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Introduction: Landslide frequency and ecological fragility jointly constrain
Luding’s development. Clarifying the regional landslide distribution pattern and
associated ecological hazards is critical for scientific disaster prevention and
ecological management.
Methods: This study first considers internal and external geodynamic factors and
analyzes the spatial distribution pattern of landslides in Luding County. Secondly,
the Geographical Detector Model (GDM) was employed to quantify the influence
of various factors on the distribution of landslides. Then, the RX-Stacking
ensemble learning model was utilized to assess landslide susceptibility in
Luding County. Finally, using land use type changes, the weight of ecosystem
service value, and landslide occurrence probability three key factors, this study
quantified the ecological damage induced by landslides and constructed an
evaluation model for landslide-induced ecological damage. Based on this
model and the susceptibility assessment results, an ecological vulnerability
assessment of Luding County was conducted.
Results: The following conclusions were drawn: (1) Landslides in Luding County
are densely distributed, with an over-all distribution density of 0.19 sites/km2; (2)
Rainfall, distance to fault zones, and Bouguer gravity anomaly gradient had the
most significant influence on the distribution of land-slides, with q values of 0.24,
0.18, and 0.10, respectively; (3) Interactions between factors exhibit a nonlinear
enhancement effect, with any two-factor synergy significantly surpassing the
influence of individual factors on landslide spatial distribution. Among these
interactions, the one between rainfall and distance from the fault zone exerts
the greatest influence, with a q value of 0.37; (4) Compared with the Random
Forest (RF) model and Extreme Gradient Boosting (XGBoost) model, the RX-
Stacking ensemble learning model has an AUC of 0.926, and its landslide
susceptibility evaluation is better than the other two models, with good
generalization; (5) The distribution of landslide susceptibility levels and
ecological vulnerability levels exhibits a high degree of consistency. High/
extremely high vulnerability zones are predominantly clustered in the eastern
region with prominent ecosystem service functions, while low/moderate
vulnerability zones are mainly clustered in the western region with weaker
ecosystem service capacities.
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Discussion: The GDM results confirm that rainfall distance to fault zones, and
Bouguer gravity anomaly gradient factors are the core controllers of landslides in
Luding County, providing a basis for identifying high-risk landslide areas. The non-
linear enhancement of factor interactions highlights the necessity of multi-factor
synergy analysis in landslide risk assessment, avoiding the limitations of single-
factor analysis. The superior performance of the RX-Stacking model ensures the
reliability of susceptibility results, which is a key prerequisite for accurate ecological
vulnerability evaluation. The spatial consistency between high susceptibility and
high ecological vulnerability indicates that landslide prevention in the east should
be integrated with ecological protection. In contrast, the western region can adopt
targeted management strategies based on its weaker ecosystem service capacity.
Overall, this study provides a scientific framework for landslide prevention and
ecological management in Luding County, and its methods can be referenced for
similar mountainous areas facing combined geological and ecological risks.

KEYWORDS

landslide, geographical detector model, ensemble learning model, susceptibility
assessment, ecological vulnerability

1 Introduction

Western Sichuan is located on the eastern margin of the Tibetan
Plateau. This region features highly complex topographic and
geological conditions, characterized by steep terrain, high seismic
intensity, and a fragile geological environment, resulting in frequent
landslide disasters. As a highly hazardous natural phenomenon,
landslides pose significant threats to ecological systems, social
stability, and human survival (Guzzetti et al., 2018). Integrating
deep and shallow geodynamic factors, adapting to spatial
heterogeneity in their effects, and quantifying the coupling
between landslide risk and ecological damage to achieve fine-
grained regional assessments of susceptibility and vulnerability
have long been central challenges in landslide disaster mitigation
and ecological protection. Addressing these challenges is essential to
effectively enhance capabilities in landslide prediction, early
warning, and prevention.

Landslide susceptibility assessment predicts the probability of
landslide occurrence within a region by analyzing inherent
relationships between predisposing factors and the spatial
distribution of landslides (Wu et al., 2016; Liu et al., 2022).
Ecological environmental damage refers to adverse changes in
environmental components and biological elements, resulting
from environ-mental pollution or ecosystem destruction, which
consequently diminish ecosystem functionality and service
provision (Wang et al., 2025). Landslides cause abrupt, short-
term catastrophic alterations to ecosystems. Given the high
ecological sensitivity and vulnerability of the study area, major
landslide events would inflict serious impairment on its
ecosystem services. In recent years, landslide events have
intensified in terms of severity, frequency, and scale, exemplified
by the “April 1 Ya’an Landslide” in 2016 and the “June 24 Maoxian
Land-slide” in 2017, and the mass landslides caused by the 6.8-
magnitude earthquake in Luding, Sichuan in 2022 (Wang et al.,
2018; Yang et al., 2020). These disasters not only caused direct
casualties and property losses but also resulted in extensive
vegetation destruction and soil erosion, severely degrading local
ecosystems. Statistical data indicate that in recent years, landslide
disasters in this region have caused over a thousand casualties and

billions of yuan in direct and indirect economic losses, and
incalculable long-term ecological damage.

Following the “5.12” Wenchuan Earthquake, an increasing
number of scholars have focused their research on Western
Sichuan. Through field investigations and remote sensing
interpretation of landslides, studies have explored the background
and devel-op-mental characteristics of landslide disasters across
varying scales and regions (Huang and Li, 2008; Zhao et al.,
2024). Multifactor sensitivity analyses indicate that endogenic
and exogenic dynamic fac-tors-including slope angle, rainfall,
lithology, and seismic activity—significantly in-fluence the
spatiotemporal distribution patterns of landslides (Yang et al.,
2018; Fan et al., 2018; Shu et al., 2022; Gu et al., 2023).

Current research primarily focuses on the influence of shallow
geodynamic processes on the development and distribution patterns
of landslides (Convertino et al., 2013; Dandridge et al., 2023). For
instance, studies reveal that landslide density exhibits a positive
correlation with rainfall return periods rather than single extreme
rainfall events (Mtibaa and Tsunetaka, 2023); research on geohazard
distribution in the Lhasa region of Tibet demonstrates that
landslides predominantly occur at elevations between
4,300–5,300 m and within topographic relief ranges of
1,100–1,500 m, with land-slide abundance indices continuously
increasing alongside slope steepness (Ma et al., 2024).
Concurrently, deep geodynamic processes such as crustal
movement and tectonic stress fields also play critical roles in
landslide initiation and progression (Cloetingh and Willett, 2013;
Xie et al., 2021). However, quantitative investigations into the
impacts of deep geodynamic factors and nonlinear coupling
effects among multiple factors remain insufficient.

