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The manufacturing industry is a key area of environmental regulation. However,
whether command-driven and market-oriented environmental regulations exert
heterogeneous impacts on the high-quality development of the manufacturing
industry (HQDM) remains underexplored. This study treats the command-driven
low-carbon city pilot policy and the market-oriented carbon emissions trading
pilot policy as “quasi-natural experiments”. Firm-level data of listed
manufacturing enterprises spanning 2003–2021, it adopts the double machine
learning method to evaluate the influence of heterogeneous environmental
regulations on the HQDM. The findings show that the low-carbon city pilot
policy significantly inhibits the HQDM,whereas the carbon emissions trading pilot
policy significantly promotes it. The effect of market-oriented environmental
regulation on the HQDM is primarily achieved through the mechanism of
technological innovation. In regions where both the low-carbon city pilot
policy and the carbon emissions trading pilot policy are implemented, both
command-driven and market-oriented regulations boost the HQDM,
signifying a synergistic effect between them. Further heterogeneity analysis
shows that the results for eastern and western areas, state -owned firms, and
technology-intensive manufacturing sectors align with the baseline regression
results. The conclusions of this study provide important references for the
selection of carbon reduction policies, formulating differentiated emission
reduction measures.

KEYWORDS

command-driven environmental regulation, market-oriented environmental regulation,
low-carbon city pilot policy, carbon emissions trading pilot policy, high-quality
development of manufacturing industry, double machine learning

1 Introduction

Manufacturing stands as the mainstay of the national economy. Over time, China has
evolved into the world’s foremost manufacturing powerhouse (Guo and Sun, 2023).
However, products produced by the manufacturing industry are often carbon-intensive
(Naegele and Zaklan, 2019), making it a major source of carbon emissions (Cao et al., 2021).
As a result, the manufacturing industry has become a key field for environmental regulation
and low-carbon transformation.
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Environmental regulation plays a crucial role in balancing
economic development and environmental protection (Ai et al.,
2020; Liu et al., 2021). In recent years, curbing carbon emissions has
evolved into a shared global objective. As the world’s top energy
consumer and carbon emitter (Fan et al., 2016), During the 75th
United Nations General Assembly, China pledged to reach carbon
peak by 2030 and attain carbon neutrality by 2060, demonstrating its
commitment as a responsible major power to advancing low-carbon
transformation. A series of regulatory measures have been
implemented, such as the implementation of low-carbon city
pilot policy (LCCP, hereinafter referred to as such) and carbon
emissions trading pilot policy (CETP, hereinafter referred to as
such). the LCCP are typical command-driven environmental
regulation, while the CETP are typical market-oriented ones.
Their implementation marks a shift in China’s carbon emission
regulations from purely command-driven to a combination of
command-driven and market-oriented approaches.

An urgent question is whether carbon emission regulations
promote the HQDM. How do command-driven and market-
oriented environmental regulations1 differ in their effects on the
HQDM? Which type of environmental regulation can more
effectively balance low-carbon transition and high-quality
development?

To address the above issues, this study uses the command-
driven LCCP and market-driven CETP as quasi-natural
experiments. Based on microdata from manufacturing listed
firms spanning 2003–2021,it applies double machine learning to
assess how heterogeneous environmental regulations impact the
HQDM. Specifically, What are the similarities and differences in
their transmission mechanisms? Do regions with both policies
perform better than those with a single policy, resulting in a “1 +
1>2″synergy effect?Scientifically answering these questions and
clarifying the economic effects and mechanisms of different low-
carbon transition methods have significant theoretical implications.
Moreover, in the context of global warming, examining the impact
of command-driven and market-oriented carbon emission
regulations on the HQDM holds considerable practical
significance. Empirically, the LCCP hampers the HQDM,
whereas the CETP bolsters it—implying market-oriented
regulations outperform administrative ones.

This paper potentially makes two marginal contributions:
Firstly, it investigates the distinct impacts of command-driven
and market-oriented environmental regulations on the HQDM
by leveraging China’s LCCP and CETP as quasi-experimental
settings. Unlike previous studies that primarily used proxy
variables to measure heterogeneous environmental regulations,
this approach avoids subjective bias in the selection of
measurement indicators. Moreover, it enriches the research on
the economic effect of environmental regulation by considering
both LCCP and CETP together. Secondly,It employs the double

machine learning (DML) method to identify the policy effects of
heterogeneous environmental regulations. the DML is particularly
advantageous in high-dimensional settings with complex covariate
structures, which can avoids the pre-selection of control variables
(Yang J. et al., 2020; Zhang et al., 2022; Bodory et al., 2022;
Farbmacher et al., 2022). This differs from previous methods that
primarily relied on approaches such as DID, PSM-DID, triple
difference (DDD), and spatial DID (SDID).

2 Literature review

The study primarily covers literature on the economic effects of
command-drived and market - oriented environmental regulations,
as well as methods for evaluating policy effectiveness.

Scholars have extensively investigated the economic effects of
environmental regulation, but academia has yet to reach a
consensus, resulting in two opposing hypotheses. The first is the
“compliance cost” theory proposed by neoclassical economics,
which contends that environmental regulations raise firms’
production and operational costs, hampering economic growth
(Gray, 1987; Lanoie et al., 2011). The second is the “innovation
compensation” hypothesis proposed by Porter, which believes that
appropriate environmental regulation not only avoids negative
impacts on the economy but can also promote technological
innovation in enterprises and stimulate economic growth (Porter
and Linde, 1995). Some scholars’ research supports this perspective
(Zhang et al., 2011; Zhou and Tang, 2021; Chen et al., 2022; Zheng
et al., 2023). Environmental regulations are generally classified into
command-drived and market-oriented regulation. This paper will
next review the economic effects of these two types of environmental
regulations.

2.1 The economic effects of command-
drived and market-oriented environmental
regulations

Existing studies on command-drived environmental regulation
focus on evaluating specific policies, using quasi-natural experiment
designs and methods such as DID,DDD and PSM-DID. For
instance, Zhang and Zhao (2023) found sulfur dioxide emission
control policies enhanced firms’ technological innovation; Shao et al.
(2024) showed the Top 10,000 Energy - Intensive Enterprises
Initiative reduced pollutant emissions; Cai et al. (2016) revealed
the Two-Zone Emission Control Policy lowered FDI. Regarding
low-carbon pilot policies, Chen et al. (2021) and Qiu et al. (2021)
demonstrated positive impacts on firms’TFP and cities’GTFP. Basu
et al. (2025) demonstrated that under the policy frameworks of the
U.S. Superfund Program and the Clean Air Act, relevant
environmental regulations significantly reduced the average
pollution exposure levels among the elderly population.

