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Treatment of symptomatic malaria became a routine component of the clinical
and public health response to malaria after the second world war. However, all
antimalarial drugs deployed against malaria eventually generated enough drug
resistance that they had to be removed from use. Chloroquine, sulfadoxine-
pyrimethamine, and mefloquine are well known examples of antimalarial
drugs to which resistance did and still does ready evolve. Artemisinin-based
combination therapies (ACTs) are currently facing the same challenge as
artemisinin resistance is widespread in Southeast Asia and emerging in Africa.
Here, I review some aspects of drug-resistance management in malaria that
influence the strength of selective pressure on drug-resistant malaria
parasites, as well as an approach we can take in the future to avoid repeating
the common mistake of deploying a new drug and waiting for drug
resistance and treatment failure to arrive. A desirable goal of drug-resistance
management is to reduce selection pressure without reducing the overall
percentage of patients that are treated. This can be achieved by distributing
multiple first-line therapies (MFT) simultaneously in the population for the
treatment of uncomplicated falciparum malaria, thereby keeping treatment
levels high but the overall selection pressure exerted by each individual
therapy low. I review the primary reasons that make MFT a preferred
resistance management option in many malaria-endemic settings, and I
describe two exceptions where caution and additional analyses may be
warranted before deploying MFT. MFT has shown to be feasible in practice in
many endemic settings. The continual improvement and increased coverage
of genomic surveillance in malaria may allow countries to implement custom
MFT strategies based on their current drug-resistance profiles.
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Introduction

In malaria-endemic countries, antimalarial drug policy has always been guided by

identifying the most effective therapy—often by age group, clinical severity, or pregnancy

status—and recommending it as the first-line treatment option (1). Chloroquine (CQ)

was the most effective, safest, and least expensive drug for decades. Despite the

emergence of chloroquine resistance in the late 1950s and 1960s and its subsequent

spread in the following decades, CQ was recommended as a first-line antimalarial into

the 1990s and continued to be sold into the early part of this century (2–4) far beyond

its useful period as an effective clinical intervention (5). Sulfadoxine-pyrimethamine (SP)
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became, by default, the best available broadly-applicable therapy

in the late 1990s when CQ cure rates in Africa fell below 50%

(6). Then, with the rapid spread of SP resistance (7), the success

of clinical trials of artemisinin-based drugs in the 1990s (8–12),

and the development of artemisinin-based combination

therapies (ACTs) shortly thereafter (13, 14), the World Health

Organization (WHO) recommended in 2005 that ACTs be

adopted globally as first-line therapy against uncomplicated

falciparum malaria (15). ACTs have been used globally for

more than 15 years and have likely made an enormous

contribution to the decline of malaria that has been seen during

this time (16, 17). Hidden in this triumph is the knowledge that

the honeymoon with artemisinin-based drugs will eventually be

over. Early signs of drug resistance, first observed in Cambodia

from 2006 to 2008 (18, 19) and most recently in Africa (20,

21), have led us to a predictable reenactment of the scenarios

that played out with chloroquine, SP, mefloquine, and the many

other antimalarials whose efficacy was eroded by the emergence

and spread of drug resistance.

Antimalarial chemotherapy is one of the two most

important components of malaria control as it works both to

cure patients and reduce onward transmission, lowering both

prevalence and incidence. For many decades, we have been

refortifying our chemotherapeutic defenses, when first-line

drugs stopped working, by slowly replacing the therapies we

use to treat malaria—always reacting to the problem of drug

resistance rather than anticipating it. Great fortunes and

energies have been spent gathering the data for public health

response, and almost always too late. This despite the fact that

the eventual outcome of resistance evolution is predictable, in

some cases certain, given that we broadly expose the parasite

population to the same strong selection pressure when we roll

out a newly chosen drug as a replacement for a failing

therapy. As public health planners, why are we content to

react to the emergence of drug-resistant parasites rather than

acting early and acting preemptively? It is imperative that we

break out of this cycle of failure and replacement.

A key positive enabler of early action against drug resistance

is the global genomic surveillance framework that has been built

over the past 15 years (22–24). With genotyped Plasmodium

falciparum collections routinely reaching thousands of

samples and molecular marker validation standards (25, 26)

reaching a point where molecular marker counts alone (20,

21) are now sufficient to make public health assessments of

drug resistance, we are in a position where drug-resistant

genotype frequencies can be identified and reported at the 1%

level or lower. This is critical because early detection of drug

resistance allows for early interventions to be planned (27).

