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Introduction: The primary challenge in territorial spatial planning is optimizing
land allocation under complex constraints. This study aims to bridge the gap
between predictive simulation and normative optimization to support
scientific planning.
Methods: This study developed an intelligent framework coupling an Artificial
Neural Network-Cellular Automata (ANN-CA) model with a Multi-Agent System
(MAS) based on an ant colony algorithm. Applied to Hui’an County, China, the
framework first simulates a 2035 baseline land use scenario under policy and
physical constraints. Subsequently, the MAS optimizes the construction land
layout based on multi-objective functions for economic, ecological, and
morphological goals.
Results: The optimization yielded significant quantitative improvements
compared to the baseline scenario. The spatial configuration of construction
land became more regular, with the Area-Weighted Mean Shape Index (AWMSI)
decreasing by 35.7% from 79.44 to 51.11. The layout also became more compact
and less fragmented, evidenced by a 1.0% increase in the Aggregation Index (AI) to
95.03 and a 27.1% reduction in the number of patches.
Discussion: This integrated framework provides an effective technical pathway
for scientific planning. By coupling simulation with optimization, it ensures that
future development patterns are not only efficient and responsive to historical
trends but also adhere to strict ecological and farmland protection policies,
leading to a more sustainable and well-structured territorial spatial layout.
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1 Introduction

Territorial space serves as the fundamental material foundation for national
development and ecological security, making its scientific planning and sustainable
utilization central to achieving high-quality regional development. China currently
experiences profound economic and social transformation alongside deepening
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ecological civilization construction. Rapid urbanization processes,
while driving economic growth, simultaneously generate complex
challenges including disorderly construction land expansion,
continuous loss of prime agricultural resources, degradation of
ecosystem service functions, and imbalanced urban-rural regional
development patterns (Chen et al., 2020; Liu et al., 2014a). To
systematically address these issues, national strategic deployment
has established unified and coordinated territorial spatial planning
systems, emphasizing resource and environmental carrying capacity
as the foundation while strictly delineating and adhering to “three
control lines”: ecological protection redlines, permanent basic
farmland boundaries, and urban development boundaries (Wang
et al., 2018; Zhang et al., 2019).

This strategic framework aims to optimize territorial spatial
development and protection patterns, promoting the formation of
new territorial spatial configurations characterized by intensive and
efficient production spaces, livable and moderate living spaces, and
pristine ecological spaces (Li et al., 2014). Within this macroscopic
context, employing advanced theoretical and technical
methodologies to scientifically predict future territorial spatial
evolution trends while proactively guiding land use patterns
toward more intensive, efficient, coordinated, and sustainable
directions represents a critical scientific problem and core
technological bottleneck requiring resolution in territorial spatial
planning domains (Wu et al., 2011).

Contemporary research in Land Use and Land Cover Change
(LUCC) simulation and spatial optimization has achieved
remarkable progress. In LUCC simulation domains, spatial
dynamic simulation methods represented by Cellular Automata
(CA) models, particularly hybrid models combining machine
learning algorithms such as Artificial Neural Networks (ANN-
CA), effectively extract complex driving mechanisms of land use
change and predict future spatial patterns (Gharbia et al., 2016;
Aburas et al., 2016; Guan et al., 2005). However, these simulation
models fundamentally emphasize “predictive” or “descriptive”
approaches, projecting the most probable future states based on
historical patterns, while demonstrating insufficient capacity for
proactively shaping spaces to achieve “normative” target states
desired by planning initiatives (Verburg et al., 2019; Li and
Liu, 2008).

Alternatively, land use spatial optimization research, particularly
methodologies employing heuristic intelligent optimization
algorithms such as Ant Colony Optimization (ACO) and Genetic
Algorithms (GA), can solve complex spatial layout problems under
multi-objective and strong constraint conditions (Aerts et al., 2003;
Stewart et al., 2004; Santé et al., 2010). Nevertheless, these
optimization studies frequently operate disconnected from
dynamic land use evolution processes, either optimizing based on
static current data or adopting simplified future scenario
configurations, potentially resulting in optimization schemes that
demonstrate mathematical excellence but lack sufficient feasibility
foundations in reality or inadequately address future development
pressures (Ligmann-Zielinska et al., 2008; Cao et al., 2012; Haque
and Asami, 2014).

Addressing the existing gap between predictive simulation and
normative optimization in contemporary research, alongside
challenges of insufficient integration of planning intentions
within complex technical processes, this study endeavors to

construct and empirically validate an intelligent decision-making
framework coupling ANN-CA predictive simulation with ant colony
algorithm-based MAS normative optimization for territorial spatial
layout planning. The framework’s core concept involves generating
future land use baseline scenarios that reflect historical trends while
embedding planning strategic intentions through ANN-CA models
that deeply integrate territorial spatial planning core control
elements including “dual evaluation” results as guiding factors
and “three control lines” as rigid spatial constraints (Zhou
et al., 2017).