The aforementioned studies emphasize the positive
socioeconomic effects of command-driven environmental
regulations, other research has uncovered their negative impacts.
For instance, Carril-Caccia and Milgram Baleix (2024) found that
stricter environmental regulations (ER) reduce countries’
attractiveness to foreign investors; Benatti et al. (2024) observed

1 The heterogeneity of environmental regulations studied in this paper refers

to the command-driven low-carbon city pilot policy and the market-

oriented carbon emissions trading pilot policy. Low-carbon city pilot

policy and carbon emissions trading policy are two different types of

environmental regulations.
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that tightened ER negatively affects the productivity growth of high-
polluting firms. Agarwal et al. (2019) used the NOx Budget Trading
Program (NBP) as a quasi-natural experiment, finding that housing
markets in regulated regions with high manufacturing density were
sluggish. Zeng et al. (2023) noted that stricter environmental law
enforcement significantly reduced the TFP of high air-polluting
enterprises, and Huang et al. (2022) further found that tightened
environmental supervision lowered manufacturing firms’
productivity. Still other studies have reported no significant
effects: Alpay and Kerkvliet (2020) found U.S. pollution
regulations had no impact on food manufacturing productivity;
Wang et al. (2018) observed water quality regulations exerted no
notable effect on the productivity of surviving firms; Lange and
Redlinger (2019) found oil sector regulatory policies did not
significantly affect oil and gas drilling and production speeds.
Evidently,the socioeconomic effects of command-driven
environmental regulations remain uncertain, as they may be
positive, negative, or non-significant.

Market-oriented environmental regulations research mainly
assesses emissions trading and carbon taxes. Dechezleprêtre
(2016) found the EU Emissions Trading Scheme (EU ETS)
spurred innovation in carbon - mitigation technologies; Naegele
and Zaklan (2019) detected no carbon leakage triggered by the EU
ETS; Clarkson et al. (2015) linked carbon allowance shortfalls to
reduced firm value; Martin et al. (2014) noted carbon taxes had no
significant effect on manufacturing revenue. For carbon emissions
trading policies, Fan et al. (2016) highlighted efficiency
improvements, while Cao et al. (2021) found no impact on coal-
fired power plants’ coal efficiency. Similarly, studies by domestic and
international scholars indicate that market-oriented environmental
regulations often yield significant economic effects.

In comparative studies of heterogeneous regulations, proxy
variables are commonly employed (e.g., Yang and Green, 2024,
using fiscal expenditure ratios for command-driven regulation and
pollution fee ratios for market-oriented), which are not only
subjective but also inherently susceptible to measurement bias.
Additionally, existing literature examines low-carbon initiatives
and carbon trading separately, lacking simultaneous analysis of
their differential effects. This paper addresses these gaps by
treating two policies—the command-driven LCCP and market-
oriented CETP—with unified goals—as quasi-natural
experiments, avoiding measurement subjectivity to better explore
their differential impacts.

2.2 Methods for evaluating policy
effectiveness

The methods for evaluating the effects of environmental
regulation mentioned above primarily use difference methods such
as DID (Zhang and Zhao, 2023; Shao et al., 2024; Qiu et al., 2021),
DDD (Cai et al., 2016), and PSM-DID (Chen et al., 2021). These
traditional policy evaluation methods share the same limitation: they
have restrictions on the dimensions of control variables.

Currently, machine learning methods are rapidly permeating the
field of econometrics and have also been increasingly adopted for event
evaluation. Chernozhukov et al. (2018) pioneered the Double Machine
Learning (DML) for event evaluation. Subsequently, Yang J. et al.

(2020), Zhang et al. (2022), Bodory et al. (2022), and Farbmacher
et al. (2022) applied DML in policy evaluation. the DML excels in high -
dimensional variable screening, as it circumvents multicollinearity
pitfalls inherent in traditional methods when dealing with high -
dimensional control variables (Zhang et al., 2022).

3 Theoretical mechanisms

Firstly, the paper analyzes the influence of LCCP andCETP on the
HQDM. The specific analysis is as follows:The LCCP constrains
pollution emissions from local enterprises by establishing
greenhouse gas emission data statistics and management systems
and implementing a target-based responsibility system. These
measures will directly increase the environmental management
costs for businesses. Meanwhile, administrative orders can act as a
market signal, leading to an excessive concentration of resources and
potential resource misallocation. Furthermore,the LCCP may overly
focus on the carbon reduction outcomes, lacking a comprehensive
consideration of economic impacts, which could inhibit the growth of
the manufacturing industry. Therefore,We posit that the LCCP could
dampen manufacturing’TFP and impede the HQDM.

In contrast, carbon trading’s theoretical foundation of carbon
emissions trading lies in Coase’s property rights theory. The CETP
allocates initial free allowances via historical emissions or carbon
intensity. Under the framework of total emission control, carbon
emission rights are treated as tradable commodities, enabling
market exchanges to incentivize firms to internalize carbon
externalities. This mechanism facilitates Pareto - efficient
resource allocation. Thus, this paper suggests that CETP can
enhance manufacturing’s TFP and promote its high-quality
development.

When a region implements both the CETP and the LCCP
simultaneously, the two policies generate a positive synergistic
effect on the HQDM; more precisely, after the CETP is
formulated,the LCCP’s impact on the HQDM shifts from
negative to positive. The formation of this synergistic effect stems
primarily from two aspects: first, the combination of the two low-
carbon policies can strengthen the publicity and guidance for low-
carbon development, deepen low-carbon awareness, and thereby
enhance the overall policy implementation effect; second, it can
construct a “government-guided, market-led” collaborative
governance mechanism—the CETP plays a core role in guiding
the optimal allocation of carbon emission rights, while the LCCP
serves an auxiliary function to address market failures. Meanwhile,
the CETP provides market entities with more emission reduction
options, which can alleviate the potential “one-size-fits-all” issue
caused by LCCP’s administrative intervention, reduce its strong
impact on market entities, and ultimately enable the LCCP to
promote the HQDM while achieving effective emission
reduction. In conclusion, in regions where the CETP and the
LCCP are implemented simultaneously, these two types of
environmental regulations exert a synergistic effect on the
HQDM, with both contributing to the improvement of the HQDM.

Secondly, this paper analyzes the influence mechanisms of
LCCP and CETP on the HQDM from the perspectives of
innovation effects and resource effects. The specific analysis is
as follows.
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3.1 Innovation effect

Innovative activities, characterized by long cycles, high
investment, and significant risks (Gustavo, 2011), are susceptible
to government fiscal incentives and support policies (Borghesi et al.,
2015; Montmartin and Herrera, 2015). Both the LCCP and the
CETP exert dualistic impacts on the innovation effect of HQDM.

