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The synergistic impacts of climate change and human activities have profoundly
shaped vegetation dynamics, making the elucidation of their underlying driving
mechanisms critical for regional ecological conservation and sustainable
development. This study investigates these complex interactions in Henan
Province, China, by integrating multi-source datasets from 2000 to 2020. We
comprehensive analytical framework, which spans from traditional statistical
methods to advanced machine learning models (Random Forest and Shapley
Additive exPlanations), was employed to systematically decipher the
spatiotemporal patterns of NDVI and its intricate driving forces. The results
indicate: (1) During the past 2 decades, the NDVI in Henan Province exhibited
a significant upward trend (an average increase of 0.049 per decade), which
reflected the continuous improvement in ecological quality. Spatially, high NDVI
values were mainly distributed in the mountainous areas in the west and south
(Funiu Mountains and Tongbai Mountains), while the low-value areas were
concentrated in the Central Plains urban agglomerations, which have shown
signs of recovery. (2) Feature importance analysis based on machine learning
precisely identified grassland, cropland, and barren land as the dominant drivers
regulating the spatial pattern of NDVI, while impervious surfaces exerted the
relatively weakest direct influence. (3) The SHAP model further revealed complex
nonlinear relationships between key factors and NDVI. For instance, cropland
exhibited a pronounced inverted U-shaped pattern, indicating that moderate
agricultural activity positively contributes to vegetation cover, while excessive
saturation may produce inhibitory effects. Although climatic factors establish the
background conditions for vegetation growth, human activities are the primary
drivers shaping the current spatiotemporal heterogeneity of NDVI.
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1 Introduction

Against the backdrop of intensifying global climate change and
increasing human activities, understanding the spatiotemporal
dynamics of vegetation cover at regional scales and its response
mechanisms to climatic factors has emerged as a pivotal focus in
ecological and global change research (Satti et al,, 2024). As a crucial
component maintaining the normal functioning of terrestrial
ecosystems, vegetation plays a indispensable role in regulating
surface energy balance, hydrological cycles, and carbon fluxes.
Moreover, it exhibits pronounced sensitivity to variations in climatic
factors such as temperature and precipitation (Piao et al., 2006; Privilie
et al,, 2022). Owing to the synergistic effects of natural conditions and
anthropogenic disturbances, vegetation demonstrates significant spatial
and temporal heterogeneity in its distribution and evolution (Martinez
et al, 2009). Consequently, identifying and quantifying vegetation
responses to climate change holds not only substantial scientific
value but also practical implications for ecosystem restoration,
resource management, and regional sustainable development (Tian
et al,, 2015; Peng et al,, 2019).

The Normalized Difference Vegetation Index (NDVI), a widely
recognized indicator of vegetation growth, has been extensively
utilized in vegetation monitoring, ecological assessment, and
studies of environmental change (Wen et al, 2017). In recent
years, with the development and refinement of long-term remote
sensing datasets such as MODIS (Moderate Resolution Imaging
Spectroradiometer) and GIMMS (Global Inventory Modeling and
Mapping Studies), the analysis of NDVI trends and its climatic
response mechanisms has become significantly more sophisticated
(Lunetta et al., 2022; Huang et al., 2020). Research has demonstrated
that NDVTI is influenced by multiple climatic drivers, particularly
temperature, precipitation, solar radiation, and aridity index, with
marked spatial and seasonal variations in their effects (Zheng et al.,
2018; Li et al, 2023). Earlier investigations predominantly
concentrated on mid-to high-latitude regions in North America
and Eurasia, employing long-term GIMMS and MODIS NDVT data
to elucidate the spatiotemporal trends in vegetation greenness and
its response to global warming (Detsch et al., 2016; Pesaresi et al.,
2020). These studies revealed that rising temperatures and
alterations in the spatial-temporal distribution of precipitation
are the primary climatic factors driving global vegetation
dynamics. Furthermore, NDVI responses exhibit substantial
variability across different climatic zones in terms of sensitivity
and lag effects (Jin et al., 2021). Recently, there has been increasing
attention to nonlinear responses driven by multiple factors.
Advanced multivariate statistical methods, including Principal
Component Analysis (PCA), Structural Equation Modeling
(SEM), and Redundancy Analysis (RDA), have been increasingly
employed to decompose explanatory power and model response
pathways, thereby enhancing our understanding of the complexity
inherent in climate-vegetation systems (Shrestha et al., 2024).

Scholars have primarily concentrated on vegetation trends at global
or continental scales, as well as their coupling relationships with climatic
variables. In China, the extensive utilization of remote sensing datasets,
such as GIMMS, MODIS, and AVHRR, has facilitated substantial
progress in the investigation of NDVI trends and their driving
This has resulted in the establishment of a
multiscale, and regionally

mechanisms.

multidisciplinary, diverse research
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framework. Numerous studies indicate that the overall NDVI in
China has increased, particularly in regions where ecological projects
(e.g., the Three-North Shelterbelt and Grain-for-Green Program) have
been implemented, reflecting significant vegetation recovery (Jin et al,,
2021; Piao et al, 2005). Researchers have examined the responses of
NDVT to various climatic variables such as temperature, precipitation,
radiation, and soil moisture across different scales. These investigations
reveal pronounced spatial heterogeneity in vegetation responses, with
distinct climatic factors dominating in different ecological zones (Chu
et al, 2019). Additionally, an increasing number of studies have
integrated socioeconomic variables, such as land use, population
density, and economic development, to assess the impacts of human
activities on vegetation dynamics, thereby offering scientific support for
evaluation of ecological policy (Yang L. et al., 2021). As a representative
region characterized by dense farmland and ecological transition zones,
Henan Province has garnered increasing attention in vegetation
monitoring and climate response research. Existing studies suggest
that since 2000, NDVT in Henan has exhibited an overall upward trend,
with notable improvements observed in ecologically vulnerable areas,
such as the Funiu and Taihang Mountains, while the plains have
experienced greater variability (Zhu and Li, 2017). Most studies have
utilized annual-scale NDVT data, applying trend analysis, correlation
analysis, and regression models to identify temperature and
precipitation as the primary climatic drivers of NDVI variation.
Notable differences in responses across geomorphic units (Yin et al,
2021). While some scholars have attempted to introduce anthropogenic
factors (e.g., urban expansion, ecological restoration projects) to explore
non-climatic drivers, but detailed characterization of the spatiotemporal
coupling mechanisms remains inadequate (Liu et al., 2020).

