficient of I. xik is the numerical value of xk
on I, and εi is a random disturbance term.

3 Results and analysis

3.1 Land use change of Ningxiang City

From 2010 to 2022, the land use types in Ningxiang City were
mainly cultivated land and forest land, with a very low proportion of
bare land (Figures 2, 3). Forest land showed a trend of decreasing
first and then increasing, with a cumulative decrease of 80.19 km2,
followed by cultivated land, which showed an increase first and then
decrease, with a cumulative increase of 52.65 km2. The construction
land continued to expand with the largest increase (78.84%),
reflecting an active economic development trend. The grassland
area continued to decrease, and the water area first increased and

TABLE 1 Equivalent value per unit area of ecosystem services in Ningxiang City (yuan/hm2/year).

Level 1 service Level 2 service Cultivated
land

Forest
land

Grassland Water
body

Construction
land

Bare
land

Provisioning services Food provision 3646.88 901.10 1,068.45 2,329.99 0.00 0.00

Materials provision 781.38 2,059.66 1,583.36 1,016.96 0.00 0.00

Water supplement −2,284.12 1,068.45 901.10 21,433.30 0.00 0.00

Regulating services Air regulation 2,940.76 6,785.69 5,560.96 2,269.39 0.00 65.74

Climate regulation 1,534.40 19,157.15 15,355.19 6,749.21 0.00 0.00

Environment
purification

447.16 6,006.84 4,853.86 16,357.26 0.00 328.69

Hydrological
regulation

2,961.99 13,969.98 10,781.24 301,327.19 0.00 98.61

Supporting services Soil maintenance 1,619.92 7,810.22 6,775.50 2,740.95 0.00 65.74

Nutrient cycling 512.90 627.40 511.25 335.77 0.00 0.00

Biodiversity 518.86 7,023.60 5,835.21 7,515.50 0.00 61.45

Cultural services Landscape aesthetics 812.74 3,581.28 2,698.42 5,570.31 0.00 124.40

Total 13,492.86 68,991.35 55,924.53 367,645.80 0.00 744.62
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FIGURE 2
Land use types in Ningxiang City between 2010 (a), 2016 (b) and 2022 (c).

FIGURE 3
Changes of land use types in Ningxiang City from 2010 to 2022. (a) Land use change rate; (b) Transfer of land use types.
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then decreased, with the rate of area decrease of 12.74% and 16.18%
respectively.

In the dynamic transformation of land use types, cultivated land
mainly flowed to forest land and construction land. Forest land
mainly flowed to cultivated land and construction land.
Construction land was mainly transferred to cultivated land and
water, and the transfer amount mainly came from cultivated land
and forest land. The main outflow and inflow of water body were
both cultivated land. Grassland mainly turned to construction land,
and the transfer amount mainly came from cultivated land and
forest land.

3.2 Temporal and spatial variation
characteristics of ESV in Ningxiang City

3.2.1 Temporal variation of ESV
From 2010 to 2022, the total ESV of Ningxiang City

demonstrated a persistent downward trend, decreasing from
121.03 × 108 yuan in 2010 to 113.93 × 108 yuan in 2022, with a
decrease rate of 5.96% (Table 2). With regard to the four ecosystem
service functions, the contribution of regulates services to ESV was
predominant, followed by support services, supply services and
cultural services. All four first level service functions generally
declined over the study period. Hydrological regulation and
climate regulation were always the core functions of ecosystem
services in Ningxiang City. Except for a slight increase in the
total ESV of food production, other functions generally showed
sustained decreases. Notably, the ESV of hydrological regulation
underwent the most significant change, reducing by 2.52 × 108 yuan
(7.94%), closely followed by climate regulation, reducing by 1.63 ×
108 yuan. Furthermore, the ESV of water supplement recorded the
largest percentage decline at 21.64%, primarily attributed to
persistent reductions in surface water area. Significantly,
compared with the period from 2010 to 2016, the decline of ESV

of various service functions in the study area showed an obvious
slowdown trend from 2016 to 2022.