From the “compliance cost perspective”, negative effects
manifest as follows:As a command-drived environmental
regulation,The LCCP pursues emission reduction by adjusting the
energy structures, enhancing energy efficiency, and promoting
energy conservation. It also focuses on establishing a low-carbon
production system and advocating for low-carbon production
methods. These measures will directly increase enterprises’
compliance costs. In carbon emission trading,if enterprises have
insufficient quotas and need to purchase from the market. such
carbon trading expenditures can crowd out R&D investment,
weakening firms’ technological innovation capacity. The increase
in costs may crowd out investment in technological innovation,
leading to a decline in the innovation capabilities of enterprises.

From the “innovation compensation perspective”, the positive
impact is manifested as follows: In the face of cost pressures,
enterprises’ investment in innovation may not decrease but may
instead increase (Bu et al., 2019). Firms can mitigate policy - induced
cost burdens via technological innovation, generating an innovation -
offset dynamic that bolsters enterprises’ TFP. In addition, productivity
improvement also depends on enterprises’ ability to apply existing
innovations and efficient technologies (Albrizio et al., 2017; Daron
et al., 2006). The LCCP fosters a collaborative ecosystem for low -
carbon tech scaling, facilitating knowledge spillovers and technology
diffusion. This action will encourage companies to learn advanced
technologies from their peers and expand the use of high-tech
innovations (Wang et al., 2018). Unlike command-drived
environmental regulation, carbon emission trading’s distinctive edge
lies in capping total carbon emissions yet enabling firms to monetize
surplus allowances (Clarkson et al., 2015), thus creating enduring
economic incentives for technological innovation.

3.2 Resource effect

The LCCP exerts both negative and positive impacts on resource
allocation for the HQDM.

In terms of negative effects, as a command-driven environmental
regulation, its administrative intervention may cause excessive resource
allocation to low-carbon industries and sectors. Driven by the policy’s
low-carbon orientation and carbon reduction assessment pressures,
enterprises might over-invest in non-productive emission reduction
equipment (He et al., 2020), leading to resource misallocation due to
excessive resource shifts to low-carbon sectors. Moreover, drawing on
the rent-seeking theory (Murphy et al., 1993) and the “grabbing hand”
theory of government (Andrei and Vishny, 1994), enterprises may
proactively cater to government demands to gain local government
support or even allocate resources under government “domination”,
which further exacerbates resource misallocation.

On the positive side, improved factor utilization efficiency is
reflected in the flow of production factors from inefficient to
efficient sectors or enterprises. For individual enterprises, both

policies encourage increased investment in low-carbon, high-
efficiency sectors, and clean energy use while reducing input in
high-carbon, inefficient sectors and fossil fuel consumption (Chen
et al., 2021), thereby enhancing internal resource allocation efficiency.
At the industry level, the LCCP imposes stringent emission and
technical benchmarks, creating industry barriers and raising entry
thresholds for manufacturing. It also increases competitive pressure
on enterprises with high carbon reduction costs, forcing some to exit.
This leads to resource concentration in enterprises with lower carbon
reduction costs and higher productivity, promoting overall industry
productivity growth (Cheng et al., 2019).

The CETP bolsters firms’ emission - reduction flexibility by
providing clear market price signals (Albrizio et al., 2017).
Specifically, market trading reallocates carbon emission rights among
enterprises, production factors are redirected from inefficient firms to
their high - efficiency counterparts. This optimizes quota distribution,
enabling cost - minimal emission reduction (Montgomery, 1972).
Notably, the resource effect of carbon emission rights depends on
market liquidity. Given China’s carbon market remains in a nascent
phase with incomplete mechanisms, it may not yet have a significant
resource allocation effect.

In summary, the LCCPmay cause resourcemisallocation (inhibiting
HQDM), optimize resource allocation (promoting HQDM), or have no
significant impact (with coexisting effects). The CETP can optimize
resource allocation to boost HQDM, but its resource allocation effect
may be insignificant in the early stage due to immature market
mechanisms. The actual policy effects require further verification.

In summary, The influence mechanism of heterogeneous
environmental regulations on HQDM are shown in Figure 1.

4 Methodology

4.1 Policy background, sample selection,
and data sources

In September 2020, during the 75th UN General Assembly,
China announced its 2030 carbon peak and 2060 carbon neutrality
targets, emphasizing a commitment to advance low-carbon
transitions across economic and social spheres. In response,
initiatives like LCCP and CETP have emerged as key policy tools.

The LCCP rolled out in three phases: the first in July 2010
(5 provinces, e.g., Guangdong, Liaoning; 8 cities, e.g., Tianjin,
Chongqing); the second in November 2012 (Hainan Province
and 28 cities, e.g., Beijing, Shanghai, Guangzhou); and the third
in January 2017 (45 cities, e.g., Wuhai, Shenyang, Dalian). While
specific goals differ marginally across phases, all aim to curb
greenhouse gas emissions and pilot green, low - carbon
development models. Key strategies include forging low - carbon
industrial ecosystems, optimizing energy structures, advancing
energy - efficient buildings and low - carbon mobility.

The CETP started in June 2013 with Shenzhen, subsequently
expanding to six regions (e.g., Tianjin, Chongqing). Fujian joined in
December 2016, making it the eighth pilot. The national carbon
market began trading in July 2021. The policy implementation
involves determining covered enterprises via historical emissions
or carbon intensity benchmarks, allocating initial free allowances,
and allowing enterprises to trade allowances in the market. Pilot
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markets have a 40%–60% carbon emissions coverage rate (Ma et al.,
2023) and operate independently with no cross-market trading.

The research sample comprises A-share listed firms on Shanghai
and Shenzhen exchanges, spanning 2003–2021. Including
2021 arises from the July 2021 launch of the national carbon
market, with pilot markets coexisting during the transition period
and policy effects being delayed (Ma et al., 2023). Abnormal samples
(e.g., ST/*ST companies, those with significant data gaps) were
excluded, and missing data were filled using linear interpolation.
Data were sourced from CSMAR database and the China City
Statistical Yearbook. The policy time nodes are set as 2010, 2013,
and 2017 for the three low-carbon pilot batches; for carbon trading,
Shenzhen starts in 2013, Beijing, Tianjin, Shanghai, Chongqing,
Hubei, and Guangdong in 2014, and Fujian in 2017.

4.2 Research method

This study applies Double Machine Learning (DML) to assess
how heterogeneous environmental regulations influence
manufacturing high-quality development (HQDM). Unlike
traditional nonparametric regression methods, DML
accommodates high - dimensional nuisance functions with
numerous covariates, obviating the need for pre - selecting
control variables (Yang G. et al., 2020; Zhang et al., 2022; Bodory
et al., 2022; Farbmacher et al., 2022).