Despite these advancements, several critical gaps persist. First,
research examining the monthly-scale relationship between NDVI
and climatic variables has remained limited, with insufficient focus
on dynamic characteristics and seasonal response patterns. Second, the
interactive and combined effects among climatic variables have yet to be
fully elucidated, and the synergistic or antagonistic interactions among
multiple drivers remain to be systematically quantified. Third, few
studies have employed advanced multivariate statistical techniques such
as RDA to decompose and rank the explanatory power of climatic and
geographic variables, which impedes the identification of dominant
driving factors. Fourth, the coupling mechanisms between human
activities and vegetation changes remain underexplored, lacking
comprehensive quantitative analyses that assess the intensity, spatial
distribution, and influence of anthropogenic factors on NDVI
dynamics. Consequently, under the dual pressures of climate change
and human activity, conducting monthly-scale analyses of NDVI
dynamics in conjunction with multivariate statistical methods to
quantify the integrated effects of climatic and anthropogenic drivers
represents a critical direction and emerging trend in current research.

2 Data sources and methods

2.1 Study area

Henan Province, situated in central-eastern China
(31°23'-36"22'N, 110°21'-116°39’E), encompasses a total area of
approximately 167,000 km” in the middle and lower reaches of the
Yellow River Basin Figure 1. The province exhibits a topography that
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gradually slopes from west to east, featuring a variety of landforms
such as mountains, hills, plains, and basins (Wei et al., 2023). The
Huang-Huai Plain, which accounts for over 60% of the province’s
territory, serves as a critical agricultural production base in China.
Henan experiences a climate ranging from warm-temperate to
subtropical monsoon, with average annual temperatures between
12 °C and 16 °C and annual precipitation varying from 600 mm to
1,200 mm. Precipitation is unevenly distributed both spatially and
temporally, with higher levels in the southern regions compared to
the northern areas, and the rainy season predominantly occurring
during summer (Duan et al,, 2023). In recent years, global climate
change has led to an increase in extreme weather events, including
droughts and floods, which have substantially impacted regional
vegetation cover and ecosystem stability. The predominant
vegetation types consist of cropland, deciduous broadleaf forests,
and shrublands. The NDVI, a critical indicator of vegetation cover
and growth status, demonstrates significant spatial and temporal
heterogeneity in this region (Zhu and Li, 2017). Located in the
transitional climate zone between northern and southern China,
Henan’s vegetation is highly sensitive to climate change, making it
an ideal region for studying the spatiotemporal evolution of NDVI
and its climatic driving mechanisms.

2.2 Data sources

Temperature and precipitation data for the period 2000 to
2020 were retrieved from the China Surface Climate Data Daily
Dataset (V3.0), provided by the China Meteorological Data Service
Center (http://cdc.cma.gov.cn/home.do). This dataset includes key
climate variables such as temperature and precipitation. Vegetation
index data were derived from the China 30 m Annual Maximum
NDVI Dataset, which has a spatial resolution of 30 m (Yang et al.,
2019). Land use data were obtained from the National Land Use/
Cover Dataset, provided by the Resource and Environmental
Science Data Center of the Chinese Academy of Sciences, also at
a 30 m spatial resolution. To quantify the impact of human activities,
annual dynamic human footprint data were generated based on the
methodology proposed by Sanderson and Venter, incorporating
eight variables reflecting various aspects of human pressure: built
environment, population density, nighttime lighting, cropland,
pasture, roads, railways, and navigable waterways (Mu et al,
2022). Furthermore, water consumption data, encompassing
usage for agriculture, forestry, fisheries, industry, domestic
purposes, and environmental needs, were sourced from the
Henan Water Resources Statistical Yearbook (https://slt.henan.
gov.cn/).

About how to handle missing data: (1) Nonzero missing value
processing. Since the original meteorological data are daily data and
their sample size was large, to avoid the influence of missing values
on the prediction results, linear interpolation was used to deal with
the missing values. (2) Removal of outliers. In the statistical test
method, due to the sensor work process is inevitable due to the
interference of external environmental factors resulting in data
anomalies, so this paper selects the t-test method for the removal
of outliers. (3) Original data standardization. To eliminate the
impact of different quantitative outlines and large differences in
values, the original variables are standardized.
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2.3 Methods

2.3.1 Maximum value composite (MVC) method

The Maximum Value Composite (MVC) method was utilized to
generate high-quality NDVI time series data by mitigating the
impacts of cloud cover, atmospheric interference, and sensor
angle variation (van Leeuwen et al, 1999). Based on the Google
Earth Engine cloud computing platform, this dataset uses all Landsat
remote sensing data from the entire year and, through data
preprocessing and smoothing, obtains the maximum annual
NDVI value for each pixel from 2000 to 2020. The spatial
resolution of this dataset is 30 m, and the temporal resolution is
annual. This process enabled the construction of a monthly NDVI
dataset to Henan Province. Subsequently, the annual average NDVI
was derived from monthly data and employed for further
spatiotemporal analyses.

MEVI; = MAX(EVI;) (1)

Where i denotes the year (ranging from 1 to 15), j denotes the
month (ranging from 1 to 12), and EVI; is the maximum EVI value
for the jth month of the ith year.

2.3.2 Trend analysis

To reveal the spatiotemporal evolution of NDVI, a univariate
linear regression method was used to analyze the trend of the annual
mean NDVT time series for each pixel from 2000 to 2020 (Fensholt
etal., 2009). The regression slope (Slope) indicates the direction and
rate of NDVT change, calculated as follows:

ny., (i-NDVI;)- Y i- Y. NDVI,
no. no 2
ny. i’ - (XiLi0)

In the equation, n represents the total number of years, NDVI;

Slope = 2)

denotes the NDVI value for the ith year, and i is the year index. A
Slope >0 indicates an increasing trend in NDVI, while a
Slope <0 indicates a decreasing trend. The significance of the
trend was evaluated using a t-test (p < 0.05).

2.3.3 Pearson correlation analysis

The pearson correlation coefficient was employed to quantify
the degree of linear correlation between two random variables,
assuming both variables followed a normal distribution. This
coefficient assigns a value ranging from -1 to 1, where
0 indicates no correlation, one signifies perfect positive
correlation, and -1 denotes perfect negative correlation. A
stronger absolute value of the coefficient suggests a more
significant linear relationship between two sets of data (Benesty
et al., 2009). The Pearson correlation coefficient is appropriate for
analyzing two sets of continuous data that exhibit a linear
relationship, provided that their overall distribution conforms to
a normal distribution and each pair of measured values is

independent. The formula is as follows:

R= z:‘=1 (Xi - X) (Yi - Y)
VS (X - X)X (Y- V)

Here, R represents the Pearson correlation coefficient of two sets

©)

of variables, X and Y, where X; and Y; are the sample values of two
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sets of variables and X and Y are the sample means of two sets
of variables.