As detailed in Table 3, forest land and cultivated land were the
main contributors to the ESV of Ningxiang City throughout the
study period. The ESV of cultivated land exhibited an initial increase
followed by a subsequent decrease, resulting in a net gain of 3.51%.
In contrast, the ESV of forest land first decreased and then increased,
with the cumulative decrease accounting for 85.24% of the total ESV
decrease. The ESV of grassland likewise followed an hump-shaped
trajectory, ultimately declining by 12.74%.Water body suffered both
substantial absolute losses (1.77 × 108 yuan) and severe percentage
declines (15.97%), underscoring the vital role of water body in
fostering elevated ecological values. The bare land coverage
remained minimal. Although fluctuations in its extent lead to
significant variations in the ESV it provided, its overall
contribution to the regional ESV remained negligible due to its
low value. Overall, the continuous shrinkage of forests and water
body is one of the important reasons for the loss of the regional ESV.

The CS values of different periods and different land use types
were all less than 1, which indicated that ESV in the study area was
inelastic to VC, that is, the adjusted equivalent factor could
reasonably evaluate the fluctuation of ESV (Table 4). The CS
values of forest land and water area were higher than those for
other land use types, indicating that these two land types played a
vital role in ecosystem services.

3.2.2 Spatial variation of ESV
Made spatial visualization of ESV based on grid unit and

township (street) scale was beneficial to comprehensively and
finely capturing more detailed information on spatial distribution
characteristics of ESV. ESV was categorized using the natural breaks
classification method. At the grid unit scale, the spatial distribution
pattern of ESV in Ningxiang City exhibited high in the northwest
and low in the northeast, and remained stable during the study
period. The low ESV values formed contiguous clusters across the

TABLE 2 ESV and its changes of different ecosystem services in Ningxiang City from 2010 to 2022.

Ecosystem service function ESV (108 yuan) Rate of change (%)

Level 1 service Level 2 service 2010 2016 2022 2010–2016 2016–2022 2010–2022

Provisioning services Food provision 6.84 7.01 6.94 2.54 −0.96 1.55

Materials provision 3.89 3.75 3.75 −3.63 −0.05 −3.68

Water supplement −1.48 −1.70 −1.80 −14.59 −6.15 −21.64

Regulating services Air regulation 13.36 12.92 12.91 −3.31 −0.04 −3.35

Climate regulation 27.33 25.61 25.70 −6.3 0.36 −5.96

Environment purification 8.95 8.44 8.37 −5.71 −0.83 −6.5

Hydrological regulation 31.71 31.23 29.19 −1.52 −6.52 −7.94

Supporting services Soil maintenance 12.67 12.04 12.06 −4.99 0.18 −4.82

Nutrient cycling 1.61 1.59 1.58 −1.48 −0.33 −1.8

Biodiversity 10.11 9.48 9.48 −6.17 −0.01 −6.18

Cultural services Landscape aesthetics 6.05 5.77 5.75 −4.56 −0.37 −4.91

Total 121.03 116.13 113.93 −4.05 −1.89 −5.86
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central and northeastern plains, as well as along river areas,
primarily characterized by cultivated land and construction land.
Conversely, the high ESV values was predominantly clustered in the
northwest areas with higher vegetation coverage (Figure 4). 71.9% of
the regions showed no obvious variation in ESV, while areas
demonstrating a decrement in ESV (21.9%) were significantly
higher than those with increased ESV (6.2%).

At the township (street) scale, Weishan Township possessed
the largest unit area ESV in Ningxiang City, followed by
Huangcai Town and Longtian Town. Conversely, Chengjiao
street and Yutan Street possessed the smallest unit area ESV.
Overall, areas with lower ESV were predominantly situated in the
main urban area and surrounding townships in the northeast.
These areas boast dense populations and more vibrant
economies, leading to higher consumption of ESV. Conversely,
areas with high ESV were clustered in townships (streets) with
substantial forest vegetation cover in the northwest. These areas
preserved stable land use pattern and vegetation structure,
possessing notable natural environmental advantages
(Figure 5). The areas evidencing a significant decline in ESV
predominantly localized in areas where urban expansion
(notably in Chengjiao streets and baimaqiao Street).