Referring to Robinson (1988) and Chernozhukov et al. (2018),
the following partial linear model is established.

Yit � β1Pit + g0 Xit( ) + U it,E U it|Xit, Pit[ ] � 0 (1)
Pit � m0 Xit( ) + V it,E V it|Xit[ ] � 0 (2)

In the equation, Yit is the outcome variable;Pit as both the
explanatory variable and a policy dummy variable; X represents
control variables. g0(Xit)、 m0(Xit) are unknown functions
estimated via machine learning. U it and V it are error terms with
zero conditional means. Equation 1 is the main equation, and
Equation 2 is the auxiliary equation.

By using machine learning to predict g0(Xit), we obtain its
estimated value ĝ0(Xit), which is then substituted into Equation 1 to
derive Equation 3:

Yit − ĝ0 Xit( ) � β1Pit + errorit (3)

Then, using ordinary least squares (OLS), we obtain the OLS
estimator β1 for β̂1

β̂1 �
1
n
∑n
i�1
Pit

2⎛⎝ ⎞⎠−1
1
n
∑n
i�1
Pit Yit − ĝ0 Xit( )[ ] (4)

Substituting Yit � β1Pit + g0(Xit) + U it from Equation 1 into
Equation 4 yields Equation 5:

β̂1 �
1
n
∑n
i�1
Pit

2⎛⎝ ⎞⎠−1
1
n
∑n
i�1
Pit β1Pit + g0 Xit( ) + U it − ĝ0 Xit( )[ ]

� β1 +
1
n
∑n
i�1
Pit

2⎛⎝ ⎞⎠−1
1
n
∑n
i�1
PitU it

+ 1
n
∑n
i�1
Pit

2⎛⎝ ⎞⎠−1
1
n
∑n
i�1
Pit g0 Xit( ) − ĝ0 Xit( )[ ] (5)

Rearranging terms gives:

FIGURE 1
The influencet mechanism of heterogeneous environmental regulations on the HQDM.

Frontiers in Environmental Science frontiersin.org05

Lin et al. 10.3389/fenvs.2025.1679971

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1679971


	
n

√
β̂1 − β1( ) � 1

n
∑n
i�1
Pit

2⎛⎝ ⎞⎠−1
1	
n

√ ∑n
i�1
PitU it︸










︷︷










︸

�a

+ 1
n
∑n
i�1
Pit

2⎛⎝ ⎞⎠−1
1	
n

√ ∑n
i�1
Pit g0 Xit( ) − ĝ0 Xit( )[ ]︸
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(6)

In the equation, the term “a” adheres to a normal distribution
centered at zero. Substituting Pit � m0(Xit) + V it which is from
Equation 2 into the “b” part of Equation 6 yields Equation 7:

b � EPit
2( )−1 1	

n
√ ∑n

i�1
m0 Xit( ) g0 Xit( ) − ĝ0 Xit( )[ ] + 0p 1( ) (7)

Due to regularization bias in machine learning, the
convergence rate of g0(Xit) − ĝ0(Xit) to 0 is typically slower
than that of 1	

n
√ , with its convergence rate denoted as n−φg ,

i.e., φg < 1
2. Since m0(Xit) ≠ 0, as n → ∞, the magnitude of “b”,

which is
	
n

√
n−φg →∞. Consequently, even with large samples,	

n
√ (β̂1 − β1) will not converge to 0 in probability, and β̂1 will not
converge to β1. This results in a bias in the estimation of β1. To
correct this estimation bias, orthogonalization methods need to be
introduced.

Specifically, first use machine learning to predict the residuals
V it of auxiliary Equation 2 again to obtain their estimates V̂it. Then,
treat V̂it as an instrumental variable for Pit to finally obtain the
estimate β1 for β̂1 , as shown in Equation 8.

β̂1 �
1
n
∑n
i�1
V̂it

2⎛⎝ ⎞⎠−1
1
n
∑n
i�1
V̂it Yit − ĝ0 Xit( )[ ] (8)

We then obtain Equation 9:
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(9)
In the equation, the term “a” adheres to a normal distribution

centered at zero and [m0(Xit) − m̂0(Xit)] and[g0(Xit) − ĝ0(Xit)]
represent the prediction biases of machine learning concerning
m0(Xit) and g0(Xit). Let the convergence rate of [m0(Xit) −
m̂0(Xit)] is n−φm , then the convergence rate of [g0(Xit) −
ĝ0(Xit)] is n−φg . The convergence rate of the interaction term of
the two error terms [m0(Xit) − m̂0(Xit)][g0(Xit) − ĝ0(Xit)] is
n−(φm+φg) which is faster than that of a single prediction bias,
either n−φm or n−φg . In this case, it is also faster than 1	

n
√ , meaning

φm + φg > 1
2. As n →∞, the magnitude of ″b″ approaches	

n
√

n−(φm+φg) →0, causing
	
n

√ (β̂1 − β1) to converge to 0 in
probability, making β̂1 an unbiased estimator of β1. In summary,
predicting g0(Xit) and V it, via double machine learning (DML)
circumvents the dimensionality curse induced by high - dimensional
controls, yielding an unbiased estimator of β1.

DML boosts estimation precision via cross - fitting: by
partitioning the sample, one subset trains models to predict
g0(Xit) and residuals V it, (generating ĝ0(Xit) and V̂it), while the
other subset conducts regression. For partially linear models where
covariate functional forms are unknown, DML yields unbiased
treatment effect estimates.

4.3 Variable selection

4.3.1 Dependent variable
In this paper, the dependent variable is the indicator of high-

quality development of the manufacturing industry (HQDM),
which is measured by total factor productivity (TFP).

4.3.2 Explanatory variable
Key policy indicators—Tlowc (LCCP) and Tctrade (CETP)—act

as dummy variables. Drawing on prior research (Demir et al., 2022;
Teng et al., 2022; Filippini et al., 2020; Oberfield, 2013; Yang J. et al.,
2020), controls cover firm - (micro) and city - level (macro)
dimensions. Firm - level controls (14 variables) capture financial
attributes (e.g., Age, Size, Rate), while city - level metrics (16 items)
span regional growth (Gdp), government spending (Gov), and
market conditions (Mkr). Variable definitions and summary
statistics are presented in Tables 1, 2.

5 Empirical results

5.1 Benchmark regression tests

Drawing on partial linear model insights, we partition the
sample into a 1:4 split (machine learning prediction vs.
regression estimation). Following Yang G. et al. (2020), gradient
boosting outperforms other algorithms, so we adopt it for policy
assessment. Results appear in Table 3.