Current susceptibility assessment primarily adopt two
methodologies: statistical models and machine learning
approaches (Dikshit et al., 2020; Merghadi et al., 2020). Statistical
models quantify landslide probabilities using mathematical
formulations, offering strong interpretability, but they exhibit
limited capacity to model complex nonlinear relationships
(Reichenbach et al., 2018). In contrast, machine learning methods
leverage data-driven strategies to capture multi-dimensional feature
correlations, achieving significant improvements in prediction
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accuracy (Huang et al., 2024). However, the substantial variations in
geological environments and dominant controlling factors across
regions render single-model frameworks inadequate. There is an
urgent need to integrate the strengths of diverse models to enhance
the precision of landslide susceptibility assessments (Fang et al.,
2021). Moreover, existing approaches predominantly rely on global
uniform modeling strategies, failing to sufficiently account for
spatial heterogeneity in landslide distribution patterns across
subregions.

Apart from enhancing the accuracy of landslide susceptibility
assessment, traditional susceptibility-focused studies often neglect
the potential ecological impacts of landslides, especially critical in

ecologically sensitive regions like western Sichuan, where landslides
frequently cause vegetation destruction and soil erosion (as noted
earlier with the 2022 Luding earthquake-induced landslides). From the
perspective of a complete disaster risk system, it is therefore necessary
to integrate ecological vulnerability evaluation to comprehensively
characterize the potential ecological impacts of disasters, thereby
forming a holistic assessment of landslide risk (Xu et al., 2023).

Building on this foundation, the present study collected
landslide data from Luding County in Western Sichuan. To
account for the influence of spatial heterogeneity, the geo-
graphical detector model was employed to investigate the spatial
distribution patterns and dominant controlling factors of landslides

FIGURE 1
Geographical location of the study area: (a) Map of China (b) Map of Sichuan Province (c) map of Luding County.
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in Luding County under the combined effects of internal and
external geodynamic factors and their coupling mechanisms. On
this basis, through feature optimization, the RX-stacking ensemble
learning model and ecological environment damage assessment
model were used to evaluate the landslide susceptibility and
ecological vulnerability, effectively eliminating the prediction bias
caused by spatial feature heterogeneity and improving the
universality and prediction accuracy of the model. Through this
study, not only has a scientific basis been provided for the prevention
and control of landslide disasters in Luding County, but effective
identification of potential ecological risk areas for landslides has also
been achieved. It also provides reference and guidance for the study
of landslide disasters and their ecological risk assessment in other
areas of western Sichuan.

2 Study area

The western Sichuan Plateau constitutes a stepped transition
zone extending from the western hilly margins of the Sichuan Basin

to the Longmen Mountains in northwest-ern Sichuan and the
eastern periphery of the Qinghai-Tibet Plateau. Characterized by
intricate gully networks, deeply incised valleys, complex lithological
compositions, and multiple superimposed tectonic units, this region
exhibits a geologically exceptional environment. Luding County,
situated in the central-eastern portion of western Sichuan (Figure 1),
features a dramatic topography where the Qionglai Mountain Range
dominates the eastern sector and the Daxue Mountain Range
occupies the west. The Dadu River traverses the intermontane
valley between these two ranges in a north-south orientation.
Intense neotectonic movements have generated significant
vertical relief between the river and adjacent mountains,
sculpting distinctive geomorphological features including
truncated slope surfaces, steep gradients, fragmented rock masses,
and extensive bedrock exposure. The Dadu River, as the principal
drainage artery within the study area, commands a catchment of
2,020.7 km2. Characterized by rapid flow velocities and pronounced
downcutting dynamics, its persistent fluvial scouring promotes
widespread slope toe degradation.

Climatically governed by the synergistic interplay between
subtropical monsoons and plateau cold-air masses, the region
exhibits distinct seasonal patterns: dry-warm winters contrast
with humid summers, featuring a mean annual temperature of
15.5 °C. The annual rainfall is 664.4 mm, and the rainfall is
mostly concentrated from May to October (Figure 2). The
interaction between the rainfall concentration period and steep
terrain exacerbates the development of surface erosion and
geological disasters.

There are various types of landslides in this area, mainly
consisting of accumulation layer landslides, which can be further
divided into residual slope layer landslides, clay and glacier
accumulation layer landslides (Guo et al., 2021). Typical
landslides are shown in Figure 3. Structurally, Luding County is
a typical intersection of multiple tectonic systems, located at the
junction of the northern section of the Sichuan Yunnan north-south
tectonic belt, the northeast trending fault zone of Longmenshan, and
the northwest trending active fault zone of Xianshuihe River.
Among them, the Xianshuihe fault zone has the most intense
activity (Ma et al., 2023). In addition, the strata of Luding
County span from the Quaternary to the Sinian period, with the
Mesozoic, Paleo-zoic Triassic strata and Precambrian metamorphic

FIGURE 2
Monthly average rainfall in the study area.

FIGURE 3
Typical landslides in the study area. (a) Gancao village ancient landslide; (b) Daping landslide.
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rock layers being the most extensive, with complex and fragmented
lithology. This complex geological structure provides the basic
conditions for frequent landslides.

3 Data sources and research methods

3.1 Data sources

Based on the national spatial distribution data of geological
hazard points, the Luding County seismic landslide inventory (Dai
et al., 2025), and the landslide points supplemented by field
investigations, this study constructed a landslide dataset for
Luding County, which contains a total of 417 landslides. In order
to analyze the influence of internal and external dynamic factors on
the spatial distribution of landslides in Luding County, this study
selected three external geodynamic factors: Normalized Difference
Vegetation Index (NDVI), rainfall, and human activity intensity, as
well as six in-ternal geodynamic factors: elevation, slope angle, relief
amplitude, Bouguer gravity anomaly gradient, horizontal
deformation gradient and distance from the fault zone for analysis.

The specific data sources include: 30-m resolution Digital
Elevation Model (DEM) data from NASA’s Shuttle Radar
Topography Mission (SRTM); 30-m resolution Google Maps
data; 2022 NDVI data from Google Earth Engine; annual rainfall
data from the National Climate Center. Regional fault zone locations
and land use types data pro-vided by the China Geological Survey.
Bouguer gravity anomaly gradient and horizontal deformation
gradient data provided by Yao et al. (2015).

3.2 Research methods

3.2.1 Geographical Detector Model (GDM)
This study primarily employs numerical statistical methods to

investigate the land-slide distribution patterns in Luding County.
Based on the GDM, the influence of individual factors and their
combinations on landslide distribution is quantified (Wang
et al., 2016).