3.3 ESV spatial autocorrelation analysis

From 2010 to 2022, the Moran’s I values of the ESV in
Ningxiang City were 0.568, 0.554 and 0.562 on the grid unit,
and 0.679, 0.667 and 0.636 on the township (street) unit,

respectively, with all p values of 0, demonstrating that there
was a significant spatial agglomeration effect in the spatial
distribution of ESV during the research period. The high-high
clustering areas of ESV were predominantly distributed in the
western mountainous forests, encompassing areas such as
Weishan Township, Huangcai Town and Shatian
Township. Conversely, the low-low clustering areas of ESV
were concentrated in the northeast plains and plain river
networks, corresponding to the main urban area and
surrounding townships, such as Chengjiao street and Yutan
Street. The spatial agglomeration pattern was consistent with
the spatial distribution pattern of high and low ESV values,
indirectly reflecting the significant difference in the level of
green ecological development in the study area (Figure 6).
Generally speaking, there was no significant change in the
spatial clustering pattern of ESV in the study area, and the
uneven distribution of clusters was not improved during the
research period. From 2010 to 2016, Xiangzikou Town and
Longtian Town in the west shifted from high-high cluster to
insignificant cluster, while Coal Mine Dam Town and Jinzhou
Town in the east subsequently transformed their insignificant
clusters into low-low cluster during 2016–2022. As a result, it
showed that the northeast areas continues to face substantial
ecological degradation risks.

3.4 Analysis of driving force in ESV

Given the relatively large number of factors initially selected,
coupled with the varying degrees of influence each factor impose on
ESV, this study preliminarily uncovered the influence intensity of
these factors through geographic detector and identified the
dominant ones. Subsequently, the GWR model was employed to
separately analyze the spatial heterogeneity of factors with high
explanatory power. Furthermore, considering that administrative
divisions are convenient for the management and control of
ecological environment protection in practice, combined with the
actual situation and decision-making development needs of the
research area, our analysis focused exclusively at township
(street) scale to analyze the driving factors. Given the
insignificant changes in the ESV distribution pattern in the study
area over the years, the multi-year mean was adopted to reveal the
strength of the driving factors.

TABLE 3 ESV and its changes of different land use types in Ningxiang City from 2010 to 2022.

Land use type ESV (108 yuan) Rate of change (%)

2010 2016 2022 2010–2016 2016–2022 2010–2022

Cultivated land 20.72 21.67 21.45 4.55 −1 3.51

Forest land 89.19 82.55 83.14 −7.45 0.72 −6.78

Grass land 0.02 0.02 0.01 8.54 −19.6 −12.74

Water body 11.10 11.90 9.33 7.22 −21.63 −15.97

Construction land 0.00 0.00 0.00 0.00 0.00 0.00

Bare land 0.00 0.00 0.00 50 987.21 1530.81

TABLE 4 Sensitivity test of the revised ESV coefficients in Ningxiang City
from 2010 to 2022.

Land use type 2010 2016 2022

Cultivated land 0.171 0.098 0.061

Forest land 0.737 0.601 0.573

Grass land 0.010 0.081 0.117

Water body 0.292 0.317 0.341

Construction land 0.000 0.000 0.000

Bare land 0.001 0.001 0.001
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3.4.1 Factor detection analysis based on
geographic detector

The single factor detection results (Figure 7) showed that soil
bulk density and annual average temperature failed the significance
test at the p < 0.05 level, indicating a limited influence of these
factors on the spatial differentiation of ESV, whereas other factors
demonstrated a good explanatory power. The q statistic identified
that NDVI as the most influential factor of ESV, with an explanatory
power of 58.6%. The explanatory power of HAI, POP and DTR on
ESV was 56%, 54.4% and 51.9% respectively, reflecting the
significant interference of human activities on the ecological
environment.