Subsequently, utilizing baseline scenarios as foundations (for
example, employing simulation-derived suitability probabilities as
heuristic information or using simulated layouts as optimization
initial solutions), the framework applies MAS multi-objective
optimization models that explicitly introduce quantitative pursuit
of key planning objectives such as spatial morphology (including
layout aggregation and regularity). Through simulating ant colony
intelligent agent self- organization optimization processes, the
framework explores and generates spatial layout schemes with
superior comprehensive benefits across economic, ecological, and
morphological dimensions while satisfying multiple constraint
conditions (Liu et al., 2017).

This research aims to construct and empirically apply this
integrated framework through Hui’an County, Fujian Province
case study, exploring novel technical pathways that tightly
combine scientific prediction with proactive optimization to
effectively support complex territorial spatial planning decisions.
Through comprehensive spatial pattern comparison and
quantitative landscape index analysis between simulated baseline
scenarios and MAS-optimized scenarios, the study objectively
evaluates the integrated framework’s practical effectiveness and
unique value in enhancing territorial spatial layout quality and
strengthening planning scientificity. Research outcomes expect to
provide beneficial methodological support and case references for
territorial spatial planning theoretical innovation and intelligent
transformation of practical applications.

2 Methodology

This study’s core involves constructing an intelligent decision-
making framework integrating land use demand prediction,
constrained spatial simulation, and multi-objective layout
optimization phases (Figure 1). The framework incorporates
dynamic feedback mechanisms where optimization results inform
subsequent simulation iterations, creating an adaptive planning
support system., aiming to provide more scientific, efficient, and
objective-oriented solutions for territorial spatial planning through
organic coupling of predictive simulation and normative
optimization technical approaches.

2.1 Overall technical framework

The integrated framework follows a logically progressive
technical workflow comprising three sequential stages. The initial
stage utilizes Markov chain models to predict total demand for
various land use types, particularly construction land, for target
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years based on historical land use transition patterns, establishing total
quantity controls for subsequent spatial allocation (Burnham, 1973;
Baker, 1989). The secondary stage constructs ANN-CA models to
generate target year land use baseline scenarios, with critical emphasis
on deeply integrating planning constraints: ANN training
incorporates not only conventional driving factors such as
topography, location, and socioeconomic variables, but also
innovatively includes quantified “dual evaluation” results as policy
guidance inputs; CA transition rules designate “three control lines”
spatial control areas as construction land prohibition zones while
comprehensively considering neighborhood effects and transition
costs (Pijanowski et al., 2002; Li and Yeh, 2002). ANN learns
driving mechanisms and outputs development suitability
probabilities for different land use types across spatial units, while
CA conducts spatial allocation under probability guidance combined
with constraints and total quantity objectives. The tertiary stage
employs ant colony algorithm-based MAS models to optimize
construction land layouts generated in the secondary stage. The
key coupling mechanism utilizes ANN-CA simulation suitability
probabilities as MAS heuristic information, with optional use of
simulated layouts as initial solutions. Optimization objective
functions aim to maximize comprehensive evaluation values
incorporating economic efficiency (minimizing average distance to
urban centers), ecological protection (minimizing encroachment on
sensitive areas), social equity (maximizing accessibility to public
facilities), and spatial morphology optimization including
maximizing Aggregation Index (AI) and minimizing Area-
Weighted Mean Shape Index (AWMSI).

Optimization processes strictly adhere to constraint conditions
including total quantity constraints requiring optimized
construction land total area to approximate Markov-predicted

demand quantities, and spatial control hard constraints
prohibiting construction land encroachment upon “three control
lines” designated prohibition zones. Through simulating ant colony
iterative search and pheromone updating mechanisms, the
framework identifies layout schemes satisfying constraints while
achieving optimal comprehensive objectives. The framework
incorporates iterative feedback loops where optimization results
update simulation parameters for subsequent planning cycles,
enabling adaptive planning responses to changing conditions.

2.2 Markov chain demand prediction

The Markov chain approach for predicting future land use
quantities involves several sequential steps and mathematical
formulations. Markov chains represent stochastic processes
without aftereffects, predicting future system development based
on state transition probabilities that reflect inherent regularities
between system states (Muller and Middleton, 1994; López et al.,
2001). Land use types (such as cropland, forest land, construction
land) are defined as Markov chain state sets S ={s1,s2,sn} Historical
data constructs state transition probability matrix P, where Pᵢⱼ
represents transition probability from state sᵢ to state sⱼ, satisfying
(Equation 1):

P �
p11 p12 / p1n

p21 p22 / p2n

/
pn1

/
pn2

/
pn3

/
pnn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,∑

n

j�1
pij � 1 (1)

Initial state vector X0 = [x1, x2, xn] is determined from historical
data, where xᵢ represents initial proportion of land type i. Future land

FIGURE 1
Method framework.
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use states are predicted usingMarkov chain state transition formulas
(Equation 2):

Xt+1 � Xt*P (2)
where Xt represents state vector at time t, and P represents state
transition matrix. Through iterative calculations repeated until
reaching target year T, final state vector Xt represents land use
type proportions for target years. Combined with regional total land
area A, individual land use type quantities are calculated as
(Equation 3):

Qi � xi*A (3)
where Qᵢ represents area of land type i. This methodology quantifies
land use dynamic changes, suitable for short-term prediction and
stable system states, providing scientific foundations for land
management and planning (Adhikari and Southworth, 2012;
Guan et al., 2011).

