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Background: Determining the reproductive rate and how it varies over time

and space (RT) provides important insight to understand transmission of a

given disease and inform optimal strategies for controlling or eliminating it.

Estimating RT for malaria is di�cult partly due to the widespread use of

interventions and immunity to disease masking incident infections. A malaria

outbreak in Praia, Cabo Verde in 2017 provided a unique opportunity to

estimate RT directly, providing a proxy for the intensity of vector-human

contact and measure the impact of vector control measures.

Methods: Out of 442 confirmed malaria cases reported in 2017 in Praia, 321

(73%) were geolocated and informed this analysis. RT was calculated using

the joint likelihood of transmission between two cases, based on the time

(serial interval) and physical distance (spatial interval) between them. Log-

linear regression was used to estimate factors associated with changes in RT,

including the impact of vector control interventions. A geostatisticalmodel was

developed to highlight areas receptive to transmission where vector control

activities could be focused in future to prevent or interrupt transmission.

Results: The RT from individual cases ranged between 0 and 11 with a median

serial- and spatial-interval of 34 days [interquartile range (IQR): 17–52] and

1,347m (IQR: 832–1,985m), respectively. The number of households receiving

indoor residual spraying (IRS) 4 weeks prior was associated with a reduction
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in RT by 0.84 [95% confidence interval (CI) 0.80–0.89; p-value <0.001] in the

peak-and post-epidemic compared to the pre-epidemic period.

Conclusions: Identifying the e�ect of reduced human-vector contact through

IRS is essential to determining optimal intervention strategies that modify

the likelihood of malaria transmission and can inform optimal intervention

strategies to accelerate time to elimination. The distance within which two

cases are plausibly linked is important for the potential scale of any reactive

interventions as well as classifying infections as imported or introduced and

confirming malaria elimination.

KEYWORDS

malaria, transmission reduction, transmission heterogeneity, reproductive number,

Cabo Verde

Introduction

Estimating the average number of secondary infections per

infected individual (R0) in a population provides an important

measure of transmission intensity and provides insight into the

frequency with which humans come into contact with infectious

vectors (1). R0 is known to vary over time and space according

to the natural history and ecology of a given infection and

the implementation of effective control interventions. Once

interventions are in place, the transmission potential of an

infection changes and rather than R0, the appropriate term

becomes the effective reproductive number (RT) (2). Therefore,

identifying where transmission potential is high (RT > 1)

and where it is low (RT < 1) provides important insight to

better understand what factors drive transmission and improve

targeting of additional control or elimination strategies (3).

Malaria is a vector-borne disease caused by the Plasmodium

parasite and transmitted by Anopheles mosquito vectors.

Plasmodium falciparum is the most common cause of malaria

across the African continent and is associated with significant

morbidity and mortality. Research suggests that areas with

a higher density of the mosquito vector are associated

with a higher risk of malaria (4). This finding is not

surprising given that areas with a greater likelihood of

contact between humans and mosquito vectors will result in

higher rates of malaria transmission. However, the research

to date on understanding malaria transmission dynamics

relies on use of mathematical models that are not always

based on empirical data (5). Where primary data exist to

assess malaria transmission dynamics, it is confounded by

the use of vector control interventions in the population

that modifies transmission (6), reliance on entomological data

that does not directly measure host-seeking vectors (7), or

presence of malaria immunity masking incident infections

making it difficult to measure a transmission event (8–

10). A better understanding of the spatial and temporal

transmissibility of P. falciparum in the absence of control

or significant anti-malarial immunity will help assess malaria

transmission potential and inform appropriate control and

elimination strategies.

Malaria transmission in Cabo Verde, an archipelago off

the coast of West Africa, has been very low for decades (11).

Elimination of malaria has occurred twice in Cabo Verde, but

each time, transmission was re-established in subsequent years.

Clinical incidence in Praia, the capital city that has historically

had the highest incidence of malaria, has been <1 per 1,000

population at risk since 2010 and prior to 2017, the last reported

epidemic was in 1987 (12). Therefore, the population of Praia

has negligible levels of protective immunity to malaria and

the majority of residents would be expected to develop clinical

symptoms upon infection (13, 14). By capturing all clinical

infections, a useful proxy for a contact between a human and

an infectious vector, the outbreak that occurred between July

2017 and January 2018 provides a unique opportunity to directly

estimate RT for malaria in a sub-Saharan African setting with

typical African malaria vectors. Therefore, the aims of this

work were to estimate RT for malaria in Praia, Cabo Verde

to characterize the spatiotemporal variation in RT, identifying

areas where malaria transmission potential is high (i.e., the

predicted RT was >1), and determine factors associated with a

change in RT as the epidemic progressed.

Methods

Overview of the 2017 outbreak

In 2017, there were 442 P. falciparum malaria cases

identified in Praia, of which 97.7% were reported between July

and December. The epidemiology and risk factors associated

with malaria cases have been described (15). In addition to

the routine prompt, supervised treatment of all cases with

artemether-lumefantrine and a single low-dose of primaquine

as well as larviciding to contain the outbreak, the malaria

programme responded with two main interventions: indoor

residual spraying (IRS) with deltamethrin (K-othrine WP50,

Bayer, South Africa) of houses in the neighborhoods where
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cases were identified, and reactive case detection (RACD), that

is, testing those individuals residing with or near confirmed

cases for malaria by rapid diagnostic test (RDT) and microscopy

and treating those testing positive. Of note, the RACD activity

identified seven individuals positive for malaria, all of whom

were symptomatic within a day of being tested as part of the

RACD response. For all cases, the median number of days

between symptom onset and seeking care was 2 days (IQR: 0–

3 days) and the majority of cases were in adults (median age 30

years, IQR: 20–43 years) and males (65.7%).

