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Large data sets comprising diagnoses of chronic conditions are becoming increasingly

available for research purposes. In Germany, it is planned that aggregated claims data –

including medical diagnoses from the statutory health insurance – with roughly 70 million

insurants will be published regularly. The validity of the diagnoses in such big datasets can

hardly be assessed. In case the dataset comprises prevalence, incidence, and mortality,

it is possible to estimate the proportion of false-positive diagnoses using mathematical

relations from the illness-death model. We apply the method to age-specific aggregated

claims data from 70 million Germans about type 2 diabetes in Germany stratified by sex

and report the findings in terms of the age-specific ratio of false-positive diagnoses of

type 2 diabetes (FPR) in the dataset. The FPR for men and women changes with age.

In men, the FPR increases linearly from 1 to 3 per 1,000 in the age group of 30–50

years. For age between 50 and 80 years, FPR remains below 4 per 1,000. After 80

years of age, we have an increase to approximately 5 per 1,000. In women, we find a

steep increase from age 30 to 60 years, the peak FPR is reached at approximately 12

per 1,000 between 60 and 70 years of age. After age 70 years, the FPR of women

drops tremendously. In all age groups, the FPR is higher in women than in men. In

terms of absolute numbers, we find that there are 217,000 people with a false-positive

diagnosis in the dataset (95% confidence interval, CI: 204–229), the vast majority being

women (172,000, 95% CI: 162–180). Our work indicates that possible false-positive (and

negative) diagnoses should appropriately be dealt with in claims data, for example, by

the inclusion of age- and sex-specific error terms in statistical models, to avoid potentially

biased or wrong conclusions.
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INTRODUCTION

Aggregated data about the prevalence and incidence of chronic
conditions become more and more available for research
purposes. Usually, such data refer to a survey period and
are presented aggregated in age- and sex strata. A prominent
example is the National Health And Nutrition Examination
Survey (NHANES) conducted by the National Center for Health
Statistics at the Centers for Disease Control and Prevention
(1). For public health research, NHANES surveys health and
nutritional data from the U.S. general population since 1971.
Another example is the Global Health Data Exchange catalog
comprising three decades of data about the most prevalent and
severe diseases from all over the world (2). Regional databases
may contain health data from millions of people. In Germany,
for instance, it is planned that aggregated claims data including
medical diagnoses from the statutory health insurance with
roughly 70 million insurants will be published regularly (3).
Given a large number of study participants at possibly many
points in time, the validity of the diagnoses in such big datasets
can hardly be assessed. By validity of diagnoses, we refer to two
types of errors that may occur: on the one hand, people with the
chronic condition, in reality, might not have the diagnosis coded
in the dataset and can be assumed to be false negatively coded. On
the other hand, people without the chronic condition, in reality,
might have a corresponding diagnosis in the dataset. Henceforth,
we refer to these as false-positive findings in the dataset. By
opposing the diagnoses coded in the dataset with “reality,” that
is, the “gold standard,” such as a medical diagnosis based on an
extensive examination of a specialist, the diagnosis codes in the
dataset can be interpreted similarly as a diagnostic test Table 1
shows the possible combinations of disease status according to
the gold standard and a coded diagnosis in the dataset.

Given aggregated data about age-specific prevalence,
incidence, and mortality, we use a recently proposed method to
estimate the false-positive ratio (FPR). The core idea is to relate
the temporal change of the prevalence with the incidence and the
mortality information by a partial differential equation (PDE)
(4). To make the PDE consistent with the empirically observed
prevalence, incidence, and mortality data, FPR and false-negative
ratio (FNR) of the data are needed (5). With the assumption
that the FPR and FNR in the prevalence and incidence data
are the same, we can estimate the FPR in a claims dataset
comprising type 2 diabetes status in 70 million Germans (85% of
the overall population). This allows us to estimate the number
of people with a false-positive diagnoses of type 2 diabetes in the
claims data.

METHODS

Before we describe how to estimate the FPR in the claims data,
we briefly introduce the methodological approach. Based on
the illness-death model for chronic conditions (4), we could
derive a PDE that relates the temporal change of the age-specific
prevalence p = p(t, a), that is, the proportion of people aged a at
calendar time t with the chronic condition, with the incidence

TABLE 1 | Possible combinations of disease status and coded diagnoses in the

data set.

Gold standard

Claims data Diseased Not diseased

Diagnosed True positive False positive

Not diagnosed False negative True negative

rate i(t, a), general mortality m(t, a), and the mortality rate
ratio R= R(t, a).