In addition, the development of multiple types of ACTs over

the past 15 years—a total of six currently pre-qualified by WHO

(28)—has presented us with a possible solution. In deciding

which therapy we should recommend when multiple therapies

are available, equally safe, and equally efficacious, the best
Frontiers in Epidemiology 02
answer may be that a deliberate recommendation should be

made to deploy all therapies simultaneously, with different

patients receiving different treatments. The rationale behind

such a strategy is that it would delay drug-resistance

evolution. In the same way that combination therapy presents

a more complex survival problem for blood-stage malaria

parasites, the deployment of multiple first-line therapies

(MFT) forces parasites to adapt to simultaneous multiple

lethal challenges (29). If the parasite has mastered drug X in

patient A, it will see drug Y in patient B next month. The

major difference between combination therapy and MFT is

that combination therapy offers more simultaneity in

antimalarial drug action, as parasites see multiple drugs

during the same 48-h replication cycle. Under MFT, parasites

in symptomatic hosts will wait several weeks before seeing

another drug—an acceptable compromise as this approach

still makes evolutionary adaptation difficult for the parasites.

Planning a public health strategy around drug-resistance

prevention allows us to anticipate drug-resistance evolution

rather than react to it. Persuading National Malaria Control

Programs (NMCP) to reformulate their guidelines to allow for

multiple types of therapies to be used—with custom

approaches appropriate to every region’s (1) supply chain

constraints, (2) operational capacity, (3) current prevalence

level, (4) current knowledge on circulating resistance markers,

and (5) current drug recommendations for chemoprophylaxis—

will build a level of flexibility into malaria control plans that

will allow for a better feedback loop between malaria

surveillance and malaria control activities. This would allow for

MFT or MFT-like strategies to be trialed, evaluated, and

modified, allowing each NMCP to pursue a fit-for-purpose

strategy with the best long-term chances of substantial

reductions in malaria prevalence and antimalarial drug resistance.
Evidence and rationale for MFT

The preferred method for comparing long-term population-

level treatment strategies aimed at minimizing the detrimental

effects of drug resistance is in silico experimentation using

mathematical models of pathogen transmission and evolution.

The rationale for this approach is that population-level field

trials are expensive and impractical for an outcome that may

not occur for a decade or more. Mathematical modeling results

analyzing drug resistance evolution in bacteria and malaria

suggest that the simultaneous population-level use of drugs is

better than rotating those same drugs (30–36). Comparisons in

these modeling analyses are usually made between simultaneous

deployment and cycling, as these are the two most feasible

options for long-term drug stewardship when multiple therapies

are available (Figure 1). Drug cycling is evaluated in two

common schemes, either rotating drugs in and out on a fixed

predetermined schedule (e.g., every 5 years) or replacing drugs
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only when treatment failure rates become too high [for malaria,

this is done at the WHO-recommended level of 10% treatment

failure (28)]. A third option sometimes included in these

comparisons is a hypothetical combination therapy of all

available drugs (31, 32). This option is typically not available in

practice as a newly proposed combination needs to undergo

extensive safety and efficacy testing, while rotation and MFT

strategies can be deployed immediately. Nevertheless, modeling

results do indicate that combination therapies dramatically

reduce the likelihood of long-term resistance evolution with a

small additional risk of driving multi-drug resistance (37).

The reason that drug-resistance management strategies

work at all is that they take advantage of drug-resistant

pathogens’ reduced Darwinian fitness, or their fitness cost

(38–41). The fitness cost associated with drug resistance

means that in the absence of drug pressure, drug-resistant

genotypes should be outcompeted by drug-sensitive

genotypes, both within patients and in the population at large.

In fact, this is the only major leverage that we have against

drug resistance of any kind: with no fitness cost of resistance,

resistant genotypes would simply continue spreading after

emergence even under low levels of drug coverage (42, 43).