The GDM is a statistical method designed to quantitatively
evaluate stratified heterogeneity and uncover its underlying driving
forces. Its core concept involves partitioning the study area into
subregions based on variables and comparing spatial variances
within and between these subregions to assess the explanatory
power of potential independent variables on the dependent
variable. A key strength of this model is its ability to
simultaneously identify the independent effects of individual
factors and the interactive effects of multiple factors. The
framework comprises four submodules: factor detector,
interaction detector, risk detector, and ecological detector. The
factor detector assesses the explanatory power of a single
influencing factor on the spatial distribution of landslides. The
interaction detector assesses the combined explanatory capacity
of two interacting factors on the spatial distribution of landslides.
The calculation formula is as follows:

q � 1 − ∑L
h�1 nhσ

2
h

nσ2

Where: q is the degree of interpretation of the influence factor;
nh and σh are the sample size and variance of the driving factor in
layer h; n and σ2 are the full sample size and variance. The value of q
ranges from [0, 1], with larger values indicating a higher degree of
interpretation, thus suggesting a greater influence on the
distribution of landslides.

3.2.2 Random Forest (RF)
The RF model is a type of Bagging ensemble learning method

(Breiman, 2001; Goetz et al., 2015). Its principle involves the
following steps: First, bootstrap sampling is used to randomly
draw K sub-sets with replacement from the original training set.
Each subset is then employed to train a distinct decision tree model,
generating K classification results. Finally, the outputs of all decision
trees are averaged, and this mean value serves as the final prediction
of the mod-el. The tree-based structure of the RF model enables it to
significantly improve approximation accuracy when addressing
discrete optimization problems.

3.2.3 Extreme Gradient Boosting (XGBoost)
The XGBoost model is a type of Boosting ensemble learning

method (Freund and Schapire, 1997). In each iteration, a decision
tree is added, and a strong learner is trained through an additive
strategy that continuously optimizes the model. Its uniqueness lies
in the inclusion of both a loss function and a regularization term in
the objective function (Li et al., 2021). The loss function measures
how well the model fits the data. While traditional gradient boosting
uses the first-order derivative to determine the direction of gradient
descent, the XGBoost model further calculates the second-order
derivative of the loss function, which accounts for the trend of
gradient changes. This enables faster convergence and higher
accuracy. The regularization term controls model complexity. As
the number of leaf nodes increases, the model becomes larger,
computational time grows, and excessive nodes may lead to over-
fitting, degrading classification performance. XGBoost’s
regularization term acts as a penalty mechanism: the greater the
number of leaf nodes, the stronger the penalty, thereby restricting
their proliferation. The optimal objective function is defined
as follows:

Obj � −1
2
∑
j�1

T

G2
j

Hj + λ
+ γT

In the formula: λ denotes the fixed coefficient; γ represents the
complexity parameter; T is the number of leaf nodes in the tree; Gj

denotes the sum of the first-order partial derivatives of the samples
contained in leaf node j; Hj represents the sum of the second-order
partial derivatives of the samples in leaf node j.

3.2.4 RX-stacking ensemble learning model
Stacking is a heterogeneous ensemble learning method

(Wolpert, 1992). Its principle involves training base learners on
the initial training dataset, then using their predictions to create a
new dataset. In this new dataset, the outputs of the base learners are
treated as novel in-put features for training a second-layer meta-
learner to obtain the final prediction results.

In this study, the RF model and the XGBoost model are
employed as base learners for the Stacking framework. For the
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second-layer meta-learner, Logistic Regression (LR)-a structurally
simple yet robust model with strong generalization capability is
selected to mitigate overfitting risks. Together, these components
collectively form the RX-Stacking ensemble learning model. By
combining the strengths of different ensemble approaches, this
hybrid model reliably handles diverse data scenarios and achieves
more stable and robust results compared to individual models.

To enhance the stability and generalization ability of the model,
the RX-Stacking framework introduces a five-fold cross-validation
mechanism. First, samples are divided into a training set and a test
set through stratified sampling. Subsequently, the training set is
randomly divided into 5 mutually exclusive subsets. In each
iteration, 4 of these subsets are selected as training data to train
the RF and XGBoost base learners, while the remaining 1 subset
serves as a validation set to output landslide probability predictions.
After 5 iterations, the prediction results of all validation sets are
concatenated to form a meta-training set. Once cross-validation is
completed, the base learners are retrained using the entire training
set, and predictions are made on the test set to generate a meta-test
set. Finally, a LR meta-learner is trained using the meta-training set,
and the overall performance of the model is evaluated on the meta-
test set. The hyperparameters of the base learners are optimized via
grid search combined with five-fold cross-validation. The specific
parameter settings are as follows: For the RF model, the number of
decision trees (n_estimators) is 100, the maximum tree depth
(max_depth) is 8, the number of features considered per split
node (max_features) is set to “sqrt”, and the minimum number
of samples required at a leaf node (min_samples_leaf) is 5; For the
XGBoost model, the learning rate (learning_rate) is 0.1, the number
of decision trees (n_estimators) is 150, the L1 regularization
coefficient (reg_alpha) is 1, the L2 regularization coefficient
(reg_lambda) is 0.1, the subsample ratio (subsample) is 0.8, and
the loss function (objective) is set to “binary:logistic”.

3.2.5 Landslide ecological environment damage
assessment model

Landslides can directly cause damage to a series of attachments
such as forest, farmland, and grassland on the slope surface and
below the slope, changing the original land use type and affecting its
ecosystem service functions. Changes in ecosystem service functions
can be effectively evaluated based on changes in land use types.
Therefore, this study chose land use type as the assessment index for
ecological environment damage caused by landslides, which can
intuitively reflect the damage of landslides to regional ecosystem

functions. China’s land use types primarily comprise six major
categories: forest, grassland, wetland, water bodies, farmland, and
other difficult to utilize lands. This study employs these six land use
categories as assessment indicators for landslide-induced ecological
environmental damage. Wang et al. (2025). Calculated the weight
values of landslide ecological environment damage assessment
indicators for six types of land use using the Analytic Hierarchy
Process based on the equivalent factor of ecosystem service value, as
shown in Table 1.

As can be seen, the weight values of different land use types
reflect the proportional contribution of their ecosystem services
per unit area within the ecosystem. That is, the larger the weight
value, the greater the contribution of the corresponding land use
type to ecosystem; conversely, the smaller the weight value, the
smaller its contribution. After a landslide occurs, all natural
environmental factors on the original slope surface, sliding
path, and accumulation area are destroyed. In high vegetation
coverage areas, such as forest, grassland, and farmland. These areas
transform into other difficult to utilize land types, such as exposed
bedrock or accumulated soil.