2.3 Constrained ANN-CA simulation

Artificial Neural Network-Cellular Automata (ANN-CA)
models conduct spatial simulation of land use coverage
conditions through historical land use coverage type expansion
results under various driving factors to extract inherent driving
evolution mechanisms, utilizing these mechanisms to predict future
land use coverage within specific time periods (Figure 2). ANN-CA
represents machine learning models based on biological neural
network simulation, comprising input layers, hidden layers, and
output layers, typically employed for simulating and calculating
nonlinear functions with multiple variables through extensive
learning and recall iterations to continuously fit complex
relationships between input data and training targets (Pijanowski
et al., 2014; Almeida et al., 2008).

The training phase involves expansion mechanism extraction
and identification based on Artificial Neural Networks (ANN). The
ANN learning process establishes relationships between driving
factors and land use change probabilities through
backpropagation algorithms. For each spatial unit p at time t, the
probability P (p,k,t) of developing land use type k is calculated as
(Equation 4):

p p, k, t( ) � ∑
j

wj,k × sigmoid netj p, t( )( ) (4)

sigmoid netj p, t( )( ) � 1

1 + e−netj p,t( ) (5)

netj p, t( ) � ∑
i

wi,j × xi p, t( ) (6)

Where wi,j represents adaptive weights between hidden and
output layers; sigmoid(netj(p, t)) represents association functions
between hidden and output layers (Equation 5); netj (p, t) represents
signals transmitted from input layer grid p to neuron j at time t
(Equation 6), indicating change intensity of grid p in land type j at
time t. The network architecture incorporates multiple driving
factors including topographical variables (elevation, slope),
climatic conditions (precipitation, temperature), socioeconomic
factors (population density, GDP density), accessibility measures
(distances to transportation networks, public facilities), and
crucially, planning policy factors derived from “dual evaluation”
results (ecological protection importance, agricultural production
suitability, urban construction suitability).

The prediction simulation phase employs ANN-CA model
prediction simulation mechanisms. Following ANN training
completion, the model predicts land use change probabilities for
future time periods. The CA component then allocates land use
changes spatially based on these probabilities, neighborhood effects,
and constraint conditions. The transition probability for each cell
calculated as (Equation 7):

P k, t, l( ) � 1 + −ln γ( )α( ) × Pann k, t, l( ) × Ωt
k × con Stk( ) (7)

Where the random factor (1 + (−ln γ)α) introduces stochastic
variability to simulate real-world uncertainties in land use
transitions, following the theoretical framework established by
White and Engelen (1993) for incorporating randomness in
cellular automata models. The parameter α controls the
magnitude of random perturbation, with α = 1 providing
moderate stochasticity based on calibration studies. This
formulation ensures that transition probabilities remain positive
while introducing sufficient variability to capture unpredictable
development decisions and policy changes that influence land use
patterns; Pann (k,t,l) represents transition probabilities calculated
using trained artificial neural networks; fik

t represents urban land
density within defined neighborhood windows (total urban land
cells/total neighborhood window grids); Ωt

k represents urban land
density within a defined 3 × 3 neighborhood window (covering
9 cells centered on the target cell), calculated as the ratio of urban
land cells to total cells within this window. con (Sk

t) represents
conversion suitability between land use types, with values of 1 and
0 representing convertible and non-convertible respectively. The
model incorporates “three control lines” as absolute constraints,
preventing construction land development within ecological

FIGURE 2
Framework of the constrained ANN-CA simulation model.
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protection redlines, permanent basic farmland, and important water
areas (Wang et al., 2022; Li et al., 2017).

2.4 Multi-agent system optimization

Following acquisition of baseline scenarios reflecting future trends
but requiring spatial structure improvement, this study introduces ant
colony algorithm-based Multi-Agent Systems (MAS) for intelligent
optimization of construction land layouts. MAS simulates
collaborative search behaviors of numerous “ant” intelligent agents
to identify multi-objective optimal solutions while satisfying
constraint conditions (Dorigo et al., 1996). In this framework, each
individual ant agent constructs a complete spatial layout solution by
sequentially selecting grid cells for construction land development.
Starting from randomly assigned initial positions, each ant builds a
comprehensive territorial layout by probabilistically choosing cells
based on pheromone trails and heuristic information until the total
construction land demand is satisfied. This approach ensures that
each ant generates a feasible complete solution that can be evaluated
and compared within the optimization process.