Given that drug-resistance mutations are typically associated

with a fitness cost [there are exceptions to this rule (44)], the

evolutionary game for any pathogen encountering drug

pressure is that it has to keep the cost of carrying drug

resistance genes (cR) below the cost of reduced survival in the

presence of drugs (cD). The policy counter-move for a control

program would be to keep treatment coverage f below the

ratio cR/cD in order to avoid driving drug resistance too

strongly (45), but this comes with the major disadvantage that

some individuals will not receive treatment. The challenge

then becomes how to keep the use of individual drugs low

but still treat as many patients as possible. The best solution

appears to be to distribute many different types of drug

simultaneously, keeping the population coverage of each drug

relatively low, but keeping overall treatment levels high.

There are three key reasons why a strategy of simultaneous

drug distribution like MFT is associated with better long-term

population-level health outcomes than the various forms of

drug cycling.

First, MFT creates more pharmacodynamic heterogeneity for

the parasite population, delaying the emergence of resistance and

slowing down resistance evolution if resistant genotypes have

already emerged. Essentially, the parasites see a more diverse

drug environment under an MFT policy. If a single parasite

acquires a beneficial drug-resistance mutation today, 1 month

later it may be replicating in a patient who is being treated

with a different therapy to which the parasite has no resistance

mutations; cycling policies do not enjoy this benefit. As an

example, if three drugs are being deployed simultaneously,

there is only a one in three chance that a parasite’s newly

acquired drug-resistance mutation will confer any survival
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advantage in the short term. We are essentially constructing a

complex set of detours in the parasites’ fitness landscape

making it nearly impossible for them to climb fitness peaks. If

drugs are being cycled out and replaced, the parasites see the

same drug for one entire phase of the cycle, which could last

as long 5 or 10 years, and the parasite’s evolutionary problem

is made easy—evolve resistance to the currently used drug.

Evolution occurs much more readily in a constant environment

than in a rapidly changing environment (46).

Second, cycling strategies have a particular disadvantage in the

way that they rapidly generate drug resistance during each cycling

phase. To illustrate, consider the replacement of chloroquine by SP

in the late 1990s. Sulfadoxine-pyrimethamine was adopted widely

in Africa as a response to high failure rates for CQ treatment.

Mutations in the dhfr and dhps genes that confer SP resistance

(47) were already present or emerged soon thereafter (depending

on location), and these new resistant genotypes began to spread

(7). What we did not notice at the time is that the previous era

of CQ-resistance evolution had made evolution easier for SP-

resistant genotypes. Instead of having to outcompete wild-type

drug-sensitive malaria parasites, the new SP-resistant genotypes

were placed into a competition with CQ-resistant genotypes that

were established at high frequencies in the late 1990s. We know

today that chloroquine resistance carries a substantial fitness cost

(40, 48). Thus, SP-resistant genotypes were handed an easy

evolutionary challenge and won quickly.

This is a general problem with cycling strategies, that

eventually we lose the ability to use the parasites’ fitness cost

against them. Once a large amount of drug resistance is

established—as inevitably occurs each time we notice that

surveillance has been insufficient and that drug resistance is

widespread—resistance evolution is made easier for the

parasites regardless of the new drug that will be chosen to

replace the currently failing therapy. After the failing drug is

replaced, newly emerging resistant genotypes are placed in a

competition with other resistant parasites, not the optimally

fit wild-types. Cycling policies, by generating large amounts of

one kind of drug resistance, make it easier for other resistant

types to invade and spread. An argument can be made that

there is not enough evidence to estimate magnitude of this

effect, and whether it is meaningful in most treatment

contexts, but field conditions will never be appropriate to

perform a controlled study on this specific hypothesis.

Caution should push us to understand the evolutionary theory

behind this mechanism and to recommend further in silico

analyses assessing its risk and magnitude.

Third, cycling strategies can cause epidemiological rebounds.

The classic shape of a resistance epidemic is that prevalence drops

when a successful treatment is introduced, it begins to rise when

resistance emerges, and then levels off to a new equilibrium when

drug-resistance establishes itself as the major phenotype in the

population (33). But for each specific epidemiological scenario

the dynamics of prevalence changes may not be so well
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behaved, and soft landings (49–52) to theoretically-predicted

equilibria are not guaranteed. In reality, when drug-resistance

emerges, an epidemic wave may surge upwards overshooting its

expected equilibrium prevalence [see figure 1 in Nguyen et al.