Therefore, the quantitative assessment model for ecosystem
damage caused by land-slide-induced land use type changes is:

ED � p wi − wj( )[ ]/wi

Where: ED denotes the ecological damage index, ranging
from 0 to 1; p represents the landslide occurrence probability in
distinct susceptibility zones; wi signifies the weight of the
ecosystem service value evaluation indicator for the pre-
disturbance land use type; wj is the weight of the ecosystem
service value evaluation indicator for the post-disturbance land
use type, uniformly assigned as 0.290.

This article first uses numerical statistical methods to study the
spatial distribution of landslides in Luding County under the
influence of internal and external geodynamic. The GDM is used
to calculate the impact of different influencing factors and their
coupling effects on the spatial distribution of landslides. Then, the
factors that have the greatest impact on the distribution of landslides
are selected, and combined with the landslide dataset, the RX-
Stacking ensemble learning model is used to assess the
susceptibility of the study area. On this basis, according to the
landslide ecological environment damage assessment model,
calculate its ecological vulnerability. The technical workflow of
this study is shown in Figure 4.

TABLE 1 Weight of assessment indicators for landslide ecosystem service value.

Land-use type Eigenvector Weight/% Largest eigenvalue CI value

Forest 0.900 15.006 6.000 0.000

Grassland 0.300 4.993

Wetland 2.595 43.245

Water bodies 1.902 31.701

Farmland 0.286 4.765

Other difficult to utilize lands 0.017 0.290
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4 Distribution pattern of landslides in
Luding County

4.1 Overall spatial distribution pattern

The regional area of Luding County is approximately 2,165 km2.
A total of 417 landslides were collected in this study, with their specific
distribution illustrated in Figure 5. Based on calculations, the landslide
density in the study area reaches 0.19 landslides per km2. Landslides
are mainly concentrated in the eastern and southern parts of the study
area, where the elevation is below 3,000 m above sea level, urban
settlements are dense, and human activities are frequent. While areas

above 3,000 m above sea level are characterized by steep terrain,
complex and variable topography, and sparse human habitation,
making it often difficult to comprehensively investigate and
document some landslide disaster sites.

4.2 Distribution pattern under internal and
external geodynamic factors

4.2.1 Rainfall and landslides
Rainfall is the primary triggering factor for landslides. The study

area is classified into three rainfall intensity levels based on annual

FIGURE 4
Technical workflow of the study.

Frontiers in Environmental Science frontiersin.org07

Li and Shen 10.3389/fenvs.2025.1686605

mailto:Image of FENVS_fenvs-2025-1686605_wc_f4|tif
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1686605


average precipitation: 500–800 mm, 800–1,200 mm, and
1,200–1,800 mm, with specific zoning results presented in
Figure 6a. As clearly shown, the 500–800 mm rainfall zone
covers the largest area in the study region, consequently
containing the highest number of landslide points, with
209 landslides and a density of 0.17/km2. Conversely, although
the 1,200–1,800 mm rainfall zone occupies the smallest area, it
exhibits a higher landslide density, with 123 landslides and a density
of 0.41/km2. This pattern demonstrates that increased rainfall
intensity exerts a significant triggering effect on landslide
occurrences.

4.2.2 NDVI and landslides
As a vegetation characterization indicator, NDVI exerts

significant influences on slope hydrological processes including
infiltration and runoff. Additionally, NDVI can serve as a proxy
for quantifying anthropogenic impacts on slopes to a certain extent
(Ma et al., 2021). Specifically, NDVI values typically range
from −1 to 1, with values approaching 1 indicating dense and
healthy vegetation, while negative or near-zero values signify
sparse or ab-sent vegetation cover. The NDVI values were
classified into four categories: -1-0.1, 0.1–0.3, 0.3–0.5, and

0.5–0.8, with spatial zoning results detailed in Figure 6b. The
analysis reveals that the −1.0–0.1 zone predominantly comprises
water bodies, rock formations, bare soil, and snow-capped
mountains, exhibiting minimal human activity and
correspondingly rare landslide occurrences, with only
21 landslides and a density of 0.05/km2. Landslides are primarily
concentrated within the 0.1–0.3 and 0.3–0.5 zones, which contain
66 and 185 landslides, respectively, with densities reaching 0.20/km2

and 0.33/km2. In contrast, the 0.5–0.8 zone, despite covering a
relatively large area, contains 135 landslides with a density of
0.16/km2, which is lower than that observed in the 0.1–0.3 and
0.3–0.5 zones. Collectively, these findings demonstrate that landslide
distribution exhibits preferential clustering in low-to-medium
NDVI ranges.

4.2.3 Human activity intensity and landslides
Land use is influenced by human activities and affects slope

stability. In previous studies, land factors were generally categorized
into nine types based on land use patterns: farmland, forest,
grassland, shrubland, wetland, water bodies, impervious surfaces,
bare land, and glaciers/permanent snow cover. Building on existing
research, these categories were further classified according to human

FIGURE 5
Overall spatial distribution of landslides in Luding County.
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activity intensity: farmland and impervious surfaces represent high-
intensity human activities; forest, grassland, and shrubland
moderate-intensity; while wetland, water bodies, bare land, and
glaciers/permanent snow cover low-intensity. The specific

regional classification results and area statistics are shown in
Figure 6c. It can be observed that the vast majority of landslides
are primarily distributed in areas with moderate to high human
activity intensity. Since regions with moderate human activity

FIGURE 6
The spatial distribution laws of landslides under different influencing factors. (a) rain-fall; (b)NDVI; (c) human activity intensity; (d) elevation; (e) slope
angle; (f) relief amplitude; (g) Bouguer gravity anomaly gradient; (h) Horizontal deformation gradient; (i) distance to the fault zone.
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intensity cover the largest area, they exhibit the highest number of
landslides, with 313 landslides and a density of 0.18/km2. In contrast,
areas with high human activity intensity, despite their smaller spatial
extent, show the greatest landslide distribution density, containing
91 landslides with a density of 0.85/km2. Overall, increasing human
activity intensity correlates with more favorable conditions for
landslide initiation and development.