In baseline regressions (Columns 1 and 3), Tlowc exhibits a
statistically significant negative effect on listed manufacturers’ TFP
(5% level), whereas Tctrade shows a positive effect (1% level). When
adding interaction and quadratic control terms (Columns 2 and 4):
Tlowc’s coefficient is −0.0386 (1% significance) implies a
0.0386 average TFP reduction in pilot regions relative to non-
pilots;Tctrade’s coefficient is 0.0975 (1% significance), which
indicates the average TFP of relevant listed manufacturing firms
is 0.0975 higher than that of the reference group.

These results suggest command-driven environmental
regulations outperform command-driven measures in fostering
manufacturing high - quality development (HQDM).

5.2 Robust tests

5.2.1 Sample screening
To address outliers and special samples, we employ trimming

and exclude central municipality observations. Tables 4, 5 show
Tlowc remains negatively significant and Tctrade is significantly
positive, It is consistent with the baseline findings and confirming
result robustness.
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5.2.2 Resetting the double machine learningmodel
This study adopts three methods for robustness checks:

adjusting the sample split ratio, algorithm replacement, and
model substitution. Specifically, following Chernozhukov et al.

(2018), the sample split ratio is modified from 1:4 to 1:3. For the
algorithm replacement, the gradient boosting (gradboost) algorithm
is replaced with a stacked regression algorithm—this algorithm
assesses policies through a weighted combination of multiple

TABLE 1 Key variable definitions.

Variable type Variable symbol Variable name Variable meaning

Dependent Variable TFP Total Factor Productivity TFP (LP - estimated)

Explanatory Variables Tlowc LCCP Policy dummy (1 = year of low - carbon pilot rollout onwards,
0 otherwise)

Tctrade CETP Policy dummy (1 = year of carbon trading launch onwards,
0 otherwise)

Control
Variables

Enterprise
Level

Firm Characteristics Age Years Listed current year−listing year

Size Company Size Total assets

Soe Ownership Type 1 = state-owned enterprises, 0 otherwise

Export Export Status 1 if the company exports in any year; otherwise 0

Board Board Size Year-end board member count

dep Proportion of Independent
Directors

Year - end independent director count

Toph Ownership Concentration Largest shareholder ownership ratio

Financial Status Rate Debt-to-Asset Ratio Total liabilities/total assets

Kl Capital Intensity Net fixed assets/number of employees

Flow Liquidity Operating cash flow-to-assets ratio

Profit Return on Capital Net profit/total assets

Grow Growth Year-on-year growth rate of net assets

Mva Market Value Total market value/total assets

Inv Investment Capital expenditure (fixed/intangible/long - term assets)

City Level Regional Development
Status

Gdp Economic Development Leve GDP/year-end total population

Urb Urbanization Level Urbanization rate

Stru Industrial Structure Secondary-to-tertiary industry value-added ratio

Pde Population Density Population per unit area

Wage Income Level Average wage

Road Transportation Infrastructure Road mileage/year-end total population

Int Internet Penetration Number of internet users

Government Behavior Gov Government Expenditure Fiscal expenditure/GDP

Fdi Foreign Investment Utilization Actual use of foreign investment/GDP

Fdp Fiscal Decentralization Ratio of budgetary revenue to budgetary expenditure

RD Government R&D Investment Per capita government fiscal expenditure on science and technology

Exp Education Investment Fiscal education expenditure/GDP

Nsoe State-Owned Enterprise Reform Ratio of urban private and individual employment to total
employment in the city

Market Environment Mkt Market Environment Provincial marketization index report in China

Open Degree of Openness Provincial export trade volume/GDP

Fin Financial Development Level Balance of institutional deposits and loans/GDP

The variables Kl, Gdp, Size, Inv, and RD, have been deflated.
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machine learning methods, including gradient boosting, random
forests (rf), lasso (lassocv), ridge regression (ridgecv), and neural
networks (nnet). Furthermore, the model shifts from a local linear
model to a more general interactive model.

Results in Table 6 show Tlowc remains significantly negative,
while that of Tctrade stays significantly positive, validating baseline
result robustness.

5.2.3 Excluding the impact of simultaneous
implementation of two environmental regulations

The implementation timelines for the LCCP and the CETP
overlap across multiple periods, and both environmental
regulations may significantly impact the TFP of the
manufacturing industry. To avoid the issue of omitting
important variables when evaluating the policies separately,

TABLE 2 Descriptive statistics of key variables.

Variable type Variable
symbol

Sample
size

Mean Standard
deviation

Minimum Maximum

Dependent Variable TFP 7,503 11.4173 0.9003 7.8485 14.8377

Explanatory Variables Tlowc 7,675 0.2236 0.4167 0.0000 1.0000

Tctrade 7,675 0.1459 0.3531 0.0000 1.0000

Control
Variables

Enterprise
Level

Firm Characteristics
Regional Development

Status

Age 7,675 25.7902 2.9545 20.0000 32.0000

Size 7,675 126.7634 343.0891 1.2628 9194.1470

Soe 7,675 0.7104 0.4536 0.0000 1.0000

Export 7,675 0.0314 0.1744 0.0000 1.0000

Board 7,675 9.1742 1.8573 0.0000 18.0000

dep 7,675 0.3633 0.0580 0.0000 0.8000

Toph 7,675 36.6173 15.4352 3.3904 89.9858

Financial Status Rate 7,675 0.4771 0.1797 −0.0872 0.9963

Kl 7,675 1.8988 2.5821 0.1713 80.4665

Flow 7,675 0.0421 0.0706 −0.4700 0.4841

Profit 7,675 0.0302 0.0531 −0.5280 0.3970

Grow 7,675 0.0634 0.3620 −1.2663 10.3534

Mva 7,675 203.8824 579.5407 4.5839 25,564.3000

Inv 7,670 0.0560 0.0731 −0.2736 1.8818

Gdp 7,656 2.2399 1.1072 0.2475 5.2688

Urb 7,616 0.6560 0.1932 0.1141 1.0000

Stru 7,669 1.0908 0.7762 0.1876 32.1235

Pde 7,656 1131.5980 1318.6980 15.6734 8854.0810

Wage 7,656 5.6823 3.6751 0.0015 19.7716

Road 7,342 20.4648 15.3195 1.1475 357.9003

Int 7,656 273.4573 522.2860 0.0600 9114.0000

City Level Government Behavior Gov 7,675 0.1388 0.0531 0.0353 0.5721

Fdi 7,249 0.0336 0.0298 0.0000 0.3850

Fdp 7,656 0.6898 0.2149 0.0256 1.5413

RD 7,656 0.1485 0.1138 0.0037 0.6874

Exp 7,656 0.0220 0.0092 0.0012 0.1303

Nsoe 7,628 0.3895 0.1672 −0.0014 1.3157

Market Environment Mkt 7,675 9.2036 19.5322 2.4700 422.0000

Open 7,468 4.0888 8.2560 0.0252 80.1740

Fin 7,656 1.3610 0.7149 0.1122 7.4508
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this paper will further conduct robustness analysis using
subsamples. we divide the sample into four policy-assessment
groups, with robustness test results in Table 7.