2.3.4 Non-parametric Mann-Kendall test

Mann-Kendall mutation test, also known as the Mann-Kendall
rank test, is widely used in long-term hydrological, vegetation, and
other data for mutation tests (Yue et al., 2002). For time series X, X5,
X., X, with n sample sizes, an order sequence was constructed using
the following formula:

k
Sk:Zri (k=2,3,...,n) 4)
i=1
_ 1, x,->xj . )
ri_{O, xing""(]_lyzy-..,l) (5)

The rank sequence S; is the cumulative number of times the
value of i at the moment i is greater than the number of values at
time j. Under the assumption of random independence of time
series, define statistics:

UF; = TSy k=12,...,n) (6)

Where UF, = 0; E(Sy) and Var(S;) are the mean and variance of
the cumulative number Sy, respectively. This value is calculated
when x;, x,, ..., x,, are independent and have the same continuous
distribution as:

Var(S) = k(k-1)(2k +5) @

72
k(k-1)

E(Sy) = 1

(8)

In the formula, UF; is a standard normal distribution, which
is a sequence calculated according to time series x order X3, X5, . . .
, X, Given a significance level a, in comparison with the data in
the known normal distribution table and if UF; > U,, then
significant changes exist in the trend. This method can also be
applied to the inverse sequence of the time series, and the above
procedure can be repeated by x,, X,_1, ..., X5, thus making
UF, = -UBy, k = n, n-1, ..., UB = 0. If the UF, and UBy curves
intersect at an intersection point and the intersection point is
between the critical line, then the intersection point corresponds
to the time the mutation begins.

2.3.5 Shapley additive explanations (SHAP)

In this study, we have combined SHA methods to explore the
complex relationships between NDVI and climate change factors, as
well as human activity factors. While SHAP was employed to
interpret model outputs and reveal each feature’s contribution to
prediction results. SHAP dependency plots were utilized to visualize
how SHAP values for specific features vary with their own numerical
changes and to uncover interaction effects between features.

M
g(x') = Do+ ) %, ©
j=1

Where g represents the selected variable, %' €0, 1}M is the
coalition vector, M denotes the maximum coalition size, and ¢ ;€ R
is the feature attribution for a feature j (Shapley value).
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3 Spatiotemporal characteristics of
vegetation NDVI

3.1 Temporal and spatial variation trends of
NDVI

3.1.1 Temporal variations of vegetation NDVI
From 2000 to 2020, the NDVI
demonstrated a significant upward trend at both annual and

in Henan Province

monthly scales, while maintaining stable seasonal periodicity.
This trend indicates continuous enhancement of regional
ecological conditions and an overall increase in vegetation
coverage. At the annual scale, NDVI values increased steadily
from 0.413 in 2000 to 0.531 in 2020, resulting in a total increment
of 0.118 over 2 decades, equivalent to an approximate growth of
28.6% (Equations 1, 2). Linear regression analysis confirmed a
statistically significant upward trend, with an average annual
increase of 0.0049, reflecting consistent improvement in
vegetation conditions across the province during the study
period (Figure 2a). The temporal evolution of NDVI in Henan
can be characterized by two distinct phases. In the first phase
(2000-2010), NDVI exhibited stable growth, increasing from
0.413 to 0.476 with minimal interannual variability. In the
second phase (2010-2020), NDVI showed accelerated growth,
surpassing 0.52 in 2015 and reaching a historical peak of 0.531 by
2020. Despite the overall positive trend, short-term declines were
observed during 2008-2010 and 2012-2013, when NDVI
temporarily dropped to 0.475 and 0.479, respectively, likely
due to extreme climatic events. However, these fluctuations
did not alter the long-term trend, underscoring the region’s
robust ecological resilience and the adaptability of its
vegetation to climatic stress.

On the monthly scale, the NDVI demonstrated distinct seasonal
dynamics. Peak values were recorded during the summer months,
followed by spring, autumn, and winter (Figure 2b). January and
February corresponded to the vegetation dormancy period, with
NDVI values reaching their annual minimum, typically ranging
between 0.25 and 0.35. As temperatures increased in spring, NDVI
values exhibited a sharp rise starting in March, peaking at 0.59 in
April. This increase is indicative of favorable climatic conditions and
aligns with the jointing and heading stages of winter wheat growth.
A notable decline was observed in June (NDVI = 0.54), primarily
due to the harvesting of winter wheat and the early planting of
summer maize. Subsequently, as environmental conditions
continued to improve, vegetation such as forests, grasslands, and
broad-leaved trees flourished, resulting in a secondary NDVI peak of
0.73 in August. Thereafter, senescence and leaf fall led to a gradual
decline in NDVI values, which returned to their annual lows in
November and December, thereby completing the full annual
vegetation cycle.

3.1.2 Spatial variation characteristics of
vegetation NDVI

From 2000 to 2020, the NDVI in Henan Province demonstrated
a consistently upward trend with minor fluctuations, revealing
distinct spatial distribution patterns. Higher NDVI values were
predominantly observed in the western, eastern, and southeastern
regions, while lower values were concentrated in the central and
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FIGURE 1
The location and climate background of Henan Province.

0.6

(a)

0.55

0.5

NDVI

045

»=0.0049x - 9.2802
R*=0.845

04

0.35 . A .

2000 2005 2010 2015 2020

FIGURE 2

The temporal trend of NDVI in Henan Province from 2000 to 2020. (a) Year average, (b) Monthly average.

northern areas. Notably, mountainous regions exhibited
significantly higher NDVI values compared to the plains
(Figure 3). Spatially, regions with elevated NDVI were primarily
located in the mountainous zones of the west and south, particularly
in the Funiu and Tongbai Mountains. These areas, characterized by
dense vegetation cover and NDVI values approaching 1.0, serve as
the ecological core zones of the province, indicating regions of high
environmental quality. Over the two-decade period, these
mountainous ecosystems displayed remarkable stability, with
minimal NDVI variation, suggesting limited anthropogenic

disturbance and robust natural ecosystem resilience.