4.2.4 Elevation and landslides
According to the elevation of the research area, it is divided into

five levels: 964–1500 m, 1,500–2000 m, 2000–2500 m, 2500–3000 m,
and >3000 m. The specific zoning results are shown in Figure 6d. It
can be seen that the vast majority of landslides are mainly distributed
in the elevation ranges of 964–1,500 m and 1,500–2000 m, with
130 and 161 landslides respectively, and corresponding densities of
1.11/km2 and 0.62/km2. In contrast, fewer landslides occur in the
2000–2,500 m elevation zone, with 97 landslides and a density of
0.26/km2, while the 2,500–3,000 m and >3,000 m ranges exhibit
minimal landslide distribution.

4.2.5 Slope angle and landslides
According to the slope angle size of the research area, it is

divided into six levels: 0°–10°, 10°–20°, 20°–30°, 30°–40°, 40°–50°, and
>50°. The specific zoning results are shown in Figure 6e. It can be
seen that the number of landslides is highest in the slope angle
ranges of 20°–30° and 30°–40°, with 91 and 137 landslides
respectively, while landslide distribution is relatively low in other
slope ranges.

4.2.6 Relief amplitude and landslides
Relief amplitude, defined as the elevation difference between the

highest and lowest points within a specific area, serves as a
quantitative indicator for describing geomorphological features
and reflects the favorability of topographic conditions for
geological hazard formation (Yin et al., 2010). Using DEM data,
terrain relief was calculated and categorized into four levels:
20–75 m, 75–300 m, 300–600 m, ≥600 m. The zoning results are
illustrated in Figure 6f. It can be clearly seen that landslides are
mainly distributed in two relief amplitude ranges: 300–600 m
and ≥600 m. These two ranges cover relatively extensive areas
and contain the majority of landslides, with 228 and
162 landslides respectively, and densities of 0.29/km2 and 0.12/
km2. However, in terms of density, the 75–300 m relief amplitude
range exhibits the highest value, with 27 landslides and a density of
0.42/km2. Overall, greater relief amplitude strongly favors landslide
development. Areas with low relief amplitude experience more
frequent human activities, and due to influences such as
engineering projects, the probability of landslide occurrence is
relatively high. In contrast, as relief amplitude increases, the
difficulty of landslide investigation also correspondingly rises.

4.2.7 Bouguer gravity anomaly gradient and
landslides

Deep structures are important factors controlling crustal
stability, and changes in deep geophysical fields are important
manifestations of deep tectonic activity. This study selected the
gradient of Bouguer gravity anomaly as an indicator of regional
crustal stability, calculated by the variation of Bouguer gravity

anomaly values per 20 square kilometer unit (Fu et al., 2014).
The Bouguer gravity anomaly gradient is divided into three
levels: low (0–5), medium (5–10), and high (>10). The specific
zoning results are shown in Figure 6g. It can be clearly seen that the
distribution of landslides is the least in areas with low Bouguer
gravity anomaly gradient, with only 3 landslides and the lowest
density of 0.05/km2. In contrast, the vast majority of landslides are
concentrated in areas with high gradient levels, containing as many
as 362 landslides and reaching the highest density of 0.33/km2. As
the gradient level of Bouguer gravity anomaly increases, the overall
distribution of landslides shows an upward trend.

4.2.8 Horizontal deformation gradient and
landslides

Regions with significant crustal deformation are often
characterized by crustal instability zones, seismic activity zones,
or tectonic stress concentration zones. Horizontal de-formation
gradient is used as an indicator to measure regional crustal
deformation. The unit of horizontal deformation gradient is the
annual average horizontal deformation within a range of 3 square
kilometers. The study area is divided into three levels based on the
magnitude of the horizontal deformation gradient: low (0–1),
medium (1–1.5), and high (1.5–7). The specific zoning results are
shown in Figure 6h. It can be seen that due to the extensive areal
coverage of high-grade zones within the study area, which include
remote and difficult-to-investigate regions above 3,000 m in
elevation, this zone contains the largest number of landslides,
totaling 383. However, it also exhibits the lowest landslide
density, at 0.19/km2. In contrast, low-grade zones account for the
smallest spatial extent, covering only 4.3% of the total study area.
Although these areas contain relatively few landslides, with only
7 landslides, they show the highest distribution density, reaching
0.75/km2.

4.2.9 Distance from the fault zone and landslides
Fault zones are geological structures that are prone to induce

geological disasters, which can lead to discontinuity of slope rock
and soil mass, decrease in strength, and create favorable conditions
for landslide occurrence (Qi et al., 2021). According to the distance
from the fault zone, the study area is divided into five levels:
0–10 km, 10–20 km, 20–40 km, and 40–60 km. The specific
zoning results are shown in Figure 6i. Among them, the area
within 0–10 km of the fault zone has the highest number of
landslides, reaching 184. As the distance from the fault zone
increases, the number of landslides statistically decreases, while
the area within 40–60 km has the lowest number of landslides,
with no landslides distributed in this region. The closer the distance
to the fault zone, the more it favors the development and occurrence
of landslides.

4.3 Importance analysis of
influencing factors

The GDM was applied to assess the influence of nine factors on
landslide spatial distributeon in the study area. These factors
include: rainfall (X1), NDVI (X2), human activity intensity (X3),
elevation (X4), slope angle (X5), relief amplitude (X6), Bouguer
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gravity anomaly gradient (X7), horizontal deformation gradient
(X8), and distance from the fault zone (X9). Interpretability
values (q) for each factor were calculated to quantify their im-
pact. Results are shown in Figure 7.

It can be seen that among all the influencing factors, rainfall,
distance from the fault zone, and Bouguer gravity anomaly gradient
have the greatest impact on the spatial distribution of landslides in
the study area, with q-values of 0.24, 0.18, and 0.10, respectively. In
contrast, the effects of horizontal deformation gradient, slope angle,
and relief amplitude are secondary, with q-values of 0.08, 0.06, and
0.05, respectively. NDVI, human activity intensity and elevation is
relatively small.

The occurrence of landslides is caused by the joint action of
internal and external geodynamic factors. The different
combinations of internal and external geodynamic factors lead to
the differences in the spatial distribution of landslides. Figure 8
shows the influence degree of the interaction of different influence
factors on the spatial distribution of landslide. It can be seen that the
interaction between influence factors is mainly manifest-ed as
nonlinear enhancement effect, and the influence of the
interaction factors of any two factors on the spatial distribution
of landslide exceeds that of a single factor. The interaction between
rainfall and other factors is much greater than that between other
factors. Among them, the rainfall ∩ distance from the fault zone has
the greatest impact on the spatial distribution of landslide, and its q
value is 0.37. The second is rainfall ∩ horizontal deformation
gradient, rainfall ∩ human activity intensity, rainfall ∩ Bouguer

gravity anomaly gradient, with q values of 0.28, 0.28 and
0.27 respectively.