3.4.2 Factor interaction detection analysis based
on geographic detector

The interaction detection results of various driving factors
showed (Figure 8) that the explanatory power of any pairwise
factor superposition for ESV spatial differentiation was greater
than that of a single factor, and all exhibited a dual factor
enhancement effect, which revealed that the remarkable spatial
differentiation of ESV in Ningxiang City was driven by the
comprehensive effects of multiple factors. The interaction
between HAI and SOM, POP and SOM ranked in the top two,

with explanatory power of 95.1% and 94%, respectively. This
reflected that the change of soil organic matter content may
exacerbate the influence of human activities on the spatial
differentiation of ESV by affecting vegetation growth and
agricultural production. Furthermore, the explanatory power of
NDVI ∩ elevation (82.7%), NDVI ∩ PRE (82.3%), NDVI ∩ SOM
(90.8%), and NDVI∩HAI (86%) was significantly enhanced
compared with single factor. Although the single factor effect of
slope was not prominent, its explanatory power increased
substantially when combined with factors such as DEM, PRE,
SOM and DTR, implying that areas with steep slopes rely on
favorable natural conditions and simple road structures,
effectively buffering the interference of human activities on
ecosystem service functions.

3.4.3 Spatial difference analysis of main drivers of
ESV based on GWR model

The geographic detector preliminarily detected the explanatory
power of each driving factor, among which NDVI, HAI and POP
passed the significance test of p < 0.01, indicating a strong
explanatory effect on ESV. Consequently, these three factors were
selected as the leading factors for further spatial analysis. To examine
their effects, we calculated their regression coefficient and model

FIGURE 4
Spatial distribution and change of ESV at the grid unit scale. (a–c) represents ESV for 2010, 2016 and 2022 respectively. (d) The variation tendency of
ESV from 2010 to 2022.
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parameters. As shown in Table 5, the AICc value of GWRmodel was
lower than that of OLS model, and the difference was greater than 3.
R2 of GWR model and adjusted R2 were higher than OLS model,
with an adjusted R2 of 0.8576, indicating that the fitting effect of
GWR was better. Combined with the previous verification, it was
reasonable to use GWR model to reveal the spatial heterogeneity of
the leading factors of ESV in Ningxiang City.

The visualization results of GWR model revealed significant
spatial variations in how the selected three driving factors influenced
ESV across the study area (Figure 9). The impact of NDVI on ESV
exhibited a global positive correlation, and the influence coefficient
exhibited a trend of low in the east and high in the west, indicating
that the regional ESV in the west of Ningxiang City was more
influenced by NDVI. Conversely, HAI maintained a significant
global negative correlation with ESV, implying that lower human
activity levels correspond to higher ESV. In absolute value, the
impact intensity of HAI on ESV gradually declined from east to west,
suggesting that anthropogenic pressure near the densely populated
eastern main urban area exerted a stronger indirect effect on ESV.
Similarly, POP was negatively correlated with ESV globally, with its
influence coefficient peaking in the east and diminishing towards the
west. This reflected the profound impact of high population density
in the eastern main urban area of Ningxiang City and its

surrounding areas, where intense human pressure leads to greater
ecosystem degradation compared to the west.

4 Discussion

4.1 Response of ESV variation and land
use change

Land use change affects the main ecological processes of the
ecosystems, such as energy exchange, the water cycle, soil erosion
and accumulation, and the biogeochemical cycle (Ye et al., 2018; Liu
et al., 2019), thus intervening ecosystem services. From 2010 to 2022,
the total ESV of Ningxiang City exhibited a downward trend,
aligning with the gradual decline in ESV observed in the Chang-
Zhu-Tan urban agglomeration (Huang et al., 2024). Essentially, this
reflects a profound reshaping of ecosystem functions through land
use reconstruction amidst rapid urbanization. Driven by the
economic momentum of the Chang-Zhu-Tan urban
agglomeration, the land use pattern of Ningxiang City is
undergoing a phase of growth oriented destruction. Specifically,
over the past 12 years, accelerating urbanization and agricultural
development had led to the transformation of large-scale ecological

FIGURE 5
Spatial distribution and change of ESV at the township (street) scale. (a–c) The ESV for 2010, 2016 and 2022 respectively. (d) The variation tendency
of ESV from 2010 to 2022.
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FIGURE 6
LISA agglomerationmap of ESV. (a–c) The spatial clustering distribution of ESV at the grid unit scale for 2010, 2016, and 2022, respectively; (d–f) The
spatial clustering distribution of ESV at the township (street) scale for 2010, 2016, and 2022, respectively.