First, Remove cities with the CETP, leaving only low-carbon
pilot cities as the treatment group (results in Table 7,
columns (1)–(2)).

Second, Remove cities with the LCCP, leaving only carbon
emissions trading cities as the treatment group (results in
columns (3)–(4)).

Third, we remove cities covered by both policies, and then take
cities covered by only one of the two policies as the treatment group
(results in columns (5)–(6)).

Finally, Remove cities with only one policy, including only cities
with both policies in the treatment group (results in
columns (7)–(8)).

From the subsample empirical results in columns (1) to (6), it
confirm baseline robustness. Columns (7) and (8) show that Tlowc’s
coefficient remains significantly positive, indicating that the LCCP
significantly promotes the HQDM. The coefficient for Tctrade is
positive but not significant, implying the CETP have no notable
impact on HQDM.

One plausible reason is that cities implementing both low-
carbon policies are more conducive to creating an environment
for carbon reduction, increasing companies’ acceptance and
motivation for carbon reduction, and generating a synergistic
effect between the two policies. Consequently, the LCCP
positively contributes to the HQDM. However,due to the

implementation of the LCCP, companies are required to
reduce carbon emissions, which decreases their carbon quota
trading in the carbon market. This weakens the impact of the
CETP, making its effect on HQDM insignificant.

6 Mechanism and
heterogeneity analysis

6.1 Mechanism analysis

6.1.1 Innovation effect
This paper uses R&D intensity (R&D expenditure/operating

revenue) as a proxy for technological innovation (Zhou and Tang,
2021). Given the lack of R&D expenditure data prior to 2009, the
mechanism test focuses on the second and third pilot policy batches,
with corresponding results provided in Table 8.

Table 8, Columns 1–2 assess the 2012 and 2017 LCCP’s effects
on technological innovation. Results indicate that, after adding the
two policy variables, whether controlling for interaction and
quadratic terms or not,the Tlowc’s coefficient is insignificant.
This indicates that the LCCP has no significant impact on
technological innovation in manufacturing. In contrast, Tctrade’s
positive significance suggests the CETP spurs technological
innovation. Consistent with prior mechanism logic, the policy’s
innovation-inducing effect outweighs its crowding-out effect,
driving technological innovation.

TABLE 3 Impact of heterogeneous environmental regulations on the HQDM.

Variable TFP

(1) (2) (3) (4)

Tlowc −0.0331** (0.0156) −0.0386*** (0.0176)

Tctrade 0.1534*** (0.0328) 0.0975*** (0.0342)

Control variable First-order Term Yes Yes Yes Yes

Control Variables Interaction and Quadratic Terms No Yes No Yes

Sample Size 6,771 6,771 6,771 6,771

*, **, *** denote significance at the 10%, 5%, and 1% confidence levels, respectively. Standard errors are in parentheses. The same applies below.

TABLE 4 Sample trimming estimation results.

Variable TFP

1%Trimming 5%Trimming

(1) (2) (3) (4) (5) (6)

Tlowc −0.0333*
(0.0180)

−0.0381**
(0.0173)

−0.0320*
(0.0165)

−0.0337*
(0.0159)

Tctrade 0.0901***
(0.0346)

0.0895** (0.0360) 0.0900***
(0.0343)

0.0892**
(0.0351)

Control Variable First-order Term Yes Yes Yes Yes Yes Yes

Control Variables Interaction and Quadratic
Terms

Yes Yes Yes Yes Yes Yes

Sample Size 6,771 6,771 6,771 6,771 6,771 6,771
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6.1.2 Resource effect
This study proxy resource allocation efficiency with capital

allocation efficiency (Chen et al., 2021), adopting the “investment
level and investment opportunity sensitivity” model to assess
heterogeneous environmental regulations’ impact. The model is
specified in Equations 10–12:

Ait � Pit × Roait (10)
Investit � β1Ait + g0 Xit( ) + U it,E U it|Xit, Ait[ ] � 0 (11)

Ait � m0 Xit( ) + V it,E V it|Xit[ ] � 0 (12)
Here, Investit represents the firm’s investment level, Roait is the

return on assets, which captures the firm’s investment
opportunities.Pit is the policy dummy variable. The term Ait is
the interaction term of Pit and Roait, and the definitions of other
variables are the same as in models (1) and (2).

The empirical results, presented in columns (5) to (8) of Table 8,
indicate insignificant coefficients for Tlowc and Tctrade. This
suggests that the LCCP and the CETP do not have a significant
impact on firms’ capital allocation efficiency.

Regarding the non-significant impact of the LCCP on firms’
capital allocation efficiency, potential explanations can be derived
from mechanism analysis. As a command-driven environmental
regulation, the LCCPmay cause resource misallocation: government
administrative intervention, coupled with firms’ proactive
compliance to obtain local government support, ultimately leads
to excessive resource reallocation toward low-carbon sectors. At the
same time, it can also optimize factor allocation—both within
individual firms and across industries—by driving factors to flow
from inefficient sectors or enterprises to efficient ones. These two
opposing effects, which exert negative impacts and positive impacts
on resource allocation for the HQDM, likely offset each other,
ultimately resulting in the LCCP’s non-significant influence on
capital allocation.

The CETP also exerts no significant impact on firms’ capital
allocation efficiency. A plausible explanation, similarly as elaborated
in the mechanism analysis, lies in that CETP—a market-based
environmental regulation—can optimize resource allocation and
reduce carbon emissions through market price signals of carbon
emission rights, but this depends on the maturity of market
mechanisms. Since China’s carbon emission trading market is
still in the initial stage of development, characterized by

underdeveloped market mechanisms, and its pilot carbon
markets operate independently of one another with no cross-
market carbon quota trading permitted—resulting in its limited
market coverage—these are the reasons why the CETP fails to
generate a significant resource allocation effect. Meanwhile,
Carbon emission rights are quasi-public goods, and the carbon
market is a market with quasi-public goods (i.e., carbon emission
rights) as its core trading instrument. Given that the non-rival
nature of quasi-public goods requires government intervention in
supply via“total quantity control”and the definition of exclusive
property rights relies on administrative rules, the carbon market
cannot meet the core assumptions of a perfectly competitive
market—namely,“free entry and exit, homogeneous products, and
complete information.“It thus does not qualify as a perfectly
competitive market, and its resource allocation efficiency is also
constrained.