Frontiers in Environmental Science

In contrast, areas characterized by consistently low NDVI values
were concentrated in the central and northeastern plains,
particularly within the urban agglomeration centered around
Zhengzhou, which includes cities such as Kaifeng, Xinxiang, and
Xuchang. These regions underwent rapid urbanization and
significant land-use transformation, resulting in the conversion of
farmland and vegetated land into urbanized areas, with NDVI values
remaining below 0.4. Nevertheless, recent years have seen witnessed
signs of ecological improvement, largely attributed to the
implementation of ecological restoration policies, such as urban
greening programs and the “Three Lines and One List” planning
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FIGURE 3
The temporal trend of NDVI in Henan Province from 2000 to 2020.

framework. These efforts have facilitated a partial recovery in NDVI
values, thereby demonstrating the efficacy of national ecological
strategies and green development policies in enhancing urban
vegetation coverage, optimizing land wuse, and promoting
environmental sustainability.

Overall, the spatial variation of NDVI in Henan Province from
2000 to 2020 demonstrates distinct regional differentiation, the
western mountainous areas exhibit consistently high ecological
quality; the central plains show a transition from low to
moderately high NDVI values;
urbanized zones are gradually recovering These patterns not only
highlight the inherent natural geographic heterogeneity but also

underscore the significant impact of human activities and targeted

and previously degraded

policy interventions on regional ecological conditions.
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3.2 Characteristics of climate change

3.2.1 Spatiotemporal characteristics of air
temperature

From 2000 to 2020, the average annual temperature in Henan
Province showed a significant upward trend, about 0.03 °C per
decade (Figure 4a). Over this two-decade period, the mean annual
temperature was 14.49 °C, ranging from a minimum of 13.73 °C in
2003 to a maximum of 15.17 °C in 2013 t, indicating a relatively
narrow fluctuation range of 1.44 °C. Since 2010, annual mean
temperatures have consistently exceeded 15 °C, reaching a
historical peak of 18.09 °C in 2016, further corroborating the
regional warming trend. In contrast, temperature variability was
more pronounced between 2001 and 2009, whereas after 2010,
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Temporal and spatial temperature trends in Henan Province from 2000 to 2020. (a) Annual average; (b) monthly average; (c) trends in spatial
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interannual fluctuations decreased while the frequency of high-
temperature years increased significantly. At the monthly scale,
Henan’s temperature exhibited a typical unimodal seasonal
distribution, peaking in July at approximately 27.1 °C and
reaching its lowest values in winter, strongly influenced by both
latitude and the monsoonal climate. Over the 2 decades,
temperatures demonstrated a consistent upward trend, with the
most pronounced warming occurring in winter (0.06 °C per year),
followed by spring and autumn. These changes were accompanied
by phenological shifts, such as earlier onset of spring and delayed
onset of autumn (Figure 4b). Although summer temperatures
remained relatively high, their increases were less marked and
showed greater interannual variability. Notably, NDVI exhibited
a distinct bimodal pattern at the monthly scale, closely correlated
with temperature fluctuations.

Spatially, the temperatures gradient in Henan Province
exhibited an increase from the western mountainous regions
toward the eastern and southern plains. Cooler temperatures,
generally below 10 °C, were recorded in higher-elevation areas
such as the Funiu and Taihang Mountains in the west and
northwest, whereas dominated in the
southeastern and central plains, particularly in the eastern Henan

warmer conditions
Plain, where annual mean temperatures consistently exceeded 15 °C.
Over the period from 2000 to 2020, Henan’s annual mean
temperature demonstrated a persistent upward trend. Spatial
temperature patterns become more homogeneous, with regional
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disparities gradually diminishing. These changes are likely
attributable to global climate warming, intensified urban heat
island effects, and alterations in land use (Figure 4c). Future
studies should incorporate multi-source remote sensing data
alongside meteorological station observations to investigate the
potential implications of this warming trend on regional
ecosystems, agricultural production, and urban environments,
thereby offering scientific underpinnings for climate-resilient
regional development strategies.

3.2.2 Spatiotemporal characteristics of
precipitation

From 2000 to 2020, the annual mean precipitation in Henan
Province was 754.29 mm, exhibiting significant interannual
variability. The highest annual precipitation was recorded in
2003 at 1080.4 mm, whereas the lowest occurred in 2001 at
543.57 mm. This represents an interannual range nearly doubling
the minimum value, with a standard deviation of 124.01 mm,
indicating substantial instability in precipitation patterns
(Figure 5a). The period from 2001 to 2010 was relatively wet,
with 2003 marking the peak precipitation. Conversely, the year
2011-2019 were characterized by drier conditions, particularly in
2019, which experienced exceptionally low precipitation and highly
uneven intra-annual distribution. In 2020, precipitation rebounded
to 874.3 mm, suggesting a cyclical fluctuation pattern in regional
precipitation. At the monthly scale, precipitation displayed distinct
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seasonal characteristics. Summer months (June to August)
constituted the primary precipitation period, accounting for
60%-70% of the annual total, predominantly driven by
convective rainfall (Figure 5b). Winter months (November to
February) had the least precipitation, influenced by cold, dry
continental air masses, with monthly averages often below
30 mm and occasionally dropping to single digits (e.g., 0.74 mm
in January 2007), thereby increasing the likelihood of meteorological
drought. Spring and autumn served as transitional periods, with
monthly precipitation varying between 6.8 and 123.3 mm. Overall,
precipitation in Henan during the 2000-2020 period demonstrated
pronounced spatiotemporal heterogeneity, strongly influenced by
climate, with increasing cyclical and extreme
characteristics.

Spatially, the distribution of precipitation in Henan Province
exhibited significant regional differentiation and phased trends.
Overall, precipitation decreased progressively from south to
north. Specifically, southern regions, such as the Funiu and Dabie
Mountains, demonstrated markedly higher multi-year average
precipitation compared to northern and northwestern areas,
including the Loess Plateau and North China Plain (Figure 5c).
The provincial mean annual precipitation was 772 mm, with the
highest value of 1357.85 mm recorded in Shangcheng County,
Xinyang, and the lowest of 478.3 mm observed in Sanmenxia,
western Henan. The higher precipitation in the southern part of
province can primarily be attributed to its subtropical climate, which

monsoon
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enhances the influence of the summer monsoon and provides
favorable solar radiation conditions. Additionally, orographic
lifting effects associated with complex mountainous and hilly
terrain in western Henan contribute to abundant precipitation in
this region. Conversely, the lower precipitation in Sanmenxia is a
result of the blocking effect of western mountains, which reduces the
influence of the monsoon. Furthermore, northern Henan, located in
a warm temperate zone at higher latitudes, received Iless
precipitation due to its geographical position.