5 Landslide susceptibility and
ecological vulnerability assessment of
Luding County

5.1 Landslide susceptibility assessment

5.1.1 Sample dataset
Considering comprehensively the above analysis results of

landslide influencing factors, this study screened out core
driving factors with stable spatial explanatory power by
leveraging the factor detector function of the GDM. Specifically,
the study selected seven key factors, including rainfall, distance
from the fault zone, Bouguer gravity anomaly gradient, horizontal
deformation gradient, slope angle, relief amplitude, and NDVI to
assess landslide susceptibility. This step serves as the foundation
for eliminating biases caused by spatial heterogeneity, and ensures
that the input features possess stable spatial explanatory power
across different regions.

Based on the data of 417 landslides in Luding County, 417 non-
landslide points were selected in the study area in accordance with
the principle of spatial balance, thus constructing a complete dataset
containing 834 samples. This process takes the spatial differentiation
of rainfall, distance from the fault zone, and Bouguer gravity

FIGURE 7
Interpretability q of different influencing factors on the distribution of landslides.
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anomaly gradient as the core. The study area is divided into multiple
sub-regions, and the number of sampled non-landslide points in
each sub-region is proportional to the number of existing landslide
points. All non-landslide points are located outside the 500 m radius
of landslide points, and priority is given to areas with significant
differences in the characteristics of the dominant landslide-
influencing factors. Subsequently, the stratified sampling method
was adopted to divide the total samples into a training set and a test
set at a 7:3 ratio, thereby ensuring that landslide and non-landslide
samples maintain class balance in both the training and
testing phases.

5.1.2 Model prediction accuracy evaluation
Regional landslide susceptibility assessment in Luding County

was conducted using the RF model, XGBoost model, and RX-
Stacking ensemble learning model, respectively. The susceptibility
levels were classified into five categories using the equal interval
classification method: very low susceptibility (0–0.2), low
susceptibility (0.2–0.4), moderate susceptibility (0.4–0.6), high
susceptibility (0.6–0.8), and very high susceptibility (0.8–1.0)
(Sahana and Sajjad, 2017; Wang et al., 2017). Furthermore, the
median of each susceptibility level interval is taken as the probability

p of landslide occurrence to quantify the potential threat level of
different susceptibility levels to the ecological environment. Detailed
assessment results are illustrated in Figure 9.

To evaluate the prediction accuracy of each model, Receiver
Operating Characteristic (ROC) curves were employed for
validation (Reichenbach et al., 2018). The underlying logic of
ROC curves is that if a test has no diagnostic capability, the
probabilities of generating true positives and false positives are
identical. These curves reflect the relationship between specificity
and sensitivity, graphically representing the trade-off between true
positive rate (TPR) and false positive rate (FPR) (Anis et al., 2019).
The Area Under the Curve (AUC) quantifies model performance,
where a value closer to 1 indicates superior predictive capability,
while an AUC of 0.5 denotes no practical utility. The ROC curves
and AUC values of the three models are shown in Figure 10. The RF
model AUC = 0.895, XGBoost model AUC = 0.903, and RX-
Stacking ensemble learning model AUC = 0.926. All three
models have good prediction accuracy.

Compared with other models, the AUC of RX-Stacking
ensemble learning model for landslide susceptibility assessment
in Luding County is 0.926, which is greater than the AUC of
other models.

FIGURE 8
Interactive detection results of different influencing factors on the distribution of land-slides.
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This indicates that the feature set screened and optimized by the
GDM enables the global model to capture more detailed spatial
variations in landslide susceptibility, thus avoiding underfitting or
overfitting issues caused by spatial heterogeneity. To a certain extent,

RX-Stacking ensemble learning model is better than the other two
models for landslide susceptibility assessment in Luding County
considering a variety of internal and external geodynamic factors.
Compared with basic classifiers and commonly used susceptibility

FIGURE 9
Results of landslide susceptibility assessment in Luding County: (a) RF model; (b) XGBoost model; (c) RX-Stacking model.
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assessment algorithms, RX-Stacking ensemble learning model can
effectively improve the prediction accuracy, and the susceptibility
assessment is more accurate and reliable.

Furthermore, the landslide susceptibility assessment results
of RX-Stacking show that the high and very high susceptibility
zones exactly correspond to the eastern region where actual
landslide disasters are frequent, while the western region with
fewer disasters is correctly classified into low to moderate
susceptibility zones. This high degree of spatial consistency
confirms that the model does not systematically underestimate
or overestimate risks in specific regions due to spatial
heterogeneity, and accurately reproduces the regional
differentiation pattern of landslide risks.

5.2 Ecological vulnerability assessment

According to the landslide ecological environment damage
assessment model, the ecological vulnerability values of each grid
unit were calculated. Then, based on the equal interval classification
method, the ecological vulnerability values are divided into five
levels: very low (0–0.2), low (0.2–0.4), moderate (0.4–0.6), high
(0.6–0.8), and very high (0.8–1.0). The spatial distribution of
different ecological vulnerability levels is shown in Figure 11. It
can be seen that the ecological vulnerability is extremely high and
high, accounting for 48.61% of the total regional area, medium,
accounting for 18.31% of the total regional area, and low and
extremely low, accounting for 33.07% of the total regional area.
The high and high levels of ecological vulnerability are mainly
distributed in the eastern part of the study area, while the low

and extremely low levels are mainly distributed in the western part of
the study area.

6 Discussion

Landslides are not caused by a single factor, but by the
interaction of deep earth geological processes, the surface system,
the atmosphere, and human activities (Peng et al., 2023). Processes
such as regional river valley downcutting triggered by the
continuous uplift of the Qinghai-Tibet Plateau, and rock-soil
mass fragmentation caused by tectonic deformation, manifest as
a superimposed environment of high rainfall, proximity to faults,
and high Bouguer gravity anomaly gradient in the eastern and
southern parts of Luding County. This is precisely the core
geological driving background of the “high both in susceptibility
and vulnerability in the eastern part” discovered in this study.