MAS core principles involve ants making probabilistic selections
based on pheromone trails and heuristic information. Specifically,
state transition probability pk

ij, representing ant k’s probability of
selecting next position j from position i, is expressed as (Equation 8):

pk
ij �

ταij t( )ηβij t( )
∑s∈allowedkτ

α
is t( )ηβis t( ), j ∈ allowedk

0, others

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(8)

Where τᵢⱼ represents pheromone quantity on edge (i,j); α
represents pheromone heuristic factor indicating trail relative
importance during path searching; ηᵢⱼ represents heuristic factor
reflecting ant transition encouragement from city i to city j; β
represents expected heuristic factor indicating node visibility
relative importance, assisting ant next node selection through
current and next node distance assessment; allowedk represents
grids ant k can subsequently select (Dorigo and Gambardella, 2002).

This framework’s key coupling mechanism involves
constructing heuristic information, utilizing ANN-CA derived
target land type (construction land) development suitability
probabilities Pann(j) for each grid unit as core foundations for
calculating heuristic information ηⱼ (for example, setting ηⱼ =
Pann(j)). This design enables ant initial search behaviors to
possess scientifically simulated guidance, effectively focusing on
high-potential areas. Optimization objective function F(X) aims
to maximize comprehensive evaluation values through weighted
summation of multiple sub-objectives (Equation 9):

F X( ) � Σwifi X( ) (9)
where wᵢ represents weights and fᵢ(X) represents sub-objective
function evaluation values for layout scheme X. Sub-objectives
include: (1) Economic efficiency f1(X) = -∑dᵢ/n, where dᵢ
represents distance from development cell i to nearest urban
center and n is total number of cells, minimizing average
distance to urban centers; (2) Ecological protection f2(X) = -∑eᵢ,
where eᵢ represents ecological impact score for cell i based on

proximity to sensitive areas; (3) Social equity f3(X) = ∑aᵢ, where
aᵢ represents accessibility score to public facilities for cell i; and (4)
Spatial morphology optimization f4(X) combining maximized
Aggregation Index (AI) and minimized Area-Weighted Mean
Shape Index (AWMSI) through f4(X) = AI(X) - AWMSI(X)/100.

Optimization processes strictly adhere to constraint conditions,
primarily including: 1) Total quantity constraints requiring optimized
construction land total area to approximate Markov-predicted demand
quantities; 2) Spatial control hard constraints prohibiting construction
land encroachment upon “three control lines” designated legal
prohibition zones. Pheromone updating follows evaporation and
enhancementmechanisms. Evaporation processes involve (Equation 10):

τj t + 1( ) � 1 − ρ( ) × τj t( ) (10)

where ρ represents evaporation coefficient. Enhancement processes
depend on current round ant construction scheme fitness F(Xk),
adding pheromone Δτⱼ to selected grids (Equation 11):

Δτj � Q × F Xk( ) (11)

where Q represents a constant controlling total pheromone release
quantities. If grid j belongs to optimal schemes obtained after all ants
complete first round movements, pheromone increases by Δτⱼ;
otherwise Δτⱼ = 0. This iterative process of “scheme construction
- fitness evaluation - pheromone updating” continues through
multiple rounds until reaching preset maximum iteration
numbers or algorithm convergence conditions, ultimately
outputting global optimal layout schemes recorded throughout
iteration processes (Merkle et al., 2002; Dorigo and Stützle, 2018).

3 Study area and data

3.1 Study area

This research selects Hui’an County, administered by Quanzhou
City, Fujian Province, as the case study region (Figure 3). Hui’an
County is located on China’s southeastern coast with terrestrial area of
approximately 525.71 square kilometers. The region demonstrates
remarkable economic development vitality (2020 GDP exceeding
100 billion RMB), relatively dense population (2020 permanent
population approximately 780,000), while its urbanization rate
(approximately 57.9% in 2020) remains below provincial and
municipal average levels, indicating continued urbanization
development demands and corresponding construction land
expansion pressures.

Hui’an County possesses “three mountains and five bays”
natural ecological foundations but confronts typical
contradictions between development demands and cropland
protection and ecological conservation during rapid development
processes. This complexity of development stages, resource
endowments, and planning challenges makes Hui’an County an
ideal and representative practical scenario for testing and applying
the coupled simulation and optimization framework proposed in
this research. The study area exhibits predominant land use patterns
of agricultural land, forest land, and construction land as of 2020,
with spatial distribution reflecting typical southeastern coastal
development characteristics.
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3.2 Data sources and preprocessing

To support simulation and optimization model construction,
multi-source spatial and attribute data covering Hui’an County’s
entire territory were collected and processed (Table 1). Core land use

data originated from official national land survey vector databases
for 2010, 2015, and 2020 time points. To ensure analytical
consistency, original land classifications were uniformly
reclassified into 9 primary categories: cropland, plantation land,
forest land, grassland, wetland, other agricultural land, construction

FIGURE 3
Location and land use pattern of the study area in Hui’an County, Fujian Province.

TABLE 1 Data sources and specifications used in the study.