Epidemiological data

The data routinely collected on each malaria case to support

this analysis was provided by the National Malaria Elimination

Program (NMEP) in Cabo Verde. Individuals seeking care at

health centers or private clinics and suspected to have malaria,

or who tested positive by RDT, were referred to the principal

hospital in Praia for malaria microscopy and treatment. Most

cases were hospitalized for 3 days to supervise treatment. Cases

were investigated by Health Delegation personnel either in the

hospital or at their residence. Key variables collected included

demographic details of each case (e.g., age, sex), neighborhood

of residence, date of symptom onset, date of being tested for

malaria, and travel history. In Cabo Verde, cases are classified

as imported if the individual reports travel to a malaria endemic

country within the previous 4 weeks, and as locally-acquired if

otherwise (12). The available data consisted of 10 cases reported

between January and June 2017 and 432 cases from July through

December 2017. The final case reported during the epidemic

occurred on January 8th, 2018 but the data were not available

for this analysis. No entomological data on adult mosquitoes

was collected as part of the programmatic response and thus

was not available to include in this analysis. After the epidemic

was contained, a retrospective mapping activity was undertaken

with the objective of geolocating the residences of all confirmed

malaria cases reported in 2017. The information collected by

the surveillance system, i.e., addresses and phone numbers,

were used to trace the cases; 321 (72.6%) of the residences

of the malaria cases were successfully located, mapped and

made available for analysis. In addition to the routine malaria

surveillance data, the NMEP provided data on the malaria

control interventions implemented in Praia in 2017. The data

consisted of the number of structures sprayed with IRS and the

number of people tested as part of RACD per week.

Data analysis

Individual-level estimates of RT were obtained using the

methods developed by Routledge et al. (16). Briefly, the

model estimates the joint likelihood of transmission between

two malaria cases according to the most probable network

structure making up the underlying transmission chain. First,

the serial interval was estimated based on the time between

a case showing symptoms and the subsequent case they may

infect showing symptoms. This is estimated according to the

normalized likelihood of a shifted Rayleigh distribution with

uninformed priors. Next, the likelihood of transmission is

estimated by maximizing the conditional of the underlying

transmission chain based on the estimated serial interval

and distance between the two cases (Supplementary Figure 1).

The underlying transmission network is governed by the

following assumptions: (1) locally-acquired cases can infect

others and be infected whereas imported cases can only

infect others; (2) onward transmission occurs after the case

becomes symptomatic; (3) all infections identified receive

curative treatment and therefore, are removed from the potential

infectious reservoir and; (4) people can be infected by those

undetected as part of the routine surveillance activities. The

estimated RT is therefore the sum of the conditional likelihoods

of the cases being associated with each infection over time

(17). The median and interquartile range (IQR) of the serial

interval between infection pairs with RT >0 was calculated (16).

A similar approach was applied to estimate the “spatial serial

interval,” or the median distance between two paired cases.

Exploratory analysis was conducted to assess the spatial and

temporal trends in the estimated RT and the corresponding herd

immunity threshold was calculated. As malaria does not confer

sterilizing immunity, this term is defined here as the proportion

of the population that needs to be treated or covered by an

intervention that fully protects users from infections to interrupt

transmission. Log-linear regression was used to identify whether

the number of structures sprayed with IRS or people tested

as part of RACD had an impact on RT. To account for the

time between the application of intervention and the potential

impact on transmission, lag periods of 1-, 2-, 3-, and 4-weeks

prior were tested for each intervention. To account for the

strong temporal trend associated with the malaria epidemic, a

factor variable accounting for the pre- (January–June; weeks 0–

26), peak- (July–September; weeks 27–39), and post-epidemic

(October–December; weeks 40–52) period, as well as a non-

linear effect of week, were tested. Interactions and multiple

model forms including generalized additive models were tested

with the Akaike Information Criteria (AIC) determining the

optimal model fit. All analysis was conducted in R statistical

software (Version 4.1.1).

Geostatistical modeling was undertaken to develop a

map of predicted RT in Praia as a function of candidate

environmental predictors, namely altitude, land use, and

distance from inland surface water (rivers, streams, and

ditches). Digital elevation model imagery for Praia was obtained

from TerraSAR-X/TanDEM-X (18). Land use classification

of high-resolution satellite imagery was conducted using a

random forest supervised classification algorithm (19). Briefly,
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a multi-spectral (eight bands Panchromatic: 450–800 nm) pan-

sharpened QuickBird-2 satellite imagery, with 30 cm resolution,

was obtained for November 30th, 2017. After preliminary

unsupervised classification, five land use categories were defined:

built-up areas, dense vegetation, sparse vegetation, bare ground,

and roads. For each category 200 training points were digitized,

supervised classification employing a decision tree algorithm

was performed using the rpart package in R (20). Classification

accuracy was assessed via error rate estimates and confusion

matrices. Land use categories were then measured as proportion

within a circular buffer around each point, with different radii

(25, 50, 75, and 100m). Water courses, including ditches and

canals visible on the imagery were digitized and a raster layer

of distance from the nearest water course was created.