FIGURE 7
Importance ranking of driving factors of spatial differentiation of ESV in Ningxiang City.
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land into construction land and cultivated land, resulting in a
continuous shrinkage of ecological land areas (such as forest
land, water body and grassland). These conversions mainly took
place in areas where human activities were concentrated. However,
construction land, generating almost no contribution to ESV
compared to other land types, undoubtedly acts as an important
factor of ESV reduction regardless of its conversion source (Rao
et al., 2018; Luo et al., 2020).

The regulation services contributed the most to ESV, which was
generally consistent with the trends in ESV changes across the
country (Liu Y. B. et al., 2020; Zheng et al., 2020). The regulating
service function were chiefly supplied by water body and forest land.
Although the water area in the study area was not prominent, its
high ESV coefficient represented its powerful hydrological
regulation function. Thus, the slight loss of water areas directly
resulted in a significant degradation in ESV. Forest land provided
the vastest contribution to the regional ESV due to its powerful
functions of hydrological regulation and climate regulation, and the
shrinkage of forest land resulted in 85.24% of the decrease in ESV.
Other studies have also demonstrated the strategic value of forest

ecosystems in maintaining ESV (Kindu et al., 2016; Liu Y. B. et al.,
2020). Notably, the phase analysis showed a deceleration in ESV
decline since 2016. It is found that in the later stage, the forest land
area increased, the cultivated land area shrank, and the expansion
rate of construction land area slowed down. This is attributed to the
requirement of implementing the ecological protection redline in
2015, as well as the implementation of ecological protection projects
such as returning farmland to forests and greenbelts construction.

The research results of Ningxiang City reflect the typical
phenomenon faced by the counties in the metropolitan
hinterland during the process of accelerated economic
development, that is, the uncoordinated development between
providing economic support and maintaining ecological stability.
These counties have a dual advantage in developing traditional
agriculture and modern industrial production, usually developing
into important industrial and agricultural bases or modern service
centres (Tian et al., 2021; An et al., 2023). However, some townships
prioritize economic benefits and fail to fully coordinate ecological
protection, resulting in significant damage to ecosystem services due
to issues such as road expansion, abuse of land, and wastewater
discharge. Therefore, it is urgent to promote the enhancement of
ESV, and “Green development” and “protection priority” are the
premise for future regional development of those counties. It is
essential to reasonably control the expansion of construction land
and cultivated land, strengthen the protection and restoration of
ecological land such as forests and water body. Fundamentally, the
core of the intended goal is the balance between economic benefits

FIGURE 8
Factor interaction detection results of spatial differentiation of ESV in the study area.

TABLE 5 Comparison between OLS model and GWR model.

Model AICc R2 Adjusted R2

OLS 775.07 0.7532 0.7476

GWR 761.15 0.8674 0.8576
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and ecological benefits in regional development, which delivers an
excellent contribution to ecological security.

4.2 Driving factors on the spatial
differentiation of ESV

As ESV is a crucial indicator for measuring the quality of
regional ecosystems, understanding driving mechanism of ESV
is a prerequisite for ecosystem management (Sepehri et al.,
2020). The results of the geographical detector confirmed that
natural conditions and human activities collectively shaped the
spatial differentiation pattern of regional ESV, resulting in
significant differences and regional aggregation of the spatial
distribution of ESV. The GWR results further unveiled that the
impacts of these primary driving factors exhibit non-stationarity
in space.

The NDVI was identified as the dominant factor, which was
consistent with existing studies on driving forces of ecosystem
services (Wen et al., 2022; Duan et al., 2024). NDVI serves as an
indicator of vegetation coverage, which forms the foundation of
ecosystem services (Hu et al., 2021). Ningxiang city boasts abundant
forest resources due to its unique geographical conditions.
Particularly, in the northwest, the high hills and steep slopes,

fertile soil, and abundant rainfall create comprehensive habitat
conditions conducive to the growth of dense vegetation. Under
this multi-factor synergy mechanism, an important ecological basis
for maintaining ESV has been formed.