Category Data name Data format Resolution/scale

Land Use Change 2010 Hui’an County Land Survey Data Vector 1:10,000

2020 Hui’an County Land Survey Data Vector 1:10,000

Topography Digital Elevation Model Raster 30 m

Slope Data Raster 30 m

Climate Annual Average Precipitation Raster 1 km

Annual Average Temperature Raster 1 km

Socioeconomic Population Density Raster 1 km

GDP Density Raster 1 km

Transportation Highway Networks Vector 1:10,000

Railway Networks Vector 1:10,000

Provincial Roads Vector 1:10,000

County Roads Vector 1:10,000

Urban Roads Vector 1:10,000

Policy Constraints Ecological Protection Redline Vector 1:10,000

Permanent Basic Farmland Vector 1:10,000

Important Water Areas Vector 1:10,000
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land, water areas, and unused land, with all data converted to 10-m
spatial resolution raster format.

Driving factor data primarily include: natural geographical data
such as elevation and slope information extracted from 30-m DEM
and resampled to 10-m resolution, plus annual average precipitation
and temperature data resampled to 10-m resolution; socioeconomic
data including spatially processed population density and GDP
density grid data unified to 10-m resolution; infrastructure and
locational accessibility data covering vector location information for
various road grades, railways (including stations), major public
service facilities (schools, hospitals), and administrative centers.
Through calculating Euclidean distances from each grid cell to
these elements, a series of 10-m resolution accessibility layers
were generated.

Particularly critical is the integration of planning policy and
control data. Official “dual evaluation” result maps compiled by
Hui’an County were obtained, including ecological protection
importance evaluation (Figure 4a), agricultural production
suitability evaluation (Figure 4b), and urban construction
suitability evaluation (Figure 4c). These evaluation results were
quantitatively processed as guiding factors for model input.
Simultaneously, “three control lines” vector boundary data
were collected (Figure 4d), representing spatial extents of
ecological protection redlines, permanent basic farmland, and
important water areas, serving as mandatory spatial constraints
in models.

All collected spatial data underwent rigorous preprocessing,
including unification to CGCS2000 geodetic coordinate system
with corresponding Gauss-Kruger projection, precise clipping to
Hui’an County administrative boundaries, and ensuring 10-m
spatial resolution uniformity. All continuous driving factor raster
layers were normalized usingmin-maxmethods within 0–1 intervals
before ANN model input to eliminate dimensional differences and
ensure model training stability and result reliability. Through these
procedures, a multidimensional, high-precision, spatiotemporally
consistent comprehensive geographic information database was
constructed, establishing robust data foundations for subsequent
simulation and optimization.

4 Results

4.1 Historical evolution and future
demand analysis

To ensure subsequent simulation and optimization realism and
scientificity, this research initially extracted study area historical
evolution patterns and predicted future land use demands. Analysis
of 2010–2020 land use data revealed significant structural and spatial
changes in the study region (Figure 5). Quantitatively, construction
land represented the most remarkable expansion type, with total
area increasing from 13,459.24 ha to 16,196.30 ha, achieving net

FIGURE 4
Spatial distribution of key planning constraint factors: (a) Ecological protection importance evaluation, (b) Agricultural production suitability
evaluation, (c) Urban construction suitability evaluation, (d) Three control lines spatial boundaries.
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increase of 2,737.06 ha over 10 years with relative growth of 20.3%.
Contrasting sharply, cropland and wetland resources confronted
severe loss pressures, with areas decreasing from 17,977.30 ha to
7,488.85 ha to 15,015.17 ha and 4,168.12 ha respectively,
representing net reductions of 2,962.13 ha and 3,320.74 ha.

Land use transition matrix analysis further revealed that
construction land expansion primarily occurred at the expense of
premium cropland, with direct cropland-to-construction land
conversion reaching 2,311.29 ha, accounting for 84.4% of total
construction land increment. Spatially, construction land
expansion during this period exhibited highly irregular
characteristics. Area- Weighted Mean Shape Index (AWMSI), a
key indicator measuring patch shape complexity, increased
dramatically from 48.21 in 2010 to 67.66 in 2020. This
substantial numerical increase unequivocally quantified the highly
irregular and complex geometric morphology of newly added
construction land patches over the decade, presenting typical
sprawling and inefficient spatial growth patterns. Historical
trends exposing spatial morphology problems constitute core
challenges requiring attention and improvement in this research.

Based on these foundations, Markov chain models predicted
2035 land use total demand, establishing critical macroscopic
constraints for subsequent spatial allocation. Model results
indicated that under continued historical development trends,
Hui’an County’s construction land total demand is projected to
reach 18,836.30 ha by 2035. This value serves as a construction land
total quantity control objective that must be strictly adhered to
during ANN-CA simulation and MAS optimization processes,
ensuring spatial layout scheme feasibility and compliance at
macroscopic scales.

4.2 Baseline scenario simulation and spatial
assessment

Before generating the 2035 baseline scenario, the ANN-CA
model underwent rigorous validation to ensure prediction
reliability. Using the temporal validation approach, the model

achieved satisfactory performance with an Overall Accuracy of
87.3%, indicating that the model correctly predicted land use
types for 87.3% of all cells. The Kappa coefficient reached 0.821,
demonstrating substantial agreement between simulated and
observed land use changes beyond what would be expected by
chance. The Figure of Merit (FoM) achieved 0.164, which
represents acceptable performance for territorial spatial planning
applications, as FoM values above 0.1 are generally considered
satisfactory for policy-relevant land use modeling. These
validation metrics provide confidence in the model’s capability to
generate reliable 2035 projections for subsequent
optimization processes.