To generate a map of RT in Praia, a spatially explicit

zero-inflated negative binomial generalized linear mixed model

(GLMM) was developed, using the package glmmTMB in R (21).

Spatial autocorrelation was included as a spatial random effect

and modeled using a multivariate normal distribution with a

mean vector of zero and a covariancematrix defined by aMatérn

correlation function with pairwise correlations at the scaled

Euclidean distance between coordinates. Models with land use

classes aggregated to four spatial scales (25, 50, 75, and 100m),

altitude and distance from water were tested and included in

both the conditional model and in the zero-inflated component.

The AIC determined the best fitting model to generate a map of

the estimated RT across Praia (Supplementary Figure 1).

This research received ethical approval from the Comité

Nacional de Ética em Pesquisa para a Saúde (72/2020), the

London School of Hygiene and Tropical Medicine (21503), and

the World Health Organization (005473). The data used in this

analysis were collected as part of the routine malaria surveillance

activities and the epidemic response; therefore, informed

consent was not obtained (15). All identifying information

was removed from the database except for the household

location before analysis. To preserve anonymity of individuals,

error terms were introduced in all visualizations. Results were

presented according to the RECORD checklist for studies using

routinely collected health data (Supplementary File 1) (22).

Results

Of the 321 malaria cases in 2017 that were geolocated,

five were imported and 315 were diagnosed between July and

December. Over the course of the outbreak, the estimated RT
ranged from 0 to 11 (Supplementary Figure 2). For locally-

acquired infections, the estimated RT ranged between 0 and 4

with 33.0% of infections having RT >1 whereas for imported

infections the estimated RT ranged between 0 and 11 with

29.1% of infections having RT >1. During the pre-epidemic

period, the weekly mean RT was consistently below one; the

peak-epidemic period was initiated by an imported case with

an RT of 11 and the RT stayed above one until week 35 and

during the post-epidemic period after interventions were scaled-

up, the maximum RT was 4. An RT of 11 and 4, or the

maximum transmission potential of infections pre- and post-IRS

scale-up, corresponds with herd immunity thresholds of 90.9%

[i.e., (1-(1/11)] and 75.0%, respectively. There was a second

wave of RT >1 between week 36 and 39. The post-epidemic

period started in week 40 and mean weekly RT remained <1

through December 2017 (Figure 1). The median serial interval

was estimated to be 34 days (IQR: 17–55 days), consistent with

values previously reported (16). The estimated spatial serial

interval in this area was 1,347m (IQR: 832–1,985 m).

During the pre-epidemic period only 105 houses received

IRS and no one was tested as part of a RACD investigation.

In contrast, after the epidemic was confirmed in July

and through the end of the post-epidemic period, 30,840

houses received IRS and 2,220 people participated in the

RACD response (Figure 2). The results of the final log-

linear regression model suggest that RT, or the number of

secondary cases associated with each primary case, declined

by 0.89 (95% CI: 0.87–0.93) on average, per week, and

that RT was significantly higher during the peak epidemic

period compared to the pre-epidemic period (67.44, 95% CI:

20.38–223.20). There was a significant interaction between

the number of houses that received IRS 4 weeks prior and

the epidemic period; there was no association between IRS

and RT during the pre-epidemic period while during the

periods of peak- and post-epidemic, the number of houses

sprayed, accounting for a 4-week lag, was significantly associated

with a reduction in RT (Table 1). There were distinct spatio-

temporal trends observed over the course of the epidemic

(Supplementary Movie 1). The few malaria cases that were

confirmed in the pre-epidemic period were scattered throughout

the city. With the onset of the epidemic in July, explosive

waves of cases are visible and shifting slightly north before

being contained.

The 25m spatial scale was the optimal scale for the

land-use classification algorithm (Supplementary Table 1).

The geostatistical model that best fit the data

(Supplementary Figures 3–5) suggested that areas with a

higher proportion of bare ground were associated with lower

RT than areas with dense or sparse vegetation. In addition,

proximity to surface water, such as canals, and a lower altitude

were associated with an increase in the expected RT (Table 2;

Supplementary Figure 6). The map of the predicted RT in Praia

(A) and the predicted probability that RT was >1 (B) are shown

in Figure 3.

