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Objective: To quantify prediction model performance in relation to data preparation

choices when using electronic health records (EHR).

Study Design and Setting: Cox proportional hazards models were developed for

predicting the first-ever main adverse cardiovascular events using Dutch primary care

EHR data. The reference model was based on a 1-year run-in period, cardiovascular

events were defined based on both EHR diagnosis and medication codes, and missing

values were multiply imputed. We compared data preparation choices based on (i) length

of the run-in period (2- or 3-year run-in); (ii) outcome definition (EHR diagnosis codes or

medication codes only); and (iii) methods addressing missing values (mean imputation

or complete case analysis) by making variations on the derivation set and testing their

impact in a validation set.

Results: We included 89,491 patients in whom 6,736 first-ever main adverse

cardiovascular events occurred during a median follow-up of 8 years. Outcome

definition based only on diagnosis codes led to a systematic underestimation of risk

(calibration curve intercept: 0.84; 95% CI: 0.83–0.84), while complete case analysis

led to overestimation (calibration curve intercept: −0.52; 95% CI: −0.53 to −0.51).

Differences in the length of the run-in period showed no relevant impact on calibration

and discrimination.

Conclusion: Data preparation choices regarding outcome definition or methods to

address missing values can have a substantial impact on the calibration of predictions,

hampering reliable clinical decision support. This study further illustrates the urgency of

transparent reporting of modeling choices in an EHR data setting.

Keywords: prediction model, data preparation, electronic health records (EHRs), model performance, model

transportability, clinical prediction model
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INTRODUCTION

Electronic health records (EHRs) enable the improvement of
quality of care by providing structured information stored in
a digital format, straightforwardly derived from routine health
care (1, 2). Besides advantages related to the clinical workflow,
increased standardization and the pooling of EHR data led to
very large datasets that can be of great value for the development
of clinical prediction models. EHR-based datasets can reach
an unprecedented scale and variety of recorded data, which is
practically impossible to achieve in traditional cohort research
(3, 4). However, EHRs are designed to record data that are
routinely collected during the clinical workflow under a time
constraint, in contrast to dedicated prospective cohort studies
in which data are collected by trained personnel in a highly
standardized manner (5). Consequently, numerous data quality
problems are relatively more pronounced in EHR data (6).
Previous studies have already enumerated the challenges that
the EHR data quality limitations pose for the development of
valid clinical prediction models. To overcome these challenges,
in many cases, the researcher is faced with difficult or seemingly
arbitrary choices in data preparation, for example, regarding the
handling of missing predictor values (6–8). Consequently, it may
occur in research practice that different data preparation choices
will be made for model derivation (or validation) compared
with the context of model deployment, which may impact the
predictive performance of the model when deployed in clinical
practice. The quantification of such choices has not received
much attention. In this study, we aimed to evaluate the impact of
three previously identified data preparation challenges for EHR-
derived prediction models: (i) using a run-in period to define
predictors at time zero, (ii) outcome definition, and (iii) methods
used to address missing values (6–8). As a case study, we focussed
on the estimation of cardiovascular risk in Dutch primary care
EHR data.

METHODS

Data Source
Patient information was derived from general practitioner
(GP) practice centers affiliated with the Extramural LUMC
Academic Network (ELAN), Leiden, the Netherlands. From the
ELAN data warehouse, we defined an open cohort of patients
enlisted with ELAN GP practice center from the period of 1
January 2007 to and including 31 December 2018. Patient data
included anonymized prescribed medication coded according
to the Anatomical Therapeutic Chemical (ATC) classification,
laboratory test results performed in primary care, and symptoms
and diagnoses coded according to the WHO–FIC recognized
International Classification of Primary Care (ICPC) (9, 10). For
many GP practice centers, the EHR data on ATC and laboratory
test result data became available shortly before or after 2007.
Inclusion criteria were age between 40 and 65 years and the
absence of a history of cardiovascular disease at cohort entry at
the end of the run-in period (see Section “Defining Predictors
at Time Zero and a Run-in Period” for details on the run-
in period).