6.2 Heterogeneity analysis

This paper has demonstrated that the command-driven LCCP
inhibits HQDM, while the market-oriented CETP promotes it.
Given policy effects differ across firms by ownership and
technological intensity, we further explore heterogeneity in these
dimensions.

6.2.1 Firm ownership
This paper stratify firms by ownership—specifically state-owned

enterprises (SOEs) and non-state-owned enterprises
(nonSOEs)— for regression, with results in Table 9.

Table 9 Columns 1–3 show Tlowc remains significantly negative
at the 1% level, regardless of whether other interaction terms and
quadratic terms are controlled, indicating the LCCP hinders the
HQDM of SOEs.Meanwhile, Tctrade’s coefficient is significantly
positive at the 5% level, suggesting CETP boosts HQDM of SOEs. In
Columns 4–6, both coefficients are insignificant, indicating that,
neither the LCCP nor the CETP exerts a significant impact on the
HQDM of non-SOEs.

The possible reason for the heterogeneous effects is that SOEs
exhibit a heightened commitment to social responsibilities. and are
more proactive in responding to policies. As a result, they implement
national policy decisions more effectively, leading to significant

TABLE 5 Estimation results after removing municipalities.

Variable TFP

(1) (2) (3) (4) (5) (6)

Tlowc −0.0415** (0.0173) −0.0491** (0.0201) −0.0401** (0.0174) −0.0414** (0.0191)

Tctrade 0.1548*** (0.0398) 0.0946** (0.0424) 0.1556*** (0.0392) 0.0559 (0.0410)

Control Variable First-
order Term

Yes Yes Yes Yes Yes Yes

Control Variables
Interaction and
Quadratic Terms

No Yes No Yes No Yes

Sample Size 5,436 5,436 5,436 5,436 5,436 5,436
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TABLE 8 Estimation results of mechanism testing.

Variable Inno Invest

(1) (2) (3) (4) (5) (6) (7) (8)

Tlowc 0.0010
(0.0050)

−0.0020
(0.0030)

−0.0021
(0.0037)

−0.0075
(0.0298)

−0.0330
(0.0284)

−0.0072
(0.0303)

Tctrade 0.0055
(0.0046)

0.0127***
(0.0049)

0.0080*
(0.0050)

0.0143
(0.0346)

−0.0401
(0.0327)

−0.0008
(0.0350)

Control Variable First-order Term Yes Yes Yes Yes Yes Yes Yes Yes

Control Variables Interaction and
Quadratic Terms

Yes Yes No Yes Yes Yes No Yes

Sample Size 3,828 3,828 3,828 3,828 6,768 6,768 6,768 6,768

TABLE 6 Estimation results for resetting the double machine learning model.

Variable TFP

Adjusting the sample split
ratio
(1:3)

Algorithm replacement
Stacked regression

Model substitution
Interactive model

(1) (2) (3) (4) (5) (6)

Tlowc −0.0332**
(0.0149)

−0.0420**
(0.0174)

−0.0750***
(0.0260)

−0.0645***
(0.0230)

−0.0150**
(0.0081)

−0.0216***
(0.006)

Tctrade 0.1483***
(0.0327)

0.0935***
(0.0336)

0.0990* (0.0560) 0.0613* (0.0362) 0.0908***
(0.0041)

0.0761***
(0.0069)

Control Variable First-order Term Yes Yes Yes Yes Yes Yes

Control Variables Interaction and Quadratic
Terms

No Yes No Yes No Yes

Sample Size 6,771 6,771 6,771 6,771 6,771 6,771

TABLE 7 Estimation results for excluding the impact of simultaneous implementation of two environmental regulations.

Variable TFP

Only LCCP Only CETP Excluding cities
implementing both

policies

Cities
implementing
both policies

(1) (2) (3) (4) (5) (6) (7) (8)

Tlowc −0.0840***
(0.0210)

−0.0760***
(0.0220)

−0.0800***
(0.0191)

−0.0856***
(0.0221)

0.0226 0.0948**

(0.0429) (0.0443)

Tctrade 0.1000**
(0.0470)

0.0930*
(0.0560)

0.0902*
(0.0492)

0.0355 (0.0486) 0.1368*
(0.0716)

0.0513
(0.1217)

Control Variable First-order
Term

Yes Yes Yes Yes Yes Yes Yes Yes

Control Variables Interaction and
Quadratic Terms

No Yes No Yes No Yes No Yes

Sample Size 4,218 4,218 2,974 2,974 4,732 4,732 4,422 4,422
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policy effects. Conversely, non-SOEs are more focused on profits
and have weaker enforcement of environmental regulations,
resulting in less significant policy effects.

6.2.2 Technical attributes
Based on 2012 CSRC industry classification, manufacturing is

categorized into labor-intensive, technology-intensive, and capital-
intensive sectors.

Columns (2), (4), and (6) of Table 10 report results controlling
for interaction and quadratic terms. Only Tlowc in Column 4 is
negatively significant, meaning the LCCP solely exerts a significant
negative impact solely on technology-intensive manufacturing,
while it has no significant impact on labor-intensive or capital-
intensive manufacturing.

Columns (1) and (2) of Table 10 show that the Tctrade’s
coefficient is significantly negative, suggesting that the CETP
inhibits the TFP of labor-intensive manufacturing industries.
Columns (3) and (4) reveal that the Tctrade’s coefficient is
significantly positive, indicating that the CETP promotes the TFP
of technology-intensive manufacturing industries. In contrast,
column (6) shows that the Tctrade’s coefficient is insignificant,
implying that the CETP has no significant promoting effect on
the TFP of capital-intensive manufacturing industries. A plausible
explanation for these findings is that labor-intensive manufacturing

relies heavily on labor rather than technology or equipment and
exhibits relatively low profitability. Consequently, compared with
capital-intensive and technology-intensive enterprises, labor-
intensive manufacturing industries face greater difficulties in
improving TFP through technological innovation.

7 Conclusions and policy
recommendations

Carbon emissions have become a major challenge facing the
globe (Wu et al., 2025), Carbon emission reduction is a core global
issue related to humanity’s sustainable development. Carbon
regulations encompass diverse instruments such as command-
driven and market-oriented mechanisms, among which carbon
markets have been established and implemented in countries like
the UK and the US,accumulating phased practical experience. This
paper focuses on practical cases of China’s low-carbon
policies—specifically the command-driven LCCP and the market-
oriented CETP. This study empirically examines their impact on the
HQDM and the underlying mechanisms. The analysis is based on
microdata of listed manufacturing firms spanning from 2003 to
2021, employing the double machine learning method,and reaches
the following research findings.

TABLE 9 Estimation results of heterogeneity in Enterprise’s ownership.