The ANN-CA model incorporated 30 input factors, generating
2035 potential distribution maps for various land use types
(Figure 6). Construction land areas distributed primarily around
main urban areas, transportation corridors, and suitable zones,
while low-potential areas located in ecologically sensitive or
unsuitable regions. Under “three control lines” hard constraints,
simulation generated macroscopically compliant and legally
conforming baseline spatial patterns with construction land
totaling approximately 18,836 ha as predicted.

Spatial morphology analysis revealed continued manifestation
of edge sprawl, corridor infilling, and scattered enclave phenomena
representing inefficient expansion patterns. The baseline scenario
exhibited AWMSI increasing to 79.44, indicating exceptionally
irregular spatial configuration, while Aggregation Index (AI)
reached 94.12. These metrics quantitatively demonstrated that
simulated future construction land layouts, while meeting total
quantity requirements and regulatory compliance, still possessed
substantial room for spatial efficiency and morphological
optimization improvement.

Detailed spatial pattern analysis identified several characteristic
features of the baseline scenario. Construction land expansion
followed historical trends with significant sprawling development
along major transportation arteries, creating linear development
corridors with low density and inefficient land utilization. Scattered
development patches appeared throughout the study area,
particularly in periphery regions, resulting in fragmented spatial
structures and increased infrastructure provision costs. The baseline
scenario also demonstrated insufficient consideration of spatial
compactness principles, with new development areas often
disconnected from existing urban centers, potentially
exacerbating urban sprawl issues and reducing overall
spatial efficiency.

4.3 MAS spatial optimization and
comparative analysis

Based on ant colony MAS models, construction land spatial
layouts underwent multi-objective optimization using baseline
suitability probabilities as heuristic guidance while strictly
maintaining total quantity and spatial control constraints.
Optimization significantly enhanced spatial layout quality across
multiple dimensions. Scattered outlying patches were consolidated,
effectively achieving “inward infilling” and compact cluster
development. AI aggregation degree improved to 95.03, while
AWMSI experienced dramatic reduction to 51.11, representing a

FIGURE 5
Land use transition for Hui’an County (2010–2020).
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35.7% decrease and indicating substantially improved
morphological regularity.

Landscape heterogeneity and fragmentation significantly
decreased, with Shannon Diversity Index (SHDI) declining
2.1% and Contagion Index (CONTAG) increasing 1%. Total
patch numbers (NP) decreased 27.1%, demonstrating
successful consolidation of scattered development patterns.
Detailed quantitative comparisons of all landscape metrics
between baseline and optimized scenarios are presented in
Table 2, which comprehensively demonstrates the substantial
improvements achieved through the MAS optimization process.
Analysis revealed optimization contributions to infrastructure
efficiency, land use efficiency, ecological buffering, and urban
boundary clarity enhancement. Economic efficiency analysis
demonstrated that optimized layouts reduced average distances
to urban centers by 12.3%, achieved through the economic
efficiency objective function f1(X) that explicitly minimized
transportation costs and improved accessibility to employment
opportunities and services. Ecological impact assessment

revealed enhanced protection of sensitive environmental areas
through more strategic development positioning, with 15.7%
reduction in edge effects between construction land and
natural habitats, directly resulting from the ecological
protection objective f2(X) that penalized development in
ecologically sensitive zones. Social equity considerations
showed improved access to public services, with 89.2% of
optimized development areas located within 2 km of essential
facilities compared to 76.8% in the baseline scenario, reflecting
the social equity objective f3(X) that prioritized accessibility to
public facilities. These quantitative improvements directly
correspond to the multi-objective optimization function
components defined in Section 2.4, demonstrating the
framework’s effectiveness in achieving the specified economic,
ecological, and social planning goals.

The optimization process successfully addressed key spatial
efficiency challenges identified in the baseline scenario. Scattered
development patches were systematically consolidated into more
compact configurations, reducing infrastructure provision costs and

FIGURE 6
Simulation results for the 2035 land use baseline scenario and the MAS-optimized scenario.

TABLE 2 Comparison of landscape metrics between baseline and optimized scenarios.

Landscape metrics Baseline scenario Optimized scenario Change (%) Interpretation

AWMSI 79.44 51.11 −35.70% Significant shape regularity improvement

AI 94.12 95.03 1.00% Enhanced spatial aggregation

SHDI 1.847 1.809 −2.10% Reduced landscape heterogeneity

CONTAG 68.45 69.13 1.00% Improved spatial connectivity

NP 2,847 2,076 −27.10% Significant patch consolidation

LPI 15.23 18.67 22.60% Increased largest patch dominance

DIVISION 0.847 0.813 −4.00% Reduced landscape division
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improving service efficiency. Linear sprawl patterns along
transportation corridors were modified to create more balanced
and sustainable development forms. The optimization also
enhanced connectivity between new development areas and

existing urban centers, promoting more integrated spatial
structures that support sustainable urban growth patterns (Figure 7).