Internal geodynamic factors such as distance from fault zone,
Bouguer gravity anomaly gradient and horizontal deformation
gradient are indicators of regional tectonic deformation intensity.
Strong tectonic deformation will not only lead to the deformation
and fracture of geological body, but also cause the change of regional
tectonic stress field. And then affect the stability of regional
geological structure. The results of the GDM in this study
provide quantitative support for this feedback mechanism, The
Bouguer gravity anomaly gradient, as an indicator of regional
crustal stability, has a q value of 0.10 for the explanatory power
of landslide distribution, and the landslide density in the high
gradient area is significantly higher than that in the low gradient
area. Meanwhile, landslides are mainly distributed within 0–10 km

FIGURE 10
ROC curves and AUC values of three landslide susceptibility assessment models.
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from faults, and the q value of the interactive explanatory power
between rainfall and distance from the fault zone is as high as 0.37.
These data collectively confirm that strong tectonic deformation
significantly increases landslide risk in Luding County by causing
rock mass fragmentation and tectonic stress concentration.

With the continuous uplift of the Qinghai Tibet Plateau, strong
downcutting of the regional river valley occurred, ac-companied by
severe erosion of the mountains. This geodynamic process has
shaped the geomorphic features of stepped evolution, forming
topographic units such as high mountains, deep valleys and wide
open valleys. In this process, topographic factors such as elevation,
slope angle and relief amplitude provide disaster pregnant
environment for the occurrence of landslide, and play an
important role in promoting the occurrence of landslides. In this
study, a large number of landslides are concentrated in the area
below 3000 m above sea level in Luding County. This region exhibits
the most significant slope unloading effect caused by river valley
downcutting, forming a disaster-prone topographic environment
with high landslide frequency.

The interference of human activity, such as engineering
excavation, destroyed the original stress balance of the slope.
This damage intensifies the development and evolution of the
shallow unloading area of the slope, and creates favorable
conditions for the occurrence of landslides (Song et al., 2023).
The q value of the explanatory power of human activity intensity
on landslide distribution in the study area is 0.04, which is
significantly lower than that of natural factors such as rainfall,
distance from the fault zone, and Bouguer gravity anomaly
gradient. This result is mainly due to the significant overlap
between the spatial distribution of human activities and areas
with high-impact natural factors. Statistics on land use
classification show that areas with moderate to high human
activity intensity are highly spatially coincident with high rainfall
zones, near fault zone areas, and areas with high Bouguer gravity
anomaly gradient. The strong driving effect of natural factors on
landslide development has to a certain extent masked the
independent contribution of human activity, resulting in a low
explanatory power of human activity as a single factor. However,

FIGURE 11
Results of ecological vulnerability assessment in Luding County.
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the interaction between human activity and natural factors has a
significant enhancing effect on landslide distribution. For example,
the q value of the interactive explanatory power between rainfall and
human activity intensity is as high as 0.28, indicating that the
explanatory power for landslide development is significantly
improved when the two act together. At the same time, it should
be objectively noted that the land use index has limited ability to
capture short-term sudden engineering projects. However, field
investigations show that such projects have a small individual
impact range and are relatively scattered in the study area,
making their contribution to the overall distribution pattern of
regional landslides relatively low. Therefore, they do not have a
substantial impact on the effectiveness of the land use index.
Landslide development in the study area is dominated by natural
dynamics, with human activity as a secondary influencing factor.
Under the superposition of the natural background, the role of
human activity is characterized by synergistic enhancement rather
than independent dominance.

Rainfall is an important indicator of the feedback effect of
atmospheric circulation. Under the influence of continuous
rainfall, the physical and mechanical properties of rock and soil
mass continue to deteriorate, resulting in groundwater level
fluctuations and seepage path changes. This seriously affects the
stability of slope rock and soil mass, and is an important trigger
factor for landslides. In this process, NDVI, as an indicator of
vegetation characteristics, has an important impact on slope
hydrological processes such as seepage and runoff through
biological hydrological processes such as canopy interception
regulation, root consolidation effect and transpiration energy
consumption. The rainfall characteristics in the study area exhibit
significant temporal and spatial heterogeneity, rainfall from May to
October accounts for approximately 80% of the annual rainfall, with
rainfall in the eastern Qionglai Mountains area concentrated in the
range of 800–1800 mm, and that in the western Daxue Mountains
area mostly in the range of 500–800mm. The landslide density in the
1,200–1800 mm rainfall area in the east is 2.41 times that in the
500–800 mm rainfall area in the west. Further analysis shows that
this high-rainfall area highly overlaps spatially with the eastern
Xianshuihe fault zone. By increasing the water content of rock and
soil masses and raising pore water pressure, rainfall significantly
reduces the shear strength of rock and soil masses in the fault
fracture zone, forming a synergistic triggering effect between rainfall
and the tectonic fracture zone. It is precisely the concentrated rainy
season, uneven spatial distribution, and overlapping with
structurally fragile areas that make the explanatory power of
rainfall on landslide distribution significantly higher than
other factors.

In the study area, except for the high-altitude snow mountain
areas which show low NDVI values due to natural constraints, other
areas with medium and low NDVI values present a scattered point-
like pattern in the eastern part, and most landslides also occur in
these areas. In these areas with moderate vegetation coverage,
landslide susceptibility is still mainly dominated by the combined
factors of rainfall and fault zone. The infiltration effect of heavy
rainfall significantly offsets the positive role of vegetation in soil
consolidation and water retention, resulting in the independent
contribution of NDVI being masked. In addition, these medium
and low NDVI areas in low-altitude zones often highly overlap with

areas with intensive human activities. Human engineering activity
have damaged the surface soil structure and stability, further
weakening the protective effect that vegetation should have
provided. The q value of the single-factor explanatory power of
NDVI is only 0.06, which is not due to the overall level of vegetation
coverage, but because its protective role is subject to dual constraints
from regional dominant factors and human activities.

As shown in Figures 9, 12, the high and very high susceptibility
zones identified by all three models are predominantly distributed in
the eastern part of the study area. In this area, the overall rainfall is
the largest, the distance from the fault zone is relatively short, and
the Bouguer gravity anomaly gradient is the largest. Combined with
the in-creasing influence of human activities, many factors jointly
aggravate the risk of land-slides in this area. Notably, the spatial
clustering of high-susceptibility zones in the east is not a random
occurrence but closely aligns with the synergistic influence of the
core predisposing factors emphasized in this study. Intense rainfall
provides ample water to reduce the shear strength of rocks and soils,
the proximity to fault zones reflects structurally fragmented and
unstable geology, and a high Bouguer gravity anomaly gradient
suggests significant deep-seated tectonic activity. When
superimposed with human interventions, these conditions further
amplify the landslide susceptibility. At the same time, the landslide
susceptibility assessment by different models also has some
differences. Compared with the RF model and XGBoost model,
the RX-Stacking ensemble learning model has the highest
proportion in high and extremely high susceptibility regions,
reaching 34% of the total area. The proportion of low and
extremely low susceptibility areas is the smallest, only 49%. This
difference in proportion is attributed to the RX-Stacking model’s
advantage in integrating features from diverse base models. It
effectively compensates for the limitations of single models and
more accurately identifies the subtle differences in susceptibility
within the eastern part, which aligns better with the actual landslide
density distribution.