3.3 Characterization of anthropogenic
changes

3.3.1 Characterization of changes in land use types

From 1985 to 2020, land use types in Henan Province
underwent significant changes, marked by a spatial succession
process characterized by the predominance of stable cropland,
rapid expansion of urbanized areas, and gradual restoration of
ecological land (Figure 6). The total area of cropland area
decreased  substantially, contracting from  approximately
120,701 km?* in 1985 to 108,429 km® in 2020, resulting in a net
loss exceeding 12,000 km®. Notably the rate of decline accelerating
after 2010. This reduction can primarily be attributed to rapid
processes of urbanization and industrialization, during which
considerable portions of cropland were repurposed as built-up
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The change trend of land use types in Henan Province from 2000 to 2020.

bodies.
Specifically, approximately 10,264 km® of cropland was converted

land (impervious surfaces), forestland, and water
into impervious surfaces, indicative of extensive urban expansion,
infrastructure development, and the establishment of industrial
park. Meanwhile, the area of forestland expanded steadily by
nearly 2,000 km?, facilitated by proactive ecological conservation
initiatives such as the Grain for Green Project and reforestation
efforts on barren hills. This expansion contributed positively to
enhancing regional ecosystem services and improving
environmental quality. Conversely, the grassland area exhibited a

significant decline, decreasing from approximately 3,444 km* in

Frontiers in Environmental Science

1985 to less than 2,000 km? in 2020. This reduction was primarily
attributed to the conversion of grasslands into built-up land, to a
lesser extent, forestland, likely driven by suburban expansion and
ecological restoration initiatives aimed at grassland-to-forest
conversion. The water body area demonstrated a slight increase,
expanding from 1,732.47 km? to 2,048.32 km?, representing a net
gain of 315.85 km? (18.2%). This growth may be associated with
water conservancy projects, lake and wetland restoration efforts, as
well as enhanced water storage capacity, thereby reflecting improved
regional ecological functions. The impervious surface area
experienced a dramatic surge, increasing from 11,861 km? in
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1985 to 23,589 km’ in 2020, resulting in a net increase of
11,72845 km? (98.9%). This
intensified land use due to rapid urbanization, which has

substantial rise underscores
profound implications for regional water cycles and urban heat
island effects. Lastly, the barren land area showed a marked decline,
decreasing from 16.94 km’ to 2.43 km’ corresponding to a net
reduction of 14.51 km? (85.7%). This trend indicates the
transformation of previously unused land into economically and
ecologically valuable types, highlighting enhanced land resource
utilization efficiency.

Spatially, in 1985, cropland was primarily concentrated in the
central and eastern plains of Henan, serving as the predominant land
use type. By 2020, built-up areas exhibited a concentric outward
expansion, particularly surrounding major cities such as Zhengzhou,
Luoyang, and Kaifeng, resulting in the formation of extensive
artificial surface zones. Simultaneously, forestland in the western
mountainous regions continued to expand, thereby reinforcing
ecological boundaries. The distribution of water body remained
relatively stable, whereas grassland and barren land experienced
consistent contraction. Overall, the land use changes in Henan

Province reflect the dual influences of socio-economic
development and ecological conservation efforts. Under
mounting pressure to safeguard cropland resources, the

expansion of ecological spaces alongside controlled urban growth
signifies a shift toward more intensive, efficient, and ecologically
sustainable land management practices.

3.3.2 Spatiotemporal dynamics of human
activity footprint

From 2000 to 2020, the intensity of human activity footprint in
Henan Province increased markedly, shifting from localized “point-
like aggregation” to extensive “area-wide sprawl” (Figure 7). In 2000,
high-intensity human activity was predominantly concentrated in
Zhengzhou and its surrounding cities, such as Luoyang and Kaifeng,
forming an “isolated island” pattern of distribution. (1) Following
Zhengzhou’s designation as a national central city and the rapid
development of its metropolitan area, by 2020, high-intensity zones
(marked as red areas) had expanded significantly and become highly
concentrated, forming a contiguous region of high-intensity human
activity centered on Zhengzhou and extending to neighboring cities
like Xuchang, Kaifeng, and Xinxiang. This evolution underscores
Zhengzhou’s role as a core driver of intensified human activity and
urbanization, driven by increasing industrial agglomeration,
population influx, and land-use development. (2) Analysis of
annual data reveals that, since 2000, regions along major
transportation corridors, such as the Beijing-Guangzhou Railway,
Lianhuo Expressway, and Zhengmin Expressway, have experienced
periodic intensification of human activity. Between 2005 and 2015,
these areas rapidly merged into continuous high-intensity zones,
forming prominent belt-like regions characterized by intense human
activity. This transformation underscores the pivotal role of
infrastructure  in

transportation guiding spatial

development and promoting an urbanization pattern marked by

regional

“axis-led growth and nodal reinforcement”. Consequently, this
process has facilitated the integration of urban and rural spaces
and accelerated the concentration of population and resources along
these corridors. (3) The western Funiu Mountains and southern
Dabie Mountains have remained largely untouched by human
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activity. Nevertheless, emerging zones with intensified human
footprints have appeared at the edges of these regions, signifying
a transition from pristine natural areas to development buffer zones.
While core ecological areas have not yet undergone significant large-
scale disturbance, the escalating human activity in their peripheries
zones indicates that ecological barriers are increasingly subject to
external pressures.

Opverall, between 2000 and 2020, the human activity footprint in
Henan Province exhibited a spatial expansion pattern characterized
by “central agglomeration, axis-led development, and peripheral
encroachment.” The high-intensity expansion of the Zhengzhou-
centered urban agglomeration,

rapid development along

transportation corridors, and gradual encroachment upon
ecological boundaries highlight the inherent tension between

urbanization and ecological conservation.

3.3.3 Characteristics of water use change

From 2000 to 2023, water consumption in Henan Province
exhibited overall stability, phased fluctuations, and a continuous
Total
consumption ranged from 18.762 billion m® to 24.057 billion m?,

optimization of water use structure. annual water
with an average of approximately 22.3 billion m’. In recent years,
total water consumption has stabilized and shown a slight decline,
reaching 20.878 billion m? in 2023, which is near the historical low
(Figure 8).

The evolution of water consumption can be categorized into
three distinct phases: (1) 2000-2009: Total water use exhibited
significant fluctuations, increasing from 20.487 billion m® in
2000 to 23.371 billion m® in 2009, with a marked low point in
2003 at 18.762 billion m’. These variations were predominantly
influenced by interannual changes in meteorological conditions and
irrigation requirements impacting agricultural water use. (2)
2010-2019: Total water consumption stabilized within the range
0f22.0 and 24.0 billion m?, reaching its peak in 2013 at 24.057 billion
m®. During this phase, improvement in water allocation efficiency
was observed, along with a gradual shift in the water use structure.
(3) 2020-2023: Total water use demonstrated a downward trend,
decreasing by approximately 12% from 23.714 billion m® in 2020 to
20.878 billion m® in 2023. This reduction is likely attributed to
advancements in water-saving technologies, optimization of
industrial structures, and an enhanced focus on ecological water use.