Study Design
From our original dataset, we derived nine datasets based on
the predefined data preparation challenges. We considered the
dataset with a 1-year run-in period, an outcome defined as either
ICPC or ATC code, for first-ever main adverse cardiovascular
event and multiple imputation as a method for addressing
missing values as the reference dataset. In addition to the
reference set, we created two derivation sets with a variation
in run-in time, four with varying outcome definitions, and two
with different methods to address missing values. These eight
variations on the reference dataset are described in more detail in
the sections below. For each derived dataset, we took a random
70%−30% sample from the original dataset IDs to generate a
list of derivation- and validation IDs. Derivation IDs were joined
with the derived dataset of interest to generate a derivation set.
Validation IDs were joined with the reference set to generate
a validation set. Through this approach, we ensured that no
individual ID could be in both the derivation and validation
sets. We subsequently performed data preparation steps on the
derivation and validation sets, fitted the predictive model, and
recorded outcome measures. This process was repeated 50 times
per derived dataset in a bootstrap procedure for a robust estimate
of outcome measures. The study design is graphically displayed
in Figure 1.

Model Development
A multivariable Cox proportional hazards model was developed
for predicting the first-ever main adverse cardiovascular events.
The following predictors were selected based on prior knowledge:
age, sex, mean systolic blood pressure, mean total cholesterol,
and smoking as predictors, conforming to the European SCORE
model for the prediction of cardiovascular mortality (11).

Data Preparation Challenges at the Model
Development
Defining Predictors at Time Zero and a Run-in Period
Time zero (or t0) is usually defined as the time of enrolment or
baseline assessment of covariates. The start of the recording of
data in EHRs is in principle the first contact with the healthcare
system, which for an individual could be birth or in the prenatal
or preconception period. However, as many countries do not
have a single, national EHR, health data may be fragmented
across EHRs of different healthcare providers, resulting in left-
truncation within an EHR database. Hence, there generally is not
one clear baseline assessment of predictors. When the time of
EHR entry is chosen as t0, usually no values for laboratory or
vital parameter predictors are available. This initial absence of
recorded data is in computer sciences also known as the “cold
start” problem (12). A possible solution is to define a run-in
period, in which all data routinely acquired during a predefined
time interval are aggregated into summary variables at the end of
this time interval (13). Due to left truncation in our EHR dataset,
we chose the start date of our data window as 1 January 2007.
We then defined a run-in period of 1 year, meaning that the t0
was defined as 1 year after the first moment a patient entered the
database on 1 January 2007. Additional requirements were age
between 40 and 65 years old at t0. Follow-up ran until the end
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FIGURE 1 | Graphic display of the study design. Graphic display of the study design. *Derivation sets (nine in total: one reference and eight variations) were derived

from our original data set, with data preparation steps based on the predefined data preparation challenges.

of the data window on 31 Dec 2018, or until unregistering with
an ELAN GP practice center, death, or first-ever main adverse
cardiovascular event, whichever came first. Baseline predictors
were assessed based on predictor values up until the end of
the run-in period. If within this period multiple measurements
of systolic blood pressure or total cholesterol were present, the
mean value was taken as the baseline measurement. As derivation
set variations, we defined run-in periods of 2 and 3 years (see
Table 3). The reason we chose the 1-year run-in period as a
reference was to maximize follow-up time. We chose the mean
value as the aggregation method for multiple measurements
during run-in, as within this 1-year period measurement values
were relatively recent with respect to t0. Patients who suffered
from main adverse cardiovascular events during the run-in
period were excluded from analyses.

Outcome Definition
Electronic health records are designed to record data that are
routinely collected during the clinical workflow. This is different
from traditional research, where data are collected by trained
personnel in a highly standardized manner (5). This difference
could lead to several EHR data quality issues. For instance, a
clinical outcome may be present in reality but has not been
recorded in the EHR at all or under a different code, possibly
leading to the misclassification of outcomes (14). What is
more, in an EHR data context one has many more options
for outcome definition than in traditional cohort data, such as