From the above analysis, it can be seen that the eastern part of
the study area is prone to landslides. The RX-Stacking ensemble
learning model can divide the landslide susceptibility in the eastern
part of the study area into extremely high and high, which is more in
line with the actual landslide distribution. Compared to other
models, the RX-Stacking ensemble learning model integrates
features from diverse base models to achieve com-prehensive
data representation (Merghadi et al., 2020). It demonstrates
balanced classification across susceptibility levels, robust
generalization capability, and significant potential for enhancing
landslide disasters prediction accuracy. More importantly, this result
provides a clear target for landslide risk management in the study
area, the high and extremely high susceptibility area in the east
should be prioritized for monitoring and prevention measures. The
RX-Stacking model’s classification results can be used to delineate
precise management units to avoid the inefficiency of “one-size-fits-
all” risk control.

The distribution of landslide susceptibility levels and ecological
vulnerability levels is highly consistent. This spatial consistency is
not coincidental but stems from the interactive effects of core
environmental factors identified in this study. The eastern area,
characterized by clustered high landslide susceptibility, coincides
precisely with the zone where elevation is below 3,000 m and annual
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rainfall exceeds 800 mm. These specific hydrothermal conditions
not only facilitate landslide occurrence but also support ecosystems
with high service functions, thereby creating an inherent coupling
between landslide susceptibility and ecological vulnerability. The
ecosystem services in this region are manifested primarily through
soil and water conservation and the maintenance of biodiversity,
findings which align with the ecological function assessment results
of this study. Once a landslide occurs, ecosystem services will suffer
serious losses. However, the western regions have higher altitudes,
colder climates, lower vegetation coverage, and weaker eco-system
service capabilities, resulting in lower ecological damage values. This
spatial differentiation of ecological damage provides targeted
support for regional disaster management. The eastern region,
identified as a key area of high susceptibility and vulnerability,
requires subsequent measures that synchronously consider both
landslide prevention and ecological protection. In contrast, the
western region can focus on low-intensity natural restoration,
based on its weaker ecosystem service functions.

Landslide prevention and control measures in different risk
areas need to be more targeted and tailored to local conditions.
For the overlapping areas with high landslide susceptibility and high
ecological vulnerability in the eastern and southern regions, it is
recommended to prioritize the establishment of a real-time
monitoring network for the dual factors of rainfall and fault
activity. For example, additional rainfall stations and GNSS
deformation monitoring points should be installed along the
Xianshuihe fault zone; composite measures of “biological slope
stabilization + engineering reinforcement” should be promoted in
areas with concentrated cultivated land and forestland; and at the

same time, tourism development and engineering construction in
high-risk areas such as the Hailuogou scenic area should be strictly
restricted. Although the western low-risk areas have lower landslide
susceptibility and ecological vulnerability, their ecosystem services
are limited. Therefore, a prevention-oriented strategy is
recommended, including strictly restricting overgrazing and
mineral mining, increasing NDVI through artificial afforestation
to enhance slope erosion resistance, and designating the region as an
ecological buffer zone to prevent new landslides triggered by
development activities.

Although this study systematically conducted landslide
susceptibility and ecological vulnerability assessments in Luding
County through the technical framework integrating the GDM,
ensemble learning, and ecological damage assessment, providing
scientific support for regional disaster prevention and mitigation,
there are still some limitations that need to be addressed in future
research. This study used static data for the assessments and failed to
fully consider the temporal heterogeneity characteristics of landslide
driving factors. In the future, it is necessary to further integrate
higher-precision InSAR surface deformation monitoring data to
dynamically depict the evolution process of slope stability, thereby
improving the spatiotemporal accuracy of landslide susceptibility
assessment. Meanwhile, in terms of ecological vulnerability
assessment, this study only took changes in land use types as the
core assessment indicator and did not further integrate key
ecological process indicators such as soil erosion modulus and
the degree of biodiversity loss. This makes it difficult to fully
reflect the multi-dimensional damage characteristics of landslides
to ecosystems. Further research is needed in the future.

FIGURE 12
Proportion of susceptibility levels in different susceptibility assessment results.
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7 Conclusion

1. Landslide disasters are densely distributed within Luding
County, predominantly clustered in the eastern and
southern regions, with an overall density of 0.19 landslides
per square kilometer.

2. Rainfall, distance from the fault zone and Bouguer gravity
anomaly gradient have the most significant effects on the
distribution of landslides in Luding County, with q values of
0.24, 0.18 and 0.10, respectively. Comparatively, horizontal
deformation gradient, slope angle, and relief amplitude
demonstrated secondary influences, while NDVI, hu-man
activity intensity, and elevation contributed minimally to the
spatial distribution patterns of landslides.

3. The interaction between the influencing factors is mainly
nonlinear enhancement effect. The interaction of any two
factors has more influence on the spatial distribution of
landslide than a single factor. The interaction between
rainfall and other factors is much greater than that between
other factors.

4. Regional landslide susceptibility assessment in Luding County
was conducted using the RF model, XGBoost model, and RX-
Stacking ensemble learning model. The RF model achieved an
AUC of 0.895, the XGBoost model attained an AUC of 0.903,
and the RX-Stacking ensemble learning model with an AUC of
0.926. All three models exhibited strong predictive accuracy in
landslide susceptibility evaluation. Compared with other
models, the AUC value of RX-Stacking ensemble learning
model is higher, which to some extent shows that the model
has better assessment effect on landslide susceptibility in
Luding County considering the internal and external
geodynamic factors, and has good generalization ability.

5. According to the landslide ecological environment damage
assessment model, an ecological vulnerability assessment was
conducted on Luding County. The distribution of landslide
susceptibility levels and ecological vulnerability levels showed a
high degree of consistency. The area with the highest ecological
damage value is mainly concentrated in the eastern part of the
study area, where the ecosystem service functions are
significant. Once a landslide occurs, it can easily lead to
serious ecosystem service damage. However, the ecosystem
service capacity in the western region is weak, and the
ecological damage caused by landslides is relatively low.

6. At the regional development level, the high coupling between
landslide susceptibility and ecological vulnerability reveals the
symbiotic relationship between disaster risks and ecological
values in the Western Sichuan Mountains, providing a core
basis for this region to balance development and protection
and formulate sustainable development policies.
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