Agricultural water use (encompassing agriculture, forestry, and
fisheries) remained the dominant component of total water
consumption, accounting for 50%-70%. In 2000, agricultural
water use was 13.420 billion m® (65.5% of the total), decreasing
to 11.860 billion m® (56.8%) by 2023. Despite this reduction,
agriculture continued to dominate water use, reflecting Henan’s
strong reliance on water resources for agricultural production. The
decline in agricultural water use can likely be attributed to the
widespread adoption of water-saving technologies, such as drip
irrigation, and improved irrigation efficiency.

Industrial water use exhibited a significant decline, decreasing
from 4.173 billion m® (20.4%) in 2000 to 2.070 billion m® (9.9%) in
2023, representing a reduction of over 50%. Between 2000 and 2010,
industrial water uses experienced modest growth, reaching its peak
at 5.557 billion m’. However, it subsequently underwent a rapid
decline, particularly during the period of 2020-2023, went it fell
from 3.559 billion m® to 2.070 billion m’. This trend can be
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attributed to industrial restructuring and implementation of
advanced water efficiency measures.

Domestic and ecological water use showed a steady increase,
primarily attributed to urbanization and enhancement of living
standards. In 2000, this category accounted for 2.894 billion m’
(14.1%), which increased to 4.211 billion m® (20.2%) by 2023. The
highest recorded value was 6.43 billion m® in 2018, followed by
stabilization. This growth pattern underscores the significant
impacts of rapid urbanization, improved quality of life and
heightened demand for ecological restoration efforts.

In summary, from 2000 to 2023, Henan’s total water
consumption has remained relatively stable, with a downward
trend observed in recent years. The water use structure has
undergone substantia optimization, characterized by a declining
proportion of agricultural water, a significant reduction in industrial
water use, and a steady increase in domestic and ecological water
use. These changes reflect the impacts of regional economic
restructuring and social development. However, considerable
interannual fluctuations in water resources and supply-demand
imbalances in certain periods underscore the persistent challenges
in water resource management.

4 Discussion

4.1 Spatiotemporal trends of NDVI in
henan province

From 2000 to 2020, the NDVI in Henan Province showed an
overall upward trend over the past 2 decades, and the ecological
conditions improved (He et al., 2021; Yan et al, 2020). We
discovered a significant positive correlation between NDVI and

temperature (R = 037, p < 0.05) as Henan’s annual mean

temperature rose markedly (Equations 3-8). An increase in
temperature effectively extends the growing season in temperate
regions, advancing spring phenology and delaying autumn
phenology,

vegetation photosynthesis. Meanwhile, in relatively sufficient

thereby providing a longer time window for

moisture  plains, moderate warming directly enhances
photosynthetic enzyme activity, thereby boosting net primary
productivity and ultimately manifesting as increased NDVI
values. However, unlike the direct driving effect of temperature,
precipitation influences are more complex. Precipitation in the study
area showed fluctuating declines, yet its interannual correlation with
NDVI was weak. In line with previous studies, this upward NDVI
trend is particularly pronounced in ecologically sensitive areas, such
as western mountainous regions and the hilly areas along the Yellow
River, including the Funiu and Taihang Mountains (Zhu et al., 2019;
Duo et al., 2016). This enhancement is attributed to both climatic
and anthropogenic factors. Specifically, regional warming,
particularly during winter and spring, has extended the growing
season, thereby enhancing vegetation productivity (Zhang L. et al.,
2022). Additionally, national and provincial ecological restoration
policies have played a crucial role in driving this positive change.
Henan Province has proactively implemented a series of major
initiatives, including the Grain for Green Program, the Three-
North Shelterbelt Forest Program, and ecological redline zoning.

These efforts have led to extensive afforestation and reforestation
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activities, particularly in mountainous areas, where forest and
grassland ecosystems have exhibited substantial recovery (Liu and
Lei, 2015; Chen et al., 2024). Moreover, agricultural transformation
in Henan has facilitated land-use optimization through measures
such as expanding silage maize cultivation and promoting high-
quality forage production. These strategies have not only advanced
agricultural modernization but also improved land cover quality and
vegetation density (Chen et al., 2022). Remote sensing data further
demonstrate that such land-use restructuring efforts have
substantially increased NDVI in previously degraded rural
the

agricultural policies to deliver co-benefits for food security and

landscapes,  highlighting potential of  well-designed
ecosystem integrity.

Despite the generally positive trend in NDVT, significant spatial
heterogeneity remains evident. Regions undergoing rapid
urbanization, particularly the Zhengzhou-Luoyang industrial
corridor and the northeastern plains, exhibit stagnant or slightly
declining NDVTI values. These declines are predominantly attributed
to the transformation of cropland and green spaces into impervious
urban surfaces, which disrupts ecological connectivity and reduces
vegetation cover (Xiao et al., 2024; Ren et al., 2022). Urbanization
further the effect,

microclimates conditions and potentially inhibiting vegetation

intensifies urban heat island altering
growth in urbanized areas (Yang et al., 2022). Moreover, the
analysis highlights that spatial and temporal patterns of NDVI
are scale dependent. High-resolution satellite data reveal localized
patches of vegetation degradation or greening that may be
overlooked by coarser-scale assessments. This emphasizes the
necessity of employing multi-scale approaches to accurately
evaluate ecological conditions in regions undergoing complex
socio-environmental transformations (Jia 2023;

et al., 2022).