constructing outcomes using medication or diagnosis codes, or
both. Differences in outcome definition in the derivation and
target population may cause poor model performance in the
target population. The clinical outcome of this study was the 10-
year risk of a first-ever major adverse cardiovascular event, and it
was based on either event-specific ICPC codes for primary care
diagnoses of acute stroke [K90], TIA [K89], acute myocardial
infarction [K75], or the start of prescription of event-specific
ATC codes for thrombocyte aggregation inhibitors (ticagrelor,
picotamide, clopidogrel, dipyridamole, and acetylsalicylic acid).
In different derivation sets, the outcome was defined (i) based
on ATC codes (without acetylsalicylic acid) or ICPC codes;
(ii) based on ATC codes only (including acetylsalicylic acid);
(iii) based on ATC codes only, excluding acetylsalicylic acid;
or (iv) based on ICPC codes only. The reason for emitting
acetylsalicylic acid from the outcome definition is that in the
period of our t0 (2007), it was also prescribed as an analgesic
in primary care (15). In addition, Dutch guidelines recommend
the prescription of acetylsalicylic acid for stable angina pectoris
(16). Consequently, although it may increase the sensitivity for
predicting major adverse cardiovascular events, it could come
at a cost for specificity. Ticagrelor, picotamide, clopidogrel, and
dipyridamole can be regarded as more specific for main adverse
cardiovascular events. Although non-cardiovascular mortality
could be considered as a competing event, we did not perform
a competing risk analysis to limit the complexity of analyses in
this study.
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Missing Values
Since EHR data result from routine care processes, virtually
all health data are recorded during clinical contacts for a
clinical reason. The missingness of a predictor value is therefore
most likely related to the clinical choices of the healthcare
professional. In dealing with missing values, it is essential to
consider the mechanism of missingness (17). For example, a
missing measurement of systolic blood pressure in the EHR,
missing completely at random (MCAR), is very unlikely because
in clinical practice blood pressure assessment generally requires
a medical indication. Missing at random (MAR) will occur
if contextual information present in the EHR fully captures
the clinician’s motives, including those related to the outcome,
to assess systolic blood pressure. Arguably, this is unlikely as
clinical decision-making takes a large number of biological,
psychological, and social factors into account. Missing not at
random (MNAR) is therefore the most likely mechanism in this
case. In case of MNAR, commonly used imputation strategies
such as multiple imputation may result in biased imputed
values (18). The combination of an MNAR mechanism with
a large extent of missingness in many predictors in EHR data
may further increase the risk of biased imputations (19, 20).
One way of still leveraging information from the data without
requiring sophisticated imputation is the missing indicator
method. However, also in this case, similarity of the missingness
mechanism between the derivation and target populations is
needed (21). Complete case analysis in EHR data could introduce
a bias toward the selection of, e.g., sicker patients (22). One
should therefore assess how risk of bias resulting from handling
missing values may affect the validity of predictions in the target
population, and thus the clinical safety of future implementation
of the model. Based on this assessment, it may be advisable to
discard predictors with a very high extent of missingness and
possibly MNAR mechanism altogether.

We imputed the missing continuous predictors of systolic
blood pressure and cholesterol using Multivariate Imputation
by Chained Equations (MICE). As the input for the MICE
algorithm, we used the 30 most important predictors according
to a Cox PH model with an elastic net penalty predicting
the first-ever cardiovascular events. Although missing values in
systolic blood pressure or total cholesterol predictors are unlikely
MAR, we multiply imputed because these are important baseline
predictors which are used in virtually all cardiovascular risk
prediction models. In addition, the aim of this study is not
to produce prediction models that can be transported to true
clinical settings, but the comparison of different data preparation
choices in an EHR data context. Imputations were performed
for all derivation and validation sets separately to prevent cross-
contamination. We performed multiple visualizations of the
complete and completed datasets. Further, we compared the
results of the different imputation strategies with the Dutch
population means for our age distribution (23). For binary
variables, we assumed that the absence of a registration of a
clinical entity meant the clinical entity itself was absent. We
defined two derivation set variations in which we addressed
missing values in the continuous predictors using complete case
analysis and mean imputation instead of MICE.

Assessment of Model Performance at
Validation
Models based on the derivation set variations were validated on
the reference dataset (see schematic overview in Figure 1). Model
performance was assessed via the concepts of discrimination
(ability of the model to separate individuals who develop the
event vs. those who do not) and calibration (the agreement
between the estimated and observed number of events). For the
evaluation of discrimination, we used the concordance index (c-
index), and calibration was assessed using the calibration curve
slope and -intercept. For details on these metrics, we refer to the
literature (24). We used bootstrap validation with 50 bootstraps
for internal validation and simple bootstrap resampling to derive
empirical confidence intervals. Analyses were performed using
Python version 3.7.

RESULTS

For our example case study, we included 89,491 patients for
analyses in whom 6,736 first-ever cardiovascular events occurred
during a median follow-up of 8 years. On an average, patients
were 51 years old and 51% were women (Table 1). Visualization
of the routine data recorded in the entire population showed that
for themajority of patients, of the total of 150 potential diagnoses,
no EHR-registrations were present. Although relatively more
registrations among the 52 medication and 74 measurement
codes were present, for a large part of the population no
information was available (Figure 2). For variations in the
definition of outcomes, the inclusion of acetylsalicylic acid in
the definition resulted in a larger number of cases (Figure 3).
Differences were noted between the means in complete cases
analysis, imputed by MICE, and the estimated population mean
(Table 2).