(35)]. The prevalence level will settle back to equilibrium

eventually, but the public health damage at this point will have

already been done. The mechanisms behind “epidemiological

swings” like these can be explained with an analogy from

physics (upon whose foundations the theory of epidemiological

dynamics is built). Imagine a pendulum at rest hanging from a

tripod—it is at equilibrium. If you move the tripod to another

part of the room, the pendulum will settle to a new

equilibrium, but not before swinging back and forth for a

period of time. The faster you move, the more violent the

swings. This is exactly what happens when an epidemiological

system is jolted from one equilibrium to another—in this case,

an endemic equilibrium prior to a drug switch and a new

endemic equilibrium after a drug switch. Under this scenario,

epidemiological swings are likely to occur, and we have no

standardized or evidence-based approaches available to control

them. Evidence for epidemiological rebounds and epidemics

overshooting their expected dynamics have been documented

for influenza (50), malaria (53), and SARS-CoV-2 (54, 55).

As all of these mechanisms are supported by scientifically

mature theory in evolutionary epidemiology, they form part of

the evidence base on which to make sound decisions in

malaria policy. In silico and in vitro approaches may be used

to test the robustness and limits of these hypotheses, but

prospective field studies are impractical for this purpose as

running a trial is no different than implementing a policy. An

important robustness consideration for modeled ACT

deployments, cycling and MFT approaches alike, is that all

ACTs contain an artemisinin component necessitating

separate evaluations of artemisinin-resistance evolution and

partner-drug resistance evolution (56).

Two arguments against MFT need to be addressed when

considering its deployment. First, the use of several drugs

simultaneously in a population may allow different resistant

genotypes to be brought together, through recombination, into

a single multi-drug resistant genotype (1, 57). For the strongest

version of this effect, we would need genetic recombination to

occur at high frequency in high-transmission regions where (1)

mosquitoes would be likely to bite individuals with multiple

clonal parasite populations which could then recombine, and

(2) multiply-feeding mosquitoes would be likely to have both

bites occurring on infected individuals, allowing the two

malaria clones from these individuals to recombine in the

mosquito. However, even in these scenarios, recombination

between two different drug-resistant genotypes may still be rare

as drug-resistant genotype frequencies typically remain at low

levels during the emergence phase of drug-resistance evolution;

recombination events between two rare types would, in theory,

be doubly rare. A simulation study focused on this exact
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resistance—showed that these multi-drug resistant (MDR)

genotypes generally emerged later under MFT than under

cycling policies, and that the total MDR risk (total number of

MDR frequency-days, summed over five different MDR

genotypes) was between 22% and 90% lower under MFT than

under cycling policies (36).

Second, all therapies do not have the same efficacy and all

drug-resistant genotypes are not equally resistant. If one

therapy has higher efficacy than all others, MFT deployment

means that a portion of patients will not be treated with the

highest efficacy treatment. If one therapy generates drug

resistance with a very high treatment failure rate, this may lead

to sub-optimal health outcomes if this therapy is deployed at

all. For this reason, simulation studies evaluating optimal drug

policy need to be specifically parameterized with therapeutic

efficacy estimates on both wild-type parasites and resistant

genotypes (58). When efficacy estimates differ greatly between

candidate therapies (a subjective evaluation must be made

here), this is a sign that any MFT deployment needs to be

custom evaluated for a particular health system and geography.

As an example, AL use drives the evolution of double-resistant

genotypes with efficacies approaching 70% (58), but the

double-resistant genotype to DHA-PPQ drops treatment

efficacy to 42% (59). A modeling study focused on AL and

DHA-PPQ deployment in Burkina Faso showed that MFT is

not optimal when these two therapies are available due to the

predicted early and rapid rise in piperaquine resistance (60).
MFT in practice

If avoiding the detrimental effects of repeated drug

replacement is to become a mainstay of population-level

malaria policy, at both national and international levels, it is

important to determine how this type of simultaneous drug

deployment can be achieved in practice.