et al, Guo

4.2 Analysis of factors influencing NDVI in
henan province

The spatiotemporal variations in the Normalized Difference
Vegetation Index (NDVI) are influenced by multiple factors, with
climate change (notably temperature and precipitation) and human
activities being the predominant drivers. Between 2000 and 2020,
Henan Province experienced a substantial increase in annual mean
temperature, rising by approximately 1.55 °C at an average rate of
0.03 °C per year. This warming trend was most pronounced in
eastern and northern Henan, largely attributed to rapid
urbanization, industrialization, and increased greenhouse gas
emissions (Liu et al, 2022). Statistical analysis revealed a
significant positive correlation between NDVI and temperature
(R = 0.32, p < 0.05), suggesting that moderate warming prolongs
the growing season and enhances photosynthetic efficiency, thereby
promoting vegetation growth and greenness. Spatially, the positive
impact of temperature on NDVI was more evident in the plains,
such as the eastern Henan Plain and the northern Huang-Huai
Plain. Conversely, complex relationships, including localized
negative correlations, were observed in the western mountainous
and southern hilly regions, likely due to limited heat accumulation,
reduced sunlight, or localized temperature inversions. These
findings indicate that the beneficial effects of warming on
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vegetation growth are constrained in areas with topographically
complex. Our statistical analysis reveals a significant positive
correlation between NDVI and temperature (R = 0.32, p < 0.05),
a finding that is highly consistent with an extensive body of previous
research. Moderate climate warming is widely recognized as a key
driver of vegetation activity, operating through primary mechanisms
such as an extended effective growing season (Shen et al., 2015). For
instance, studies have shown that rising temperatures significantly
advance spring phenology in high-altitude regions like the Tibetan
Plateau, providing a longer temporal window for vegetation growth.
Concurrently, where hydrothermal conditions are favorable,
elevated temperatures can directly enhance photosynthetic
efficiency and Net Primary Production (NPP), thereby promote
biomass accumulation and increase vegetation greenness (Shen
et al., 2016).

In contrast, the influence of precipitation changes on NDVIis
more complex and indirect. Between 2000 and 2020, annual
mean precipitation in Henan Province exhibited a fluctuating
downward trend, with a cumulative decrease of approximately
121 mm, equivalent to a 12.2% reduction, predominantly in
central and eastern Henan. Despite the weak correlation
between NDVI and precipitation at the interannual scale, this
partially reflects the mitigating effects of widespread irrigation
systems and advanced agricultural water management, which
diminish vegetation’s reliance on natural precipitation (Jian
et al., 2022). For instance, in 2018, despite lower precipitation
levels (504.19 mm), NDVI remained relatively high (0.5017),
underscoring the pivotal role of irrigation in sustaining
vegetation growth.

4.3 Human activities impact on NDVI change

4.3.1 Impacts of land use change on NDVI

From 1985 to 2020, Henan Province underwent a three-phase
transformation in land use patterns, characterized by cropland
reduction, expansion of impervious built-up areas, and ecological
land restoration (Zhao et al., 2024). This trajectory highlights the
complex interplay between rapid urbanization and ecological
restoration initiatives. Statistical analysis demonstrated a robust
positive correlation between the NDVI and cropland area
(R = -0.76, p < 0.01), emphasizing the critical role of agricultural
land in maintaining vegetation cover (Figure 9). Over the 35-year
period, cropland area decreased by over 12,000 km?, predominantly
converted into impervious built-up land, which expanded by
11,728.45 km’, thereby suppressing NDVI  due
diminished vegetation cover (Yan et al, 2020). In contrast,

local to
forestland increased by approximately 2,000 km?, particularly in
the western mountainous regions, driven by ecological initiatives
such as the Grain for Green Project and afforestation of barren hills.
These efforts significantly enhanced NDVI, with areas of forest
expansion closely corresponding to regions exhibiting significant
NDVI improvement (Qin et al., 2024).

NDVI demonstrated significant positive correlations with grassland
(R=-0.82, p < 0.01) and water areas (R = —0.67, p < 0.01). Despite the
reduction in grassland, partly due to their conversion into forestland or
built-up areas, which caused temporary disruptions NDVI, the long-
term optimization of vegetation composition and the balanced
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configurations of forest and grassland ecosystems contribute to an
overall increase in surface greenness. Additionally, the controlled
expansion of water bodies ensured stable water availability, thereby
supporting the enhancement of NDVT in adjacent areas.

We employed the SHAP method to evaluate the contribution of
the drivers to NDVI changes in Henan Province. The results of the
feature importance analysis (Figure 11) indicated that Grassland,
Cropland, and Barren were the dominant drivers influencing the
spatial distribution of NDVI in this region, with their average
absolute SHAP values significantly higher than other variables.
This indicates that the model is most sensitive to changes in
these three land cover types when predicting NDVI (Equation 9).
Other factors, such as HAF, Shrub, Water, and Forest, also
demonstrate certain predictive capabilities, while Impervious
surfaces exhibit the weakest overall influence. The SHAP
dependence plots (Figures 11b-g) further reveal the complex
nonlinear relationships and marginal effects between key factors
and NDVI. In particular: Grassland exhibits a consistent positive
contribution to NDVI, with its SHAP value increasing as grassland
area expands (Figure 11b). Barren land and water bodies exhibit
strong monotonically negative effects (Figures 11d,g). Barren land,
due to its lack of vegetation cover, and water bodies, owing to their
strong absorption of near-infrared spectra, both lead to a significant
decrease in the model-predicted NDVT values as their areas increase.
More significantly, cropland exhibits a pronounced inverted
U-shaped nonlinear pattern (Figure 10c). Within a certain range,
increasing cropland area strongly drives NDVI upward, consistent
with Henan Province’s status as a major agricultural region featuring
dense, healthy vegetation during crop growing seasons. However,
this positive effect begins to diminish and even turns negative once
Cropland reaches a threshold. This may reflect factors such as fallow
periods, dense infrastructure, or

agricultural landscape

fragmentation in areas with extremely saturated cropland
coverage, collectively exerting a suppressing effect on the overall
regional NDVI. The effects of HAF (Human Activity Factor) and
Shrub also exhibit nonlinearity. HAF displays an inverted U-shaped
relationship similar to cultivated land (Figure 11¢), indicating that
moderate human activity (e.g., urban green spaces, ecological
corridors) enhances vegetation cover, while excessively low or
high activity levels (e.g., wastelands or highly urbanized areas)
produce negative impacts.
U-shaped relationship (Figure 11f), with negative contributions at

Shrub cover exhibits a unique

medium densities and positive contributions at low and high
densities. This may reveal the complex influence of shrubs on
remote sensing vegetation indices across different succession
stages or community structures.

4.3.2 Evolution of human activity spatial patterns
and NDVI response

Between 2000 and 2020, Henan Province demonstrated a
pronounced spatial expansion pattern characterized by central
agglomeration around the Zhengzhou urban cluster, corridor-
guided development along transportation networks, and peripheral
extension into ecologically sensitive areas. High-intensity human
activities transitioned from isolated “point-like islands” to extensive
“surface sprawl,” spreading outward from Zhengzhou to neighboring
cities such as Xuchang, Kaifeng, and Xinxiang. These activities,
accompanied by an increase impervious surface and intensified
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The trend of water consumption in Henan Province from 2000 to 2020.

urban heat island effects, exerted pressure on NDVI through
2022).
Nevertheless, urban greening initiatives and ecological planning

modifications to surface albedo (Zhang Y. et al,
alleviated these impacts, leading to a significant positive correlation
between urban pixel count and NDVI (R = 0.95, p < 0.01), thereby
underscoring the efficacy of strategic green space allocation in
mitigating the ecological consequences of urbanization.