Testing the reference Cox PH model for predicting
cardiovascular events on the validation set resulted in a c-
statistic of 0.67; 95% CI: 0.67–0.67, a calibration curve intercept
of 0.00; 95% CI: −0.01 to 0.00, and -slope of 1.00; 95% CI:
0.99–1.00. Discrimination and calibration were similar for the
models based on derivation sets with a 2- or 3-year run-in
variations. For the derivation sets with variations in outcome
definition, discrimination remained the same but calibration
varied greatly, especially when the outcome was based only

TABLE 1 | Baseline characteristics of participants.

Baseline characteristics Cases

(n = 6,736)

Controls

(n = 82,755)

Age, mean (±SD) 54.8 (6.8) 51.3 (7.3)

Women, n (%) 2,849 (42.3) 42,867 (51.8)

Smoking, n (%) 494 (7.3) 3,760 (4.5)

Presence of predictor

measurement, n (%)

Systolic blood pressure 2,302 (34.2) 18,992 (22.9)

Total serum cholesterol 1,637 (24.3) 13,254 (16.0)

Frontiers in Epidemiology | www.frontiersin.org 4 June 2022 | Volume 2 | Article 871630

https://www.frontiersin.org/journals/epidemiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/epidemiology#articles


van Os et al. Impact of EHR Data Preparation Choices

FIGURE 2 | Visualization of data density in Dutch primary care EHR (n =

89,491). This figure shows the data density in the EHR for the first year of

follow-up of all included patients. The x-axis is divided into three different

predictor groups: diagnoses (any type of ICPC registration), medications (any

type of ATC registration), and laboratory or vital parameter measurements (any

type of registration), with each dot representing an EHR registration data point.

The y-axis represents the entire research population ranked from patients with

most data points and descending.

FIGURE 3 | Venn diagram with three different operationalizations for the

outcome definition. This Venn diagram shows the numbers of first-ever main

adverse cardiovascular event cases resulting from the different outcome

definitions: ICPC only (brown; 4,505 cases), ICPC and ATC codes for

event-specific medication (clopidogrel, ticagrelor, and dipyridamole) including

acetylsalicylic acid (red; 4,505 + 2,231 cases) and ICPC and ATC codes for

event-specific medication, excluding acetylsalicylic acid (brown + green; 4,505

+ 160 cases).

on ICPC (calibration curve intercept: 0.84; 95% CI: 0.83–0.84,
and -slope: 2.31; 95% CI: 2.29–2.32). In this derivation set
variation, the event rate was substantially lower compared
with the validation set (3.4 vs. 7.5%, respectively), and hence
risk was underestimated at the model validation. For models
based on derivation set variations in missing data handling,
again discrimination was similar to the reference model, but
for complete case analysis calibration was substantially worse
(calibration curve intercept: −0.52; 95% CI: −0.53 to −0.51,

TABLE 2 | Imputation results of systolic blood pressure and total cholesterol in

Dutch primary care EHR data (n = 89,491).

Systolic blood

pressure

(mmHg)

Total

cholesterol

(mmol/l)

Estimated population mean used

for mean imputation (SD)

130 (16) 5.7 (1.1)

Sample mean of available

measurements/complete case

analysis (SD)

136 (17) 5.4 (1.1)

Sample mean after MICE

imputation (SD)

132 (10) 5.4 (0.5)

and -slope: 0.60; 95% CI: 0.59–0.60). For this variation also, the
total sample size was substantially smaller (around 12% of the
reference derivation set) and the event rate was higher (11.4
vs. 7.5% of the validation set), hence risk was overestimated at
model validation (Table 3).

DISCUSSION

This study shows that for the prediction of first-ever
cardiovascular event risk using Dutch primary care EHR
data, different data preparation choices regarding the outcome
definition (first-ever cardiovascular events) and methods used to
address missing values in the derivation set can have a substantial
impact on model calibration, while model discrimination
remains essentially the same. The large changes in calibration
curve intercept and -slope could be explained by the changes
in the percentage of events that resulted from the different data
preparation choices in the derivation set variations. A drop in the
proportion of events in the derivation set variations compared
with the reference derivation set (e.g., defining outcome using
only ICPC codes) led to a decrease in the calibration curve
intercept and a rise in the proportion of events (e.g., in case
of using complete case analysis to handle missing values) led
to an increase. These deteriorations of calibration may be of
substantial clinical significance when a prediction model is
used in clinical practice, for example within a clinical decision
support tool. To evaluate a model on its utility to support clinical
decisions, calibration is a more relevant performance metric than
model discrimination (24, 25).