Discussion

We estimated the individual-level RT of malaria throughout

the course of an outbreak in 2017 in Praia, Cabo Verde,

Frontiers in Epidemiology 04 frontiersin.org

https://doi.org/10.3389/fepid.2022.1031230
https://www.frontiersin.org/journals/epidemiology
https://www.frontiersin.org


Stresman et al. 10.3389/fepid.2022.1031230

FIGURE 1

Temporal trend of the estimated mean RT per week of cases reported through 2017. Malaria cases classified as imported are shown in red with

locally acquired infections in blue. The size of the points represents the number of cases reported in that week with the maximum and minimum

estimated RT highlighted by the light gray lines. Points where the range is not shown reflect only having a single case reported that week. The

vertical gray lines represent the di�erent phases of the epidemic: Pre-epidemic from January June or weeks 0–26; Peak-epidemic from July to

September or weeks 27–39 and; Post-epidemic from October December or weeks 40–52.

a population without significant immunity to malaria

and where only minimal control efforts were in place

before the start of the epidemic. The epidemic consisted

of three distinct waves of transmission in this urban

environment with cases associated with between 0 and

11 additional malaria infections. The maximum estimated

RT of 11 suggests that in a non-immune population with

low coverage of control interventions, the herd immunity

threshold is 90.9%, but in the presence of effective vector

control, here IRS, the maximum RT was 4, the threshold

reduced to 75.0%. This suggests that the majority of the

population needs to be covered with an intervention that

fully protects users from acquiring incident infections, for

example uses LLINs or receives prompt treatment of any

incident infection before onward transmission is possible, to

interrupt transmission.

In this setting, all infected individuals exhibited symptoms

and care was sought within between 1 to 3 days where

they received effective antimalarial treatment as an inpatient.

This suggests that the transmission window where contact

with a Anopheles mosquito vector was very short and likely

further contributed to reducing the transmission potential

of the outbreak. Similarly, here all treatment was observed

as part of inpatient care and ensured that all infections

were cleared and likely further reduced the risk of onward

transmission. In contrast, where population immunity is high

or rates of care-seeking are lower or more delayed than

what was observed here, the transmission window is likely

larger if infections persist for longer before treatment. In

this case, it is possible that RT may be higher as persistent

infections provide more opportunity for contact with a

competent vector.

In this setting, we estimated that it can take a median

of 1 month (34 days) for secondary malaria infections to

become symptomatic and detected by routine surveillance.

To our knowledge, this is the first time the period between

when a person presents for care and the subsequent person

infected in the chain becomes symptomatic. The temporal

relationship observed is consistent with the expected

intrinsic and extrinsic incubation period of malaria and

has important programmatic implications for confirming

the classification of a case as indigenous or introduced

(23, 24).

We extended the construct of the serial interval (describing

the time difference between two linked, symptomatic cases

detected by the health system) to the concept of a serial

spatial interval that describes the physical distance between

the residences of two linked, symptomatic cases. To our

knowledge, this is the first time that this concept has been

considered or calculated for malaria. Although no data on

adult mosquito densities was available to confirm this, the

expected distance between linked cases is likely a combination of
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FIGURE 2

Weekly trends of the epidemic and interventions implemented by the program to contain the outbreak. (A) Temporal trends in the estimated Rt

per case (red points) over the course of 2017 highlighting the epidemic period. The x-axis shows the weeks starting in 2017 through the end of

the pandemic with the y-axis showing the estimated Rt. (B) The number of structures sprayed with indoor residual spray (IRS) and (C) the

number of people tested per week as part of reactive case detection (RACD) activities per week over the same time period. The vertical gray

lines represent the di�erent phases of the epidemic: Pre-epidemic from January June or weeks 0–26; Peak-epidemic from July September or

weeks 27–39 and; Post-epidemic from October December or weeks 40–52.

both human and mosquito movement and of the opportunities

for intersection that allows for human-vector contact. The

spatial serial interval is likely to vary depending on parasite

and mosquito species, weather, population density, presence of

domestic animals, housing characteristics and other factors that

mediate human-vector contact. Although there will be variance

in the spatial serial interval in different areas, understanding

plausible values can help inform interventions conducted in

response to a confirmed malaria case in areas of very low

transmission as well as the classification of cases as introduced

or indigenous. We found that the median spatial serial

interval was 1.3 km, which is consistent with the maximum

dispersal of anophelines that are not likely to be wind-aided

(25). However, given the densely population urban setting in

which these cases occurred, we expected to find linked cases

occurring nearer to each other (26). One possible reason for

finding a larger distance between linked cases than expected

is that cases, which were largely adult men, could have been

infected in locations other than their residences. Combined,

the serial- and spatial-interval observed suggest that the

interaction between human movement, mosquito movement,

and the parasites’ development period must be accounted

for when characterizing malaria transmission and targeting

a response.

Frontiers in Epidemiology 06 frontiersin.org

https://doi.org/10.3389/fepid.2022.1031230
https://www.frontiersin.org/journals/epidemiology
https://www.frontiersin.org


Stresman et al. 10.3389/fepid.2022.1031230

TABLE 1 Results of the log linear regression to assess the impact of

the interventions on the estimated RT over the course of the epidemic.

Variable β 95%

confidence

interval

P-Value

Intercept 0.59 0.24–1.47 0.26

Week 0.89 0.85–0.93 <0.001

Epidemic period

Pre-epidemic (January–June) 1 – –

Peak-epidemic (July–September) 67.44 20.38–223.20 <0.001

Post-epidemic (October–December) 4.55 0.94–22.05 0.06

IRS – 4-week lag 1.19 1.12–1.25 <0.001

Epidemic period: IRS 4-week lag interaction

Pre-epidemic:IRS 1 – –

Peak-epidemic:IRS 0.84 0.80–0.89 <0.001

Post-epidemic:IRS 0.84 0.80–0.89 <0.001

β, model coefficients indicating the expected change in RT . The corresponding 95%

confidence intervals and p-values are shown.