Ecological measures, including the establishment of greenway
networks and forested buffer zones along transportation corridors,
have significantly enhanced local NDVI levels and strengthened
regional ecological connectivity. Nevertheless, peripheral areas of
key ecological barrier zones, such as the Funiu Mountains in the west
and the Dabie Mountains in the south, are experiencing increasing
anthropogenic pressures. These regions are gradually transitioning
from protected to developed zones, which poses a significant threat
to the long-term stability of NDVT in these ecologically sensitive
areas. Therefore, it is imperative to implement robust management
and protection mechanisms to safeguard against future vegetation

degradation.

4.3.3 Water use structure optimization and
NDVI response

From 2000 to 2023, total water uses in Henan Province
exhibited a pattern characterized by overall stability, periodic
fluctuations, and structural optimization. In 2023, it stabilized at
20.878 billion cubic meters, which is close to a historical low. This
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trend highlights enhanced water resource efficiency driven by the
adoption of water-saving technologies, optimized water uses
structures, and an ecological priority strategy, all contributing
to the recovery of vegetation ecosystem (Wei et al., 2022).
Although
proportion decreased from 65.5% of total water use in 2000 to

agricultural water use remains dominant, its
56.8% in 2023. The implementation of advanced water-saving
irrigation techniques, such as drip and sprinkler systems,
significantly improved water use efficiency, thereby enhancing
the drought resilience of crops and natural vegetation and
thereby positively influencing the NDVI. Correlation analysis
revealed statistically significant positive relationships between
NDVI and total water use (R = 0.51, p < 0.01), agricultural,
forestry, and fishery water use (R = 0.44, p < 0.05), and farmland
0.61, p < 0.01). These findings

emphasize the pivotal role of efficient water allocation in

irrigation water use (R
maintaining regional vegetation cover.
4.4 Comprehensive assessment and
mechanism synthesis

From 2000 to 2023, Henan Province demonstrated a sustained
upward trend in the NDVI, attributable to the synergistic interplay

of human activities, ecological engineering projects, and optimized
resource management. The expansion of urban areas and the
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Correlation between NDVI and human activity factors.
transformation of cropland into impervious built-up areas exerted Mechanistically, the enhancement of NDVI reflects

localized pressure on NDVI, particularly in regions with high-
intensity human activity zones and along transportation corridors
(Chen et al, 2023; Yang K. et al., 2021). Conversely, large-scale
ecological restoration programs, such as the Grain for Green Project,
alongside optimized water resource allocation and intensified urban
greening policies, significantly bolstered vegetation resilience against
climatic stressors and anthropogenic disturbances (Weng, 2001).
Collectively, these facilitated NDVI
improvements and ensured spatial equilibrium amidst increasing
human activity intensity.

initiatives consistent
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pronounced “structural regulation” effect, which is primarily
driven by strategic adjustments in land use, water resource
allocation, and spatial development patterns. The processes of
urbanization and industrialization have accelerated the expansion
of central cities, particularly Zhengzhou, leading to the conversion of
cropland into built-up areas and imposing structural constraints on
vegetation cover. However, guided by the principles of ecological
Henan Province has
afforestation programs, adopted advanced water-saving irrigation

civilization, implemented large-scale

technologies (e.g., drip and sprinkler systems), and optimized water
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Mean Contribution of Each Factor to NDVI Prediction (a) and SHAP Dependence Plots (b—g).

resource management structures. These initiatives have bolstered
the adaptive capacity of both urban and agricultural systems to cope
with drought and anthropogenic pressures, thereby contributing to
positive NDVI responses. For instance, the stabilization of total
water uses at 20.878 billion cubic meters in 2023, along with the
transition toward more efficient agricultural water use (from 65.5%
in 2000 to 56.8% in 2023), underscores the role of resource
optimization in sustaining vegetation cover.

4.5 Limitations and future research
directions

This study employed correlation analysis, feature importance
analysis (SHAP), random forest models, and relevant mathematical
statistical methods to analyze the spatiotemporal variation
characteristics of NDVI
2020 and discussed the contributions of climatic and human

in Henan Province from 2000 to

driven factors which still present certain limitations. Firstly, the
reliance on correlation analysis and feature importance analysis,
while effective in identifying dominant factors, fails to fully unravel
the feedback mechanisms between NDVI and various factors.
Future research should adopt more advanced causal inference
models, such as Structural Equation Modeling (SEM), to clarify
these intricate relationships, thereby transcending attribution
analysis and achieving a deeper mechanistic understanding.
Secondly, this research should investigate the nonlinear responses
and interactions between climate change and human activities more
thoroughly. Future studies should focus on quantifying these
interactive effects, utilizing machine learning and other nonlinear
models to identify critical thresholds. Finally, addressing scale-
dependent effects is crucial. The impacts of climate change and
human activities on NDVI dynamics may vary significantly across
different spatial and temporal scales. Future studies should adopt
multi-scale analytical frameworks (geowarranted regression or
wavelet analysis) to explicitly examine how the strength and
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direction of drivers vary with scale, thereby providing spatially
precise insights for developing more targeted policies.

5 Conclusion

This study systematically investigated the spatiotemporal dynamics
of the Normalized Difference Vegetation Index (NDVI) in Henan
Province from 2000 to 2020 and quantified the contributions of its
driving factors. Our findings reveal a significant and robust greening
trend across the province, with an average annual NDVTI increase of
0.0049. Spatially, vegetation cover exhibited significant heterogeneity,
forming a distinct pattern of high NDVI values in the mountainous
regions of the southwest (Funiu and Tongbai Mountains) and lower
values in the highly urbanized Central Plains urban agglomeration,
particularly around the Zhengzhou metropolitan area.

More
demonstrates that human activities were the dominant force shaping
this vegetation trajectory, contributing to 92.6% of the observed NDVI
variance. Specifically, the SHAP model results elucidated the nuanced
impacts of different land cover types: the expansion of Grassland

importantly, our quantitative attribution analysis

consistently exerted a positive influence on NDVI, whereas Barren
land and Water bodies showed strong, monotonic negative effects.
These results suggest that while rapid urbanization imposed significant
pressure on regional ecosystems, its negative impacts were effectively
counteracted and outweighed by large-scale ecological engineering
initiatives. Policies promoting afforestation, grassland restoration,
efficient water resource management, and urban green infrastructure
have been pivotal in enhancing vegetation cover and overall
ecological quality.
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