Previous research already identified numerous
methodological challenges for the development of clinical
risk prediction models using EHR data (6–8). To the best
of our knowledge, this is the first study that quantifies the
impact that different data preparation choices in an EHR data
setting have on model performance. The three data preparation
challenges that are treated in this study do relate to previous
studies that focus on EHR-based data. One study used multiple
methods for aggregation of baseline measurements during
a run-in period and found that simple aggregations such as
the mean are sufficient to improve model performance (26).
Further, several studies illustrate the difficulty of choosing an
outcome definition in an EHR data context, especially due to
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TABLE 3 | Performance of the models based on derivation set variations compared with the reference model in Dutch primary care EHR data (n = 89,491).

Derivation set characteristics** Performance metrics **

Data preparation

challenge

Derivation set

variation

description

Sample size

(range)

Percentage

events

(range)

Median

follow-up time

(days; range)

C-statistic (95%

CI)

Calibration curve

intercept (95% CI)

Calibration

curve slope

(95% CI)

Reference

derivation set*

NA 62,644

(62,557–62,730)

7.5 (7.5–7.6) 2,912

(2,904–2,920)

0.67 (0.67–0.67) 0.00 (−0.01 to 0.00) 1.00 (1.00–1.01)

Run-in variations 2 years run-in 58,168

(58,098–58,236)

7.0 (7.0–7.1) 2,832

(2,832–2,832)

0.67 (0.67–0.67) 0.00 (−0.01 to 0.00) 1.00 (0.99–1.00)

3 years run-in 54,958

(54,884–55,031)

6.4 (6.4–6.5) 2,833

(2,833–2,833)

0.67 (0.67–0.67) 0.02 (0.01 to 0.03) 1.02 (1.01–1.03)

Variations in

outcome definition

ATC (excl. ASA)

or ICPC

63,376

(63,301–63,448)

5.1 (5.1–5.2) 2,933

(2,925–2,940)

0.67 (0.67–0.67) −0.40 (−0.41 to −0.40) 0.67 (0.66–0.67)

ATC only 63,518

(63,436–63,597)

7.5 (7.4–7.5) 2,916

(2,909–2,922)

0.68 (0.68–0.68) −0.01 (−0.02 to 0.00) 0.99 (0.99–1.00)

ATC (excl. ASA)

only

64,739

(64,662–64,819)

4.6 (4.5–4.6) 2,968

(2,956–2,979)

0.68 (0.68–0.68) −0.52 (−0.53 to −0.51) 0.59 (0.59–0.60)

ICPC only 64,089

(63,998–64,180)

3.4 (3.3–3.4) 3,025

(3,010–3,040)

0.66 (0.66–0.66) −0.84 (−0.85 to −0.83) 0.43 (0.43–0.44)

Missing data

method variations

Complete Case 7,601 (7,573–7,629) 11.4

(11.3–11.5)

2,425

(2,409–2,442)

0.62 (0.62–0.62) 0.53 (0.51 to 0.54) 1.69 (1.67–1.71)

Mean imputation 62,548

(62,478–62,618)

7.5 (7.5–7.6) 2,910

(2,901–2,918)

0.66 (0.66–0.66) 0.01 (0.00 to 0.02) 1.01 (1.00–1.02)

ASA, acetylsalicylic acid; ICPC, International Classification of Primary Care diagnosis codes; ATC, Anatomical Therapeutic Chemical medication codes.

*The reference derivation and validation set is defined by 1 year run-in, imputation using MICE, and outcome definition based on ICPC or ATC codes (including aspirin).

**Derivation set characteristics and performance metrics are given as average across 50 bootstrap samples.

the substantial variations of misclassification for different types
of EHR diagnosis codes. In one example, the positive predictive
value (PPV) of the diagnosis code for chronic sinusitis was 34
vs. 85% for nasal polyps. With the additional information of
evaluation by an otorhinolaryngologist, the PPV of the latter
rose to 91% (27, 28). One study quantified the effect on the
model performance of misclassification in predictors instead
of the outcome using the CHA2DS2-VASc prediction rule as a
case study. The substantial misclassification of predictors did
not affect overall model performance, but it did affect the risk
of the outcome with a certain CHA2DS2-VASc score (29). In
this study, we focussed on the influence of misclassification in
the outcome on model performance, but also misclassification
in predictors should be taken into account when developing
a clinical prediction model using EHR data. Regarding the
imputation of EHR predictor values that are likely MNAR,
studies found that there may still be options for imputation if
missingness structure is explicitly modeled. Methodologies such
as Bayesian analysis may be specifically suited for this purpose
(6, 30). However, further research into this topic is needed. One
option is to discard a variable altogether, especially in case of
large extent of missingness (19). In the future, missingness in
EHR data might be reduced by more systematic data capture, or
through automated analysis of free text using natural language
processing techniques (31).