Economic efficiency analysis demonstrated that optimized
layouts reduced average distances to urban centers by 12.3%,

FIGURE 7
Comparative analysis of spatial layouts: (a) Baseline scenario construction land pattern, (b) MAS-optimized construction land pattern.
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potentially decreasing transportation costs and improving
accessibility to employment opportunities and services. Ecological
impact assessment revealed enhanced protection of sensitive
environmental areas through more strategic development
positioning, with 15.7% reduction in edge effects between
construction land and natural habitats. Social equity
considerations showed improved access to public services, with
89.2% of optimized development areas located within 2 km of
essential facilities compared to 76.8% in the baseline scenario.

5 Discussion

5.1 Framework effectiveness and spatial
optimization benefits

The empirical application results conclusively demonstrate the
significant effectiveness of the coupled ANN-CA simulation and
MAS optimization framework in enhancing territorial spatial layout
quality. The dramatic improvement in spatial morphology metrics,
particularly the 35.7% reduction in AWMSI from 79.44 to 51.11,
provides quantitative evidence of the framework’s capacity to
transform sprawling, inefficient development patterns into more
compact and regular spatial configurations. This improvement
aligns with contemporary smart growth and compact city
development principles advocated in international planning
literature (Newman and Kenworthy, 2015; Burton et al., 2003).

The 27.1% reduction in patch numbers (NP) coupled with
enhanced aggregation index (AI) demonstrates successful spatial
consolidation that promotes infrastructure efficiency and reduces
environmental fragmentation. These results support findings from
previous research on spatial optimization algorithms for land use
planning, while extending methodological approaches through the
innovative coupling of predictive simulation with normative
optimization (Cao et al., 2011; Liu et al., 2014b). The
framework’s ability to simultaneously satisfy multiple objectives
while adhering to strict planning constraints represents a
significant advancement in computational planning
support systems.

The integration of “dual evaluation” results and “three control
lines” constraints within the simulation-optimization coupling
ensures that technical solutions remain grounded in policy
realities and regulatory requirements. This addresses a critical
gap in previous optimization studies that often operated
independently of planning policy contexts (Verburg et al., 2019).
The framework’s explicit consideration of spatial morphology as an
optimization objective responds to growing recognition of urban
form impacts on sustainability, livability, and economic efficiency
(Jaeger et al., 2010).

5.2 Methodological innovations and
technical contributions

This research’s primary methodological innovation lies in the
organic coupling mechanism between ANN-CA simulation and
MAS optimization, specifically utilizing simulation-derived
suitability probabilities as heuristic information for ant colony

algorithms. This coupling strategy ensures that optimization
processes are informed by scientifically grounded spatial
development potentials rather than arbitrary starting conditions,
potentially improving solution quality and convergence efficiency.
The approach represents a significant departure from traditional
optimization studies that typically begin with random initial
solutions or simplified assumptions about spatial development
preferences (Santé et al., 2010).

The framework’s multi-objective optimization formulation
explicitly incorporates spatial morphology metrics alongside
traditional economic and ecological considerations, addressing
the tendency of previous studies to focus primarily on
allocation efficiency while neglecting spatial form implications.
The inclusion of AWMSI and AI as optimization objectives
provides quantitative mechanisms for achieving compact
development principles that have predominantly remained
qualitative planning aspirations.

From a technical perspective, the framework demonstrates
scalability and adaptability across different planning contexts and
geographic regions. The modular structure allows for component
modification and parameter adjustment to accommodate varying
planning priorities, regulatory frameworks, and regional
characteristics. This flexibility addresses limitations of previous
integrated modeling approaches that often required substantial
customization for different applications.

5.3 Policy implications and planning
applications

The framework’s capacity to generate spatial layouts that
simultaneously achieve efficiency, compactness, and regulatory
compliance provides valuable decision support for territorial
spatial planning practice. The quantitative improvement in
spatial morphology metrics offers objective foundations for
evaluating alternative development scenarios and supporting
evidence-based planning decisions. This capability is
particularly relevant in China’s current territorial spatial
planning system reform, where scientific and technical support
for planning compilation and implementation is increasingly
emphasized.

The integration of planning policy factors within the technical
modeling framework facilitates better alignment between planning
intentions and spatial outcomes. By embedding “dual evaluation”
results and “three control lines” constraints directly within
simulation and optimization processes, the framework helps
ensure that technical solutions support rather than contradict
policy objectives. This integration addresses persistent challenges
in planning practice where technical analyses and policy
requirements often operate in isolation.

The framework’s multi-objective optimization approach
provides mechanisms for exploring trade-offs between
competing planning objectives, enabling planners to identify
balanced solutions that consider economic efficiency, ecological
protection, and spatial form simultaneously. This capability
supports more nuanced and informed planning decisions that
acknowledge the complexity of contemporary territorial spatial
planning challenges.
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5.4 Limitations and future research

Despite demonstrated effectiveness, the framework possesses
several limitations requiring acknowledgment and future research
attention. The optimization algorithms generate high-quality
feasible solutions rather than guaranteed optimal layouts,
reflecting the inherent complexity and multi-modal nature of
spatial optimization problems. While ant colony algorithms excel
in exploring complex solution spaces, they cannot guarantee global
optimality, suggesting potential benefits from hybrid approaches
combining multiple optimization strategies (Dorigo and
Stützle, 2018).