HAI and POP, frequently corresponding to human influence,
accelerate the spatial differentiation of regional ESV. The central
and northeast plains, as well as the areas along the river, provide
optimal conditions for human production activities due to their
flat terrain and convenient irrigation (Liu Y. L. et al., 2020). Under
the economic radiation of the urban agglomeration, the main
urban area in the northeast attracts population concentration
and large-scale operations. High-intensity land development
directly drives the expansion of construction land and increased
consumption of natural resources. Coupled with negative impacts
such as vegetation destruction and soil fertility decline, this further
poses a risk of ESV degradation (Wang et al., 2024). Relatively
speaking, county edges and rural areas have relatively sparse
populations, less development, and a relatively intact ecological
structure. ESV in these areas is relatively high, but the development
gap with the core urban areas is large. Evidently, the spatial
imbalance of ESV, to some extent, inversely hinders the
coordinated integration and sustainable development between
the core and peripheral regions. This situation is typical of
counties in the metropolitan hinterland.

FIGURE 9
Spatial heterogeneity of ESV dominant factors in Ningxiang City. (a) NDVI; (b) HAI; (c) POP.
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Overall, this study further validates the perspectives of other
research demonstrating that both natural and anthropogenic
disturbance factors synergistically affect ecosystem service
functions, with anthropogenic disturbance often generating a
more immediate and significant impact on ecosystems in the
short to medium term (Shao et al., 2022), which has always been
a concerning phenomenon. Therefore, it is suggested to adopt the
principle of zoning governance and differentiated coordinated
regulation to achieve the systematic improvement of regional
ESV. In the northeast, efforts should prioritize reducing human
disturbance, implementing strategic population planning, and
optimizing industrial layout. While in the northwest, it is crucial
to focus on protecting existing vegetation resources and proactively
establishing and enforcing ecological compensation policies. In
summary, the paramount objective is to enhance the ecological
environment and foster sustainable development within the county.

4.3 Limitation and further research

The revised equivalent coefficient of ESV per unit area was
adopted to estimate regional ESV, which effectively improved the
precision of the evaluation. Nevertheless, there is an inevitable gap
between the estimated ESV and its actual value by relying on expert
decision-making and existing knowledge. In addition, this method
assumes homogeneity in value of each ecosystem service provided
by each land use across the study area. In fact, value of the same
ecosystem service will vary spatially due to the unique geographical
characteristics of cities, such as terrain, climate and hydrology (Ye
et al., 2018). To accurately reflect these regional differences, it is
recommended to utilize data such as net primary productivity (NPP)
and precipitation to refine the spatio-temporal coefficients of
ecosystem service value (Li W. et al., 2024). Importantly, further
research is urgently needed to construct a more refined and
regionally targeted ESV assessment model to eliminate these
impacts. Lastly, considering that policy factors are difficult to
quantify, this study did not add policy factors to the driving
layer for analysis. Therefore, in future research, it is considered
to quantify policy indicators by attempting to construct policy
intensity indices, differentiated policy zoning, and other methods,
and incorporate them into the driving factor indicator system.

5 Conclusion

Based on three-phase land use data from 2010 to 2022, this study
quantitatively evaluated the spatiotemporal variation of ESV in
Ningxiang City. The driving mechanism behinds these variations
was unveiled from the perspectives of natural and socio-economic
factors by combining geographic detector and GWR model. The
following conclusions were drawn:

1. During 2010–2022, ESV demonstrated a persistent downward
trend, primarily due to the shrinkage of ecological land (such as
forest land, water body and grassland) driven by accelerated
urbanization and agricultural expansion. Hydrological
regulation and climate regulation contributed most
significantly to the total ESV loss.

2. At both the grid unit and township (street) spatial
scales, ESV demonstrated a northwest-high-northeast-low
distribution pattern with significant spatial clustering
effects. The strengthening of low-value clustering in the
northeast after 2016 indicated an elevated risk of ecological
degradation.

3. The spatial differentiation of ESV was shaped by the synergistic
effects of natural and socio-economic driving factors. NDVI
was the primary driving factor for ESV spatial differentiation,
with a more pronounced positive impact on ESV in the west
compared to the east. This is followed by HAI and POP, with
negative impacts on ESV demonstrating a decreasing trend
from east to west.

The decline in ESV within the study area exemplifies the classic
conflict between economic growth and ecological sustainability in
counties in the metropolitan hinterland. The research results
provide theoretical support for land use planning and ecological
governance in these counties.
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