Both vector control interventions and ecological variables

known to be conducive to mosquito breeding were associated

with changes in RT. Firstly, the number of households

sprayed by IRS within the targeted neighborhoods 4 weeks

prior, was associated with a reduction in RT during the

peak- and post-epidemic periods. It is possible that this

association was a result of the direct impact of IRS, but

as Anopheles Arabiensis is an exophilic vector, it could have

been a proxy for unmeasured factors including changing

behaviors as the epidemic progressed. Interestingly, RACD

was not associated with any reduction in transmission. In

a non-immune population, most, if not all, infections are

expected to become symptomatic. Thus, the time between

an infection being detectable using routine diagnostic tools

and onset of symptoms would likely be short, leaving few

infections in the community for RACD to identify. In this

population, symptomatic infections were promptly detected and

treated within the routine health system, as has previously

been reported (27); therefore the lack of association between

RACD and transmission reduction is not surprising. In

other settings where residual protective immunity exists and

incident infections are more difficult to detect, RACD may be

associated with a change in RT and thus be a more effective

intervention (28).

Secondly, the geospatial analysis identified several ecological

factors that improved the model fit when analyzing changes

in RT and delineated areas that are conducive to malaria

transmission (i.e., RT > 1). According to the best model

fit, the variables related with increasing RT included lower

altitude, being closer to water bodies, and areas with vegetation

whereas areas with bare ground or buildings was associated with

reductions in transmission potential. Although entomological

TABLE 2 Estimates for the fixed e�ects of best model explaining RT

values in Praia (zero-inflated negative binomial model, with spatial

random e�ect).

Variable β SE LCI UCI P-Value

Intercept −1.02 0.17 −1.35 −0.69 <0.001

Bare ground −0.40 0.19 −0.77 −0.04 0.031

Buildings −0.06 0.22 −0.50 0.38 0.775

Dense vegetation 0.06 0.18 −0.30 0.41 0.753

Sparse vegetation 0.21 0.14 −0.06 0.49 0.122

Distance from water −0.23 0.14 −0.51 0.04 0.098

Altitude 0.32 0.20 −0.08 0.71 0.114

Zero inflation

Intercept −6.36 1.96 −10.19 −2.53 0.001

Bare ground −1.45 1.19 −3.77 0.88 0.223

Buildings 1.96 1.38 −0.75 4.67 0.157

Dense vegetation −2.53 2.37 −7.17 2.11 0.284

Sparse vegetation 1.83 1.27 −0.66 4.33 0.149

Distance from water −3.08 1.52 −6.05 −0.11 0.042

Altitude 4.61 1.51 1.65 7.57 0.002

β, model coefficients; SE, standard errors; LC, 95% lower confidence intervals; UCI, 95%

upper confidence intervals. Land use variables are proportions in circle of 25m radius

around each location; distance from surface water and altitude are in meters.

data were not available for this analysis and the sample size

of the number of cases with an RT value was small, the

factors that were found to influence RT are consistent with

those that impact the capacity for mosquito development

and receptivity to transmission (29). The corresponding maps

identified areas where onward transmission is likely (e.g. RT >1)

informing where vector control interventions can be targeted

in future to suppress receptivity (30). Maintaining a vigilant

health system able to promptly detect and treat any and all

infections is crucial to interrupting transmission. However,

infections are only likely to cause onward transmission in

areas receptive to malaria transmission where there is sufficient

contact between infective mosquitoes and human hosts: the

high estimated RT observed in a single case was likely a result

of this case residing in an area that was highly receptive to

malaria at the right time when the mosquito vectors were

abundant. This case may have been responsible for triggering

the outbreak. In future, maintaining targeted vector control in

areas where transmission is most likely can reduce receptivity

and RT (31).

There are some important limitations to this study. First,

other methods for estimating P. falciparum RT are available

and could have been applied to this case study in Praia (5, 32).

Although a direct comparison of models is beyond the scope

of this paper, the results presented in this report are consistent

with those found by other studies. For example, the distribution

of the estimated RT highlighted the significant heterogeneity

expected in malaria transmission with a small proportion of
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FIGURE 3

Map of malaria receptivity in Praia, Cabo Verde based on the 2017 outbreak. (A) Map of the estimated RT as predicted by the geostatistical model

informed by environmental covariates as predictors. (B) The probability that the area has a predicted RT > 1. The areas where there is at least

80% probability that RT is > 1 are marked by the black hashed areas. This arbitrary threshold was selected for visualization purposes, with the

specific areas of programmatic interest being dependent on the goals of the program and resources available. These areas are thus ones where

malaria is particularly receptive and may spark future epidemics if parasites are imported when the Anopheles mosquito vectors are active.

individuals driving the majority of transmission (33). Therefore,

we would expect the results of applying different methods for

estimating RT to yield similar findings, but without parasite

genomic data, confirming the transmission chains to determine

how many secondary infections resulted from each infected

individual is challenging (34). Next, the data on interventions

administered to contain the outbreak was collected from the

NMEP. Ideally, the number of households receiving IRS or

people tested as part of RACD would be available as numbers

per week per neighborhood to account for both the spatial

and temporal heterogeneity of the outbreak and the response.