In Ghana, the use of multiple first-line therapies was added

into the 2009 national anti-malaria drug policy, as a

straightforward recommendation that multiple types of ACTs

should be purchased and distributed, explicitly noting the

benefits of delaying and slowing drug resistance (61). The

guidelines listed ASAQ as first-line therapy and AL and

DHA-PPQ as alternative first-line therapies for patients that

cannot tolerate ASAQ. However, no specific provision was

made for distribution of different ACTs. In Indonesia, the

2011 national malaria guidelines listed the first-line

antimalarial as “ACT, including dihydroartemisinin-

piperaquine, artesunate-amodiaquine,” and the government

provided both for free to health centers and clinics around

the country, although the trend eventually shifted to DHA-

PPQ because of its perceived higher efficacy. The Indonesian

guidelines explicitly stated that “malaria case management is
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https://doi.org/10.3389/fepid.2022.1041896
https://www.frontiersin.org/journals/epidemiology
https://www.frontiersin.org/


Boni 10.3389/fepid.2022.1041896
an integral part of malaria control programmes and should be

based on a clear understanding of epidemiology … as well as

data on the pattern of parasite resistance to antimalarial

drugs” (62). These types of statements in national guidelines

are an appropriate starting point for communicating to

national and local health authorities the benefits of long-term

resistance management and multiple first-line therapies.

Since 2005, some African countries have moved to adopt, in

practice, multiple ACTs as first-line. Angola began distributing

AL and ASAQ to health facilities in May 2006 and in March

2012 DHA-PPQ was added as a third first-line option (63, 64).

Choice of prescription is left to individual health facilities and

physicians. Interruptions in the supply chain, inconsistent

stocking, and inadequate funding persist in Angola’s drug

procurement but it is not clear that these result from the

choice to deploy multiple therapies at once (65). Burkina Faso

adopted AL and ASAQ simultaneously in 2005 (66), and

recent field trials and interviews have indicated a general level

of acceptance of MFT as a worthwhile national drug policy

(67–69). The major challenge in Burkina Faso was patient and

provider preference for AL, which led to AL being used as

treatment of choice for about 70% of uncomplicated falciparum

cases by 2018 (70). According to the 2021 World Malaria

Report, nine African countries, Brazil, Costa Rica, Thailand,

India, and China recommend two or more therapies as first-

line for confirmed uncomplicated falciparum malaria (16).

Changes to national guidelines are important steps in

pushing forward the adoption of more complex malaria

control policies. However, additional challenges will have to

be overcome at the levels of suppliers, health facilities,

providers, and patients. Some logistical challenges were known

from the earliest MFT discussions, including (1) addressing

perceptions of inequality among the different therapies, (2)

improving inventory management, (3) ensuring adherence to

equal distribution levels of the different therapies used, and

(4) understanding the health-system incentives that currently

work against the establishment of MFT (71, 72). Comparing

the absolute costs of drug procurement and additional

inventory holdings versus the DALY reductions one would

expect from MFT due to lower malaria burden and fewer

treatment failures, economic and epidemiological modeling

indicates that using more drugs is better than using fewer

drugs (34). However, this cost comparison needs to be tested

in practice. This means that evaluations of supply chains,

distribution chains, drug costs, stocking costs, and health staff

retraining will have to be ground-truthed with field

evaluations that measure all the additional activity created for

local health providers due to MFT implementation (69).

Recent studies suggest that perceptions of MFT are

changing and moving towards acceptance (67, 69). The

simplest starting point for communication around MFT is one

that establishes the equivalence of certain antimalarial

therapies (67, 71)—for example that AL, ASAQ, and AS-
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pyronaridine have equal efficacies and equal resistance risks—

as this will help steer the health system to a uniform drug

distribution in which each of these ACTs is prescribed or sold

in approximately equal amounts. If the therapies are

substantially different in efficacy or resistance risk, they

should not be deployed together in a simple equal-

distribution MFT policy. No distribution chain will be able to

deliver a precise target distribution of antimalarial therapies,

but the deployment of multiple therapies does not have to be

perfectly uniform to achieve the resistance-delaying benefits

afforded by MFT [figure 6 in Boni et al. (33), figure S24 in

Nguyen et al. (35)]. The key question to answer is whether

purchasing, distribution, and stocking can be made somewhat

flexible at national and local levels; if this is possible, there

will be multiple points in the health system where

prescription numbers of the available therapies can be

increased or decreased. Further work will be necessary to

reduce prices of certain drugs and to measure the counts of

different therapies that reach patients versus the counts that

are put into the distribution system.