Strengths and Limitations
Several methodological limitations need to be taken into account
to interpret our study results. First, in our EHR data, no

reference standard for the definition of the outcome was present,
complicating the interpretation of the model results. It should
also be noted that for many EHR-derived diagnoses, available
reference standardsmay a certain degree of misclassification (32).
Therefore, the researcher needs to work with the routine data that
are available, often resulting in difficult or seemingly arbitrary
choices regarding outcome definition. In this study, we focused
on the relative impact on the model performance of different
outcome definitions, instead of a comparison with a reference
standard for outcome. We assumed that the definition used in
the reference derivation set (ATC including acetylsalicylic acid
or ICPC) was most sensitive because of the broad inclusion
of thrombocyte aggregation inhibitors that are prescribed after
cardiovascular events. However, in the first years of our follow-
up period, acetylsalicylic acid was also prescribed in a primary
prevention setting, thus the outcome according to ATC excluding
acetylsalicylic acid is considered as the most specific.

Second, regarding the different choices in addressing missing
data, in the reference derivation set, systolic blood pressure and
blood cholesterol were imputed using MICE despite the large
extent of missingness in these predictors. As the predominant
missingness mechanism is likely MNAR as has been argued
in Section Missing Values, these imputation results are likely
biased to some extent. The density of data points across
all diagnosis, medication, and measurement codes showed
that for a large number of patients, the lack of information
often extended to the entire dataset, which also hampers
reliable imputation. We compared imputation results with
expected population means and indeed found a moderate
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difference. Although these likely biased estimates may not be
a problem at internal validation, they may be at external or
prospective validation when the missingness mechanism itself
is not transportable to these new data environments. Third,
although non-cardiovascular mortality could be considered
a competing event, we did not perform a competing risk
analysis to limit the complexity of analyses in this paper.
The number of non-cardiovascular deaths recorded during
follow-up was 2,838, which represents only 3% of the total
study population. Therefore, the effect of non-cardiovascular
mortality as a competing event on potential overestimation
of the cumulative incidence of cardiovascular events was
likely limited. Finally, the discriminative performance of our
models is relatively low. An explanation for the relatively poor
discrimination is the limited number of predictors selected for
the model and the limited age range of 40–years, based on
our conformity with the SCORE model. The discriminative
performance found in our study, however, is not uncommon for
clinical prediction models used in practice, and is comparable
with that of, for e.g., the CHA2DS2-VASc prediction rule (33).
In addition, compared with discrimination, calibration is of
more interest to compare model performance because of the
future intended use of the models to support clinical decisions
(24). Strengths of this study include the very large sample size
of our routine care dataset and a large number of derivation
set variations (eight) that we used to assess the impact of
difficult or seemingly arbitrary choices in data preparation on
model performance.

Future Considerations
Our findings stress the importance of carefully considering
differences in data preparation choices between the population
used for model derivation compared with the target population
for model validation or deployment because these differences
may lead to substantial miscalibration. In essence, this study’s
methodology of including multiple derivation set variations
could be seen as a form of sensitivity analysis to assess
transportability of the model to a clinical setting in which
different data preparation choices are made. However, all data
used in this study were derived from the same EHR data source
(ELAN). Therefore, we could not formally test transportability
across different EHR data sources. Still, this study further
illustrates the need for the transparent reporting of choices in
model development studies and model calibration in validation
studies. This could be done using, e.g., the RECORD statement
for reporting on data preparation choices using routinely
collected health data in EHR, and the TRIPOD statement for
reporting on clinical prediction model development (34, 35).

CONCLUSION

Our findings support that for developing clinical prediction
models using EHR data, variations in data preparation choices
regarding outcome definition and dealing with missing values
may have a substantial impact on model calibration, while
discrimination remains essentially the same. It is, therefore,
important to transparently report data preparation choices
in model development studies and model calibration in
validation studies.
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