However, data were only available at a weekly resolution and,

therefore, the analysis of the impact of interventions on RT is

ecological in nature. Despite that limitation, the results of the

model are consistent with the understanding of the impact of the

applied interventions on transmission suggesting the findings

are plausible. The model framework assumes that imported

and locally-acquired infections contribute differently to the

underlying transmission chain with imported infections only

contributing to onward transmission. In most programmatic

settings, including in Cabo Verde, imported infections are

classified as those who have traveled to a malaria endemic

area in the previous 4 weeks. It is possible that the clinicians

misclassified cases on whether they were imported or not

which could impact the model results. However, given that

clinicians were blinded to the associated RT of that individual,

any misclassification bias is expected to be non-differential.

Next, here we are considering the herd immunity threshold

is based on the maximum number of secondary infections

associated with a single case. Malaria transmission is known

to be heterogeneous and thus, a range of values, as was

observed here, is not unexpected. However, if a single infection

is capable of seeding up to 11 additional infections, coverage

at anything less than this threshold would be unlikely to lead

to sustainable reductions and therefore, is more meaningful

than other summary measures such as the median or range.

Finally, the spatial coordinates used to estimate RT were of

the house where the case resided and is the assumed location

of the transmission event for locally-acquired infections. The

Anopheles mosquitoes’ peak biting times are between dusk and

dawn making this assumption plausible; however, given that the

majority of infections were in adult men as has previously been

reported (15), we acknowledge that transmission could have

occurred elsewhere, which may have introduced measurement

bias when estimating RT and the corresponding spatial serial

interval. Future analysis to assess any differences in the distance

between two linked cases and demographic risk factors could

help refine this.

Ultimately, measuring RT is difficult for malaria and

transmission potential is impacted by factors affecting
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both the human host and mosquito vector. Understanding

factors that impact transmission potential and the

expected patterns whereby infectious humans come into

contact with the Anopheles mosquito vectors will enable

more precise targeting of interventions to interrupt

transmission as well as improving estimates of malaria

transmission potential.
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SUPPLEMENTARY MOVIE 1

Animation of the spatio-temporal dynamics of the malaria cases

reported in Praia in 2017. Each point represents the location of

geolocated cases in Praia and each frame shows the cases reported per

month between January–December 2017. The color of each point

represents the estimated Rt with circles reflecting cases that were locally

acquired with triangles highlighting cases that were reported as

imported from outside of

Cabo Verde.

SUPPLEMENTARY FIGURE 1

Heatmap showing the likelihood of cases being associated according to

the algorithm which is based on spatial and temporal proximity. Rt is

estimated according to the sum of the probabilities that one case led to
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another. In the heatmap, each row and column represent an individual

with the color corresponding to the probability that the infections in the

individuals are likely to be connected.

SUPPLEMENTARY FIGURE 2

Histogram showing the distribution of the estimated RT.

SUPPLEMENTARY FIGURE 3

Classification tree and confusion matrix for land use classification of

high-resolution satellite imagery.

SUPPLEMENTARY FIGURE 4

Diagnostic for the best model explaining RT values in Praia.

SUPPLEMENTARY FIGURE 5

E�ects of significant covariates in spatial model to predict Rt, including

bare ground (top), distance from water courses in meters (middle) and

altitude (bottom).

SUPPLEMENTARY TABLE 1

Comparison of geostatistical models of RT in Praia, at the four di�erent

scales. AIC, Akaike’s Information Criterion.

SUPPLEMENTARY FILE 1

Completed RECORD checklist outlining the reporting of routinely

collected data.

References

1. Smith DL, Battle KE, Hay SI, Barker CM, Scott TW, McKenzie FE, et al. Ross,
Macdonald, and a theory for the dynamics and control of mosquito-transmitted
pathogens. PLoS Pathog. (2012) 8:e1002588. doi: 10.1371/journal.ppat.1002588

2. Nishiura H, Chowell G. The effective reproduction number as a prelude to
statistical estimation of time-dependent epidemic trends. In: Castillo-Chavez C,
Chowell G, Hayman JM, Bettencourt LMA, editors. Mathematical and Statistical
Estimation Approaches in Epidemiology. Dordrecht: Springer Netherlands (2009),
p. 102–21. doi: 10.1007/978-90-481-2313-1_5

3. Enahoro I, Eikenberry S, Gumel AB, Huijben S, Paaijmans
K, et al. Long-lasting insecticidal nets and the quest for malaria
eradication: a mathematical modeling approach. J Math Biol. (2020)
81:113–58. doi: 10.1007/s00285-020-01503-z

4. Nankabirwa JI, Arinaitwe E, Rek J, Kilama M, Kizza T, Staedke SG, et al.
Malaria transmission, infection, and disease following sustained indoor residual
spraying of insecticide in Tororo, Uganda. Am J Trop Med Hyg. (2020) 103:1525–
33. doi: 10.4269/ajtmh.20-0250

5. Smith DL, McKenzie FE, Snow RW, Hay SI. Revisiting the basic reproductive
number for malaria and its implications for malaria control. PLoS Biol. (2007)
5:e42. doi: 10.1371/journal.pbio.0050042

6. Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The
effect of malaria control on Plasmodium falciparum in Africa between 2000 and
2015. Nature. (2015) 526:207–11. doi: 10.1038/nature15535

7. Namango IH, Marshall C, Saddler A, Ross A, Kaftan D, Tenywa F, et al. The
Centres for Disease Control light trap (CDC-LT) and the human decoy trap (HDT)
compared to the human landing catch (HLC) for measuring Anopheles biting in
rural Tanzania.Malar J. (2022) 21:181. doi: 10.1186/s12936-022-04192-9

8. Rodriguez-Barraquer I, Arinaitwe E, Jagannathan P, Kamya MR,
Rosenthal PJ, Rek J, et al. Quantification of anti-parasite and anti-disease
immunity to malaria as a function of age and exposure. eLife. (2018)
V1:e35832. doi: 10.7554/eLife.35832.045

9. van den Hoogen LL, Stresman G, Présumé J, Romilus I, Mondélus G,
Elismé T, et al. Selection of antibody responses associated with Plasmodium
falciparum infections in the context of malaria elimination. Front Immunol. (2020)
11:928. doi: 10.3389/fimmu.2020.00928

10. Stresman G, Sepúlveda N, Fornace K, Grignard L, Mwesigwa J, Achan
J, et al. Association between the proportion of Plasmodium falciparum and
Plasmodium vivax infections detected by passive surveillance and the magnitude
of the asymptomatic reservoir in the community: a pooled analysis of
paired health facility and community data. Lancet Infect Dis. (2020) 20:953–
63. doi: 10.1016/S1473-3099(20)30059-1

11. DePina AJ, Niang EHA, Barbosa Andrade AJ, Dia AK, Moreira A,
Faye O, et al. Achievement of malaria pre-elimination in Cape Verde
according to the data collected from 2010 to 2016. Malar J. (2018)
17:236. doi: 10.1186/s12936-018-2376-4

12. DePina AJ, Stresman G, Barros HSB, Moreira AL, Dia AK, Furtado UD,
et al. Updates on malaria epidemiology and profile in Cabo Verde from 2010 to
2019: the goal of elimination. Malar J. (2020) 19:380. doi: 10.1186/s12936-020-0
3455-7

13. van den Hoogen LL, Bareng P, Alves J, Reyes R, Macalinao M, Rodrigues
JM, et al. Comparison of commercial ELISA kits to confirm the absence
of transmission in malaria elimination settings. Front Public Health. (2020)
8:480. doi: 10.3389/fpubh.2020.00480

14. Da Veiga Leal S, Ward D, Campino S, Benavente ED, Ibrahim
A, Claret T, et al. Drug resistance profile and clonality of Plasmodium
falciparum parasites in Cape Verde: the 2017 Malaria Outbreak. Malar J. (2021)
20:172. doi: 10.1186/s12936-021-03708-z

15. DePina AJ, Andrade AJB, Dia AK, Moreira AL, Furtado UD,
Baptista H, et al. Spatiotemporal characterisation and risk factor analysis
of malaria outbreak in Cabo Verde in 2017. Trop Med Health. (2019)
47:3. doi: 10.1186/s41182-018-0127-4

16. Routledge I, Chevéz JER, Cucunubá ZM, Rodriguez MG, Guinovart
C, Gustafson KB, et al. Estimating spatiotemporally varying malaria
reproduction numbers in a near elimination setting. Nat Commun. (2018)
9:2476. doi: 10.1038/s41467-018-04577-y

17. Routledge I, Unwin HJT, Bhatt S. Inference of malaria reproduction numbers
in three elimination settings by combining temporal data and distance metrics. Sci
Rep. (2021) 11:14495. doi: 10.1038/s41598-021-93238-0

18. Wessel B. TanDEM-X Ground Segment - DEM Products Specification
Document. Oberpfaffenjofen: D. EOC (2018).

19. Liaw A, Wiener M. Classification and regression by randomForest. R News.
(2002) 2:18–22.

20. Therneau T, Atkinson B. Recursive partitioning and regression trees, in R
Package. CRAN (2019).

21. Brooks ME. KristensenK, van Benthem KJ, Magnusson A, Berg CW,
Nielsen A, et al. glmmTMB Balances speed and flexibility among packages
for zero-inflated generalized linear mixed modeling. R J. (2017) 9:378–
400. doi: 10.32614/RJ-2017-066

22. Benchimol EI, Smeeth L, Guttmann A, Harron K, Moher D,
Petersen I, et al. The reporting of studies conducted using observational
routinely-collected health data (RECORD) statement. PLoS Med. (2015)
12:e1001885. doi: 10.1371/journal.pmed.1001885

23. Bousema T, Drakeley C. Epidemiology and infectivity of Plasmodium
falciparum and Plasmodium vivax gametocytes in relation to malaria control
and elimination. Clin Microbiol Rev. (2011) 24:377–410. doi: 10.1128/CMR.
00051-10

24. Reiner RC, Le Menach A, Kunene S, Ntshalintshali N, Hsiang MS, Perkins
TA, et al. Mapping residual transmission for malaria elimination. Elife. (2015)
4:e09520. doi: 10.7554/eLife.09520

25. Service MW. Mosquito (Diptera: Culicidae) dispersal–the long and short of
it. J Med Entomol. (1997) 34:579–88. doi: 10.1093/jmedent/34.6.579