Recommendations have been made in the past that multiple

therapies could be distributed in the form of adult/pediatric

formulations or by separating drugs into public sector and

private sector sales (71). These particular distribution strategies

have not yet been evaluated for feasibility, but a major

limitation with these approaches is that they would allow for a

maximum of two drugs to be distributed simultaneously. A

more complex age-based scheme can be created to distribute

more than two therapies, but questions will follow whether this

is simpler than distributing therapies in a purely random age-

independent manner. An additional evaluation (by simulation)

will be needed to determine whether an age-based distribution

would have any unexpected epidemiological outcomes as the

relationship among age, symptoms, and infection varies greatly

among different malaria endemicity settings.
Role of genomic surveillance in
drug-resistance management

The evolution and fixation of drug resistance occurs

gradually then suddenly (73). Drug-resistant genotypes can

circulate at frequencies of 0.0001 or 0.001 for many years

before they are eventually noticed by surveillance systems at

frequencies (recently observed in Rwanda and Uganda)

ranging from 0.02 to 0.22 (20, 21, 74). This period of

complacency, prior to molecular confirmation of circulating

drug resistance (75), is currently unavoidable as detecting

low-frequency genotypes requires sample sizes in the

thousands to be submitted for sequencing each year. If

molecular markers for new resistant phenotypes are not yet

available, the challenge is even greater as resistance must be

identified via an increase in treatment failures in a therapeutic
frontiersin.org

https://doi.org/10.3389/fepid.2022.1041896
https://www.frontiersin.org/journals/epidemiology
https://www.frontiersin.org/


FIGURE 1

Different long-term deployment strategies of when multiple ACTs are available. (A) A 5-year cycling strategy where each ACT is pre-scheduled to be
used for 5 years exactly; after each 5-year period the national first-line recommendation is switched to a different ACT. (B) An adaptive cycling
strategy, currently recommended by WHO, where ACTs (or other therapies) are replaced when 10% treatment failure is surpassed. This means
that over long periods, different therapies will be used for different amounts of time. It also means that switches from an old therapy to a new
one will typically occur with a delay, sometimes with a substantial delay if surveillance is delayed. (C) Multiple first-line therapies (MFT) deployed
with random allocations of therapies to clinics, pharmacies, and other health facilities. In this scenario, three individuals in the same community
could be simultaneously treated with three different ACTs. (D) MFT deployed by village or health post or health facility. In this scenario, a central
point of contact in the health system—e.g., a village health worker, or a health facility director—would be responsible for ensuring that all malaria
cases in their catchment area were treated with one ACT, chosen at a higher administrative level. (E) MFT deployed at the district or province
level and coordinated nationally. In this scenario, distribution of different ACTs to different administrative regions would be controlled centrally by
the National Malaria Control Program.
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efficacy study (TES). This is one of the current challenges with

resistance markers to amodiaquine and lumefantrine—certain

loci in the pfmdr1 and pfcrt genes are known to be associated

with resistance to these two partner drugs (76–84) but a

summary across studies shows that these effect sizes are likely

small (58).

The next key step in allowing genomic surveillance to

improve drug-resistance management approaches is the

introduction of feasible and cost-effective combinations of

good genomic surveillance habits and frequent TESs. The cost

component of genomic surveillance directly trades off with

sample size, which directly influences the surveillance system’s

statistical power to detect a low-frequency genotype

circulating at an early stage. A major cost in both molecular

surveys and TESs is the time the surveillance system has to

wait before results are available (85). A health economic

analysis on the annual sample size of sequenced falciparum

parasites and the annual number of patients enrolled in TES

studies should yield an optimum for both numbers that

would minimize future cases and deaths by enabling early

control of drug resistance, but these studies have not yet been

done. The current prevailing opinion is that TESs are not

done frequently enough, that molecular surveillance needs to

be more geographically comprehensive, and that both need to

make results available in real time (27, 85).

Early identification of drug resistance, in all malaria

contexts, will allow appropriate responses to be put into place.

Speed is one of the key elements of a successful response, as

the lack of a response ensures that drug resistance evolution

continues in a singular direction. Critically, early detection

allows for consideration of more types of response options.

Early detection of treatment failure or resistant genotypes may

allow an MFT option to be put into place that would reduce

selection pressure on both the currently circulating resistant

genotype and future genotypes that would be selected for by

other drugs. Late detection constrains the decision-making

process, as the current therapy then needs to be completely

removed and replaced, restarting the pattern of cyclic drug

replacements that in the past has led to strong selection and

high levels of drug failure. Breaking this cycle of failure and

replacement may be the key in allowing national malaria

control programs to transition to a new paradigm of long-

term management of low-level circulation of drug-resistant

malaria genotypes.
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