Variable TFP

SOEs Non-SOEs

(1) (2) (3) (4) (5) (6)

Tlowc −0.0594*** (0.0202) −0.0598*** (0.0202) 0.0577 (0.0371) 0.0562
(0.0343)

Tctrade 0.0873** (0.0371) 0.0736** (0.0349) 0.0706 (0.0462) 0.0143
(0.0529)

Control Variable First-order Term Yes Yes Yes Yes Yes Yes

Control Variables Interaction and Quadratic Terms Yes Yes Yes Yes Yes Yes

Sample Size 4,842 4,842 4,842 1,929 1,929 1,929

TABLE 10 Estimation results of heterogeneity in technical attribute.

Variable TFP

Labor-intensive Technology-intensive Capital-intensive

(1) (2) (3) (4) (5) (6)

Tlowc 0.0620 (0.0399) −0.0008 (0.0502) −0.0406*
(0.0217)

−0.0447*
(0.0250)

−0.0673***
(0.0243)

−0.0451
(0.0276)

Tctrade −0.1925***
(0.0704)

−0.1176**
(0.0526)

0.1324***
(0.0464)

0.1688***
(0.0490)

0.0825** (0.0415) 0.0538 (0.0458)

Control Variable First-order Term Yes Yes Yes Yes Yes Yes

Control Variables Interaction and Quadratic
Terms

No Yes No Yes No Yes

Sample Size 798 798 3,725 3,725 2,248 2,248
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1. The LCCP significantly inhibits the HQDM, whereas the
CETP notably promotes it. Findings stay robust across
robustness tests.

2. In regions where both policies are implemented
simultaneously, they both enhance the HQDM,
demonstrating a synergistic effect.

3. Further mechanism analysis reveals that the CETP can
significantly boost technological innovation in listed
manufacturing firms yet exerts no notable influence on
resource allocation efficiency. Thus, the improvement in
TFP of these manufacturing firms is primarily driven by the
enhancement of technological innovation. In contrast, the
LCCP has no significant influence on either technological
innovation or resource allocation efficiency.

4. Heterogeneity tests shows that the regression results for the
eastern and western regions, SOEs, and technology-intensive
manufacturing are similar to the baseline results. However, the
CETP significantly hinders HQDM in the central region and
labor-intensive manufacturing. The LCCP has no significant
effect on non-SOEs or capital-intensive manufacturing.

Drawing on China’s practical experiences, this paper has arrived
at the aforementioned research findings and puts forward the
following policy recommendations—all in an effort to offer
valuable insights for the selection and formulation of carbon
emission reduction approaches globally, particularly among
developing countries.

7.1 Strengthen the precision of command-
driven policies to avoid a “one-size-fits-
all” approach

The LCCP exert an overall inhibitory effect on the HQDM. This
may be attributed to the strong administrative intervention imposed
on the manufacturing industry during LCCP
implementation—excessive intervention, to a certain extent,
constrains the HQDM. Based on this, when formulating
command-driven policies such as LCCP, it is necessary to
prioritize the precision of policy objectives: fully take into
account the development stages and actual capacity of different
industries, formulate differentiated carbon reduction targets, and
accompany them with targeted support measures. This will help
avoid inappropriate inhibition on the development of the
manufacturing industry caused by “one-size-fits-all” policy
implementation.

7.2 Prioritize market-oriented
environmental regulations as the core to
establish a “government-guided, market-
led” collaborative governance mechanism

The paper finds that, unlike LCCP, which significantly hinders
HQDM, the CETP significantly promotes it. In regions with “dual
carbon” policies, both command-driven and market-oriented
regulations enhance HQDM, indicating a synergistic effect. It is
important to focus on developing market-oriented environmental

regulations and improving related mechanisms to better enhance
the synergy between the market and government in environmental
governance.

The market-oriented environmental regulations, such as carbon
emission trading and carbon tax, can be adopted as core tools, while
command-driven environmental regulations serve only as
supplementary means to address market failures. Some
developing countries may first establish basic rules for low-
carbon transition (e.g., setting industry-specific emission
reduction targets) through command-driven environmental
regulations, and then gradually introduce market mechanisms to
avoid long-term reliance on administrative intervention.
Additionally, In the process of carbon market development,
efforts should be made to promote the legislation of the Carbon
Market Management Regulations, while formulating rules for the
registration, settlement and compliance of carbon allowances; a
“Special Fund for Carbon Market Development” should be
established to support the exploration and development of
carbon market trading mechanisms.

7.3 Strengthen carbon market construction
to activate resource allocation functions

Optimize the carbon market to facilitate efficient resource
allocation. Mechanism analysis indicates that the market’s
allocative function remains underdeveloped, which may be
attributed to insufficient market liquidity and inadequate trading
activity in carbon quotas. Therefore, refining carbon market trading
mechanisms and supporting systems, expand the market’s coverage
to include more industries and participants, and enhance a unified
national carbon market. This will provide institutional support to
stimulate carbon market trading and promote efficient
resource flow.

It is recommended to promote the expansion of the carbon
market in phases: the first phase incorporates high-emission
industries such as power, steel, and cement; the second phase
extends to moderate energy-consuming industries including
chemicals and non-ferrous metals; the third phase gradually
covers the entire manufacturing sector. Meanwhile,the
participation threshold for small and medium-sized enterprises
(SMEs) should be lowered to strengthen their capacity to
integrate into the market. Additionally, support should be
extended to the technological upgrading of carbon trading
platforms, the development of real-time carbon emission
monitoring systems for enterprises, and the establishment of a
“Carbon Market Information Disclosure Platform”, while third-
party institutions should be introduced to conduct data verification.

7.4 Implement differentiated carbon
emissions trading policy based on enterprise
attributes

Heterogeneity analysis indicates that command-driven LCCP
generally inhibit the HQDM. In contrast, market-oriented CETP
significantly promotes such development in state-owned enterprises
(SOEs), technology-intensive, and capital-intensive manufacturers,
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while notably inhibiting it in non-state-owned and labor-intensive
manufacturing. Therefore, differentiated carbon quota standards
should be considered for manufacturing enterprises with different
attributes.

For instance, capital-intensive enterprises—characterized by low
dependence on advanced technology and equipment and limited
potential to achieve efficiency improvements through technological
innovation—should be allocated more carbon quotas. Additionally,
Supervision and regulation of non-state enterprises should be
strengthened to enhance their proactive response to policies, and
a “Hierarchical Management System for Carbon Compliance of
Non-SOEs” should be established: For enterprises with delayed
carbon compliance, their participation in government project
bidding shall be restricted. Additionally, It shall build a low-
carbon technology sharing platform and organize technical
exchanges, so as to facilitate the green transition of small and
medium-sized enterprises.
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