26. Huestis DL, Dao A, Diallo M, Sanogo ZL, Samake D, Yaro AS, et al.
Windborne long-distance migration of malaria mosquitoes in the Sahel. Nature.
(2019) 574:404–8. doi: 10.1038/s41586-019-1622-4

27. Andolina C, Rek JC, Briggs J, Okoth J, Musiime A, Ramjith J, et al. Sources
of persistent malaria transmission in a setting with effective malaria control in
eastern Uganda: a longitudinal, observational cohort study. Lancet Infect Dis.
(2021) 21:1568–78. doi: 10.1016/S1473-3099(21)00072-4

28. Stresman G, Whittaker C, Slater HC, Bousema T, Cook J, et al.
Quantifying Plasmodium falciparum infections clustering within households
to inform household-based intervention strategies for malaria control
programs: an observational study and meta-analysis from 41 malaria-
endemic countries. PLoS Med. (2020) 17:e1003370. doi: 10.1371/journal.pmed.
1003370

Frontiers in Epidemiology 10 frontiersin.org

https://doi.org/10.3389/fepid.2022.1031230
https://doi.org/10.1371/journal.ppat.1002588
https://doi.org/10.1007/978-90-481-2313-1_5
https://doi.org/10.1007/s00285-020-01503-z
https://doi.org/10.4269/ajtmh.20-0250
https://doi.org/10.1371/journal.pbio.0050042
https://doi.org/10.1038/nature15535
https://doi.org/10.1186/s12936-022-04192-9
https://doi.org/10.7554/eLife.35832.045
https://doi.org/10.3389/fimmu.2020.00928
https://doi.org/10.1016/S1473-3099(20)30059-1
https://doi.org/10.1186/s12936-018-2376-4
https://doi.org/10.1186/s12936-020-03455-7
https://doi.org/10.3389/fpubh.2020.00480
https://doi.org/10.1186/s12936-021-03708-z
https://doi.org/10.1186/s41182-018-0127-4
https://doi.org/10.1038/s41467-018-04577-y
https://doi.org/10.1038/s41598-021-93238-0
https://doi.org/10.32614/RJ-2017-066
https://doi.org/10.1371/journal.pmed.1001885
https://doi.org/10.1128/CMR.00051-10
https://doi.org/10.7554/eLife.09520
https://doi.org/10.1093/jmedent/34.6.579
https://doi.org/10.1038/s41586-019-1622-4
https://doi.org/10.1016/S1473-3099(21)00072-4
https://doi.org/10.1371/journal.pmed.1003370
https://www.frontiersin.org/journals/epidemiology
https://www.frontiersin.org


Stresman et al. 10.3389/fepid.2022.1031230

29. Nasir SMI, Amarasekara S, Wickremasinghe R, Fernando D, Udagama
P. Prevention of re-establishment of malaria: historical perspective and future
prospects.Malar J. (2020) 19:452. doi: 10.1186/s12936-020-03527-8

30. Smith DL, Hay SI, Noor AM, Snow RW. Predicting changing malaria risk
after expanded insecticide-treated net coverage in Africa. Trends Parasitol. (2009)
25:511–6. doi: 10.1016/j.pt.2009.08.002

31. Dharmawardena P, Premaratne R, Wickremasinghe R, Mendis K, Fernando
D. Epidemiological profile of imported malaria cases in the prevention of
reestablishment phase in Sri Lanka. Pathog Glob Health. (2022) 116:38–
46. doi: 10.1080/20477724.2021.1951556

32. Churcher TS, Cohen JM, Novotny J, Ntshalintshali N, Kunene S, Cauchemez
S. Public health. Measuring the path toward malaria elimination. Science. (2014)
344:1230–2. doi: 10.1126/science.1251449

33. Woolhouse MEJ, Dye C, Etard JF, Smith T, Charlwood JD, Garnett GP,
et al. Heterogeneities in the transmission of infectious agents: implications for
the design of control programs. Proc Natl Acad Sci U S A. (1997) 94:338–
42. doi: 10.1073/pnas.94.1.338

34. Smith DL, Perkins TA, Reiner RC Jr, Barker CM, Niu T, Chaves LF, et al.
Recasting the theory of mosquito-borne pathogen transmission dynamics and
control. Trans R Soc TropMed Hyg. (2014) 108:185–97. doi: 10.1093/trstmh/tru026

Frontiers in Epidemiology 11 frontiersin.org

https://doi.org/10.3389/fepid.2022.1031230
https://doi.org/10.1186/s12936-020-03527-8
https://doi.org/10.1016/j.pt.2009.08.002
https://doi.org/10.1080/20477724.2021.1951556
https://doi.org/10.1126/science.1251449
https://doi.org/10.1073/pnas.94.1.338
https://doi.org/10.1093/trstmh/tru026
https://www.frontiersin.org/journals/epidemiology
https://www.frontiersin.org

	Factors related to human-vector contact that modify the likelihood of malaria transmission during a contained Plasmodium falciparum outbreak in Praia, Cabo Verde
	Introduction
	Methods
	Overview of the 2017 outbreak
	Epidemiological data
	Data analysis

	Results
	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Author disclaimer
	Supplementary material
	References