The current framework lacks temporal sequencing capabilities,
generating end-state spatial configurations without modeling
intermediate development processes or transition pathways.
Future research should explore “rolling horizon” optimization
approaches that provide sequential development guidance and
account for dynamic constraints and changing conditions over
time. This temporal limitation restricts the framework’s ability to
support phased development planning and adaptive
management strategie.

The framework’s socioeconomic modeling components remain
relatively simplified, incorporating demographic and economic
factors primarily through accessibility and density measures.
Enhanced integration with agent-based models representing
individual and institutional decision-making processes could
improve realism and policy relevance. Such integration would
better capture market dynamics, behavioral responses to planning
interventions, and spatial development processes driven by multiple
stakeholder interactions.

Validation and uncertainty analysis represent additional areas
requiring development. While the framework demonstrates internal
consistency and logical spatial improvements, comprehensive
validation against actual development outcomes and sensitivity
analysis regarding parameter variations would strengthen
confidence in practical applications. Future research should
develop validation protocols and uncertainty quantification
methods appropriate for predictive-normative modeling
frameworks.

5.5 International applicability and
transferability

The framework’s conceptual structure and technical approach
possess strong potential for international application, though
implementation would require adaptation to different planning
systems, regulatory frameworks, and data availability conditions.
The core coupling mechanism between simulation and optimization
represents a generalizable approach to spatial planning support that
transcends specific regional contexts. However, successful transfer
would necessitate careful consideration of local planning traditions,
institutional arrangements, and technical capabilities.

International application would benefit from comparative case
studies examining framework performance across diverse
geographic and institutional contexts. Such studies could identify
necessary modifications for different planning systems while
establishing general principles for successful implementation. The

framework’s modular structure facilitates such adaptation by
allowing component substitution and parameter adjustment
without fundamental architectural changes (Pinto and Antunes,
2010; Malczewski, 2006).

The framework’s emphasis on quantitative spatial morphology
optimization addresses universal planning concerns regarding
urban form and development efficiency, suggesting broad
relevance across international planning contexts. However,
specific morphology metrics and optimization objectives should
be calibrated to local conditions and planning priorities. This
customization requirement presents both challenges and
opportunities for framework enhancement and international
collaboration in planning support system development (Silva and
Wu, 2012; Deal and Schunk, 2004).

6 Conclusion

This research successfully developed and empirically validated
an intelligent decision-making framework that couples ANN-CA
predictive simulation with ant colony algorithm-based MAS
normative optimization for territorial spatial layout planning.
The framework addresses critical methodological gaps between
simulation and optimization approaches while integrating
planning policy considerations within technical modeling
processes. Application to Hui’an County, Fujian Province,
demonstrated substantial improvements in spatial layout quality,
with optimized scenarios achieving 35.7% reduction in Area-
Weighted Mean Shape Index and 27.1% decrease in patch
fragmentation compared to baseline simulation results.

The framework’s key innovations include the organic coupling
mechanism utilizing simulation-derived suitability probabilities as
optimization heuristic information, explicit incorporation of spatial
morphology objectives within multi-objective optimization
formulations, and deep integration of planning policy factors
including “dual evaluation” results and “three control lines”
constraints. These innovations enable generation of spatial
layouts that simultaneously satisfy efficiency, compactness, and
regulatory compliance requirements while maintaining scientific
grounding in predictive modeling foundations.

Empirical results demonstrate the framework’s effectiveness in
transforming sprawling development patterns into compact, regular
spatial configurations that support sustainable urban growth
principles. The quantitative improvement in landscape metrics
provides objective evidence of enhanced spatial quality, while
strict adherence to planning constraints ensures practical
feasibility and policy alignment. The framework’s modular
structure and technical flexibility suggest strong potential for
adaptation across diverse planning contexts and geographic regions.

Future research should address identified limitations through
development of temporal sequencing capabilities, enhanced
socioeconomic modeling components, and comprehensive
validation protocols. Integration with agent-based models
representing stakeholder decision-making processes could
improve behavioral realism, while rolling horizon optimization
approaches could provide sequential development guidance.
International comparative studies would facilitate framework
refinement and establish general principles for successful
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implementation across different planning systems and
institutional contexts.

The framework represents a significant advancement in
computational planning support systems, providing scientific and
technical foundations for evidence-based territorial spatial planning
decisions. Its capacity to bridge predictive simulation and normative
optimization while maintaining policy integration offers valuable
contributions to both planning theory and practice. As territorial
spatial planning continues evolving toward more integrated and
scientifically informed approaches, frameworks such as this provide
essential tools for navigating complex spatial development challenges
and achieving sustainable territorial development objectives.
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