(∂t+∂a)p = (1− p)i − m × p (R − 1)/[1 + p (R − 1)] (1)

The mortality rate ratio R is the quotient of the mortality
rates m1(t, a) and m0(t, a) of people with and without the
chronic condition, respectively, that is, R(t, a)=m1(t, a)/m0(t, a).
Equation 1 holds true for the true prevalence p and incidence rate
i. If we assume an observed prevalence p(obs) and an observed
incidence i(obs) in the dataset (possibly imperfect with respect to
diagnostic accuracy), the true prevalence and incidence can be
obtained from Equations (2a), and (2b) using the sensitivity (se)
and specificity (sp).

p = (p(obs) − 1+ spp)/(sep + spp − 1) (2a)

and

i = (i(obs) − 1+ spi)/(sei + spi − 1). (2b)

In Equations (2a), and (2b), sensitivity (se) and specificity
(sp) of the age-specific prevalence and incidence (indicated by
the sub-index) need not necessarily be the same. In datasets
where prevalence and incidence stem from different sources,
for example, different samples or surveys, the distinction might
still be useful. In this study, we assume that the data generating
process of prevalence and incidence are the same, such that we
can skip this distinction and assume sep = sei and spp = spi for all
age groups a.

Given the observed prevalence p(obs), observed incidence
i(obs), general mortality m, mortality rate ratio R, and sensitivity
se = sep = sei, we can insert Equations 2a and 2b into Equation

1 to estimate the specificity sp = spp = spi (5). Thus, for known
sensitivity se, we can calculate sp = 1 – FPR from these data by a
functional relation Φ :

sp = Φ(se, p(obs), i(obs),m,R). (3)

The exact formula for the functional relation Φ between sp on
the left-hand side and se, p(obs), i(obs),m, and R on the right-hand
side of Equation 3, is lengthy and presented together with its
derivation in the supplement of Ref. (5).

Usually, we do not know the sensitivity se of the
diagnoses in the dataset. To overcome this problem, we use
a probabilistic approach as in (5) and randomly sample se from
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epidemiologically reasonable ranges between 50 and 99.9%. This
does not impose a problem, because the functional relation as
in Equation (3) is robust with respect to se, which has been
demonstrated in (5). We examine how the estimated specificity
sp changes and present the result as false positive ratio FPR= 1 –
sp. The FPR is allowed to vary over age, independently for men
and women in relevant age range 25 to 85 years. The algorithm
requires that the age resolution, i.e., the difference between two
consecutive age groups, is coarser than the temporal distance
between the two prevalence surveys.

The algorithm described above is applied to the claims data
about type 2 diabetes presented in Ref. (6). The claims data
comprises approximately 70 million people during the period
from 2009 to 2015. The number of people with a diagnosed
type 2 diabetes are 5.8 and 6.1 million in 2009 and 2015,
respectively. Prevalence of type 2 diabetes in men and women in
these years is reported in 17 age groups (<15, 15-19, 20-24, ...,
80-84, 85-89, 90+ years). Incidence rates for men and women
are reported for the years 2012, 2013, and 2014 aggregated
in five age groups (<20, 20-39, 40-59, 60-79, 80+ years). In
the first step, reported prevalence p(obs) and incidence i(obs)

are transformed by applying the logit function and the natural
logarithm (log), respectively. Then, the transformed values are
fit by the least squares method using a natural spline (ns)
for age a with interaction terms in time t and sex s, that
is, y ∼ ns(a)∗t∗s where y refers to logit(p(obs)) and log(i(obs)),
respectively. Note that we only have aggregated data, which
prohibits more sophisticated statistical methods such as negative
binomial regression. The degrees of the natural splines for the
transformed reported prevalence and incidence are determined
based on the number of available data points and visual
comparison of the fitted functions with the reported input
prevalence and incidence data.

For applying the functional Φ as in Equation 3, the general
mortality m and the mortality rate ratio R are required. The
general mortality is taken from the Human Mortality Database
(8). The mortality rates of men and women in Germany during
the 5 years period 2010-2014 are fit by a polynomial of degree two
in age a to the logarithmized mortality rates in the age range 15–
95 years. Impact of sex swas implemented by an interaction term,
that is, the model equation reads log(m)∼ (a²+ a)∗s. The degree
of the polynomial was chosen by visual inspection of the fitted
function with the inputmortality rates. The age-specificmortality
rate ratios R for men and women refer to the year 2014 and
stem from the National Diabetes Surveillance report at the Robert
Koch Institute (7). After application of a log-transformation, a
natural spline in age a has been fit to R. Sex s is taken into account
by an interaction term. Thus, the model reads log(R) ∼ ns(a)∗s.
The degree of the natural spline is again determined based
on the number of available data points and visual comparison
of the fitted functions with the reported mortality rate
ratios R.

After these data input and fitting routines, Equation 3 is
applied and the associated age-specific FPRs for men and women
are calculated. Since the prevalence data are given in 2009 and
2015, the temporal difference is 2015–2009 = 6 years, and

estimates for age groups more than 6 years apart are possible. We
chose ages to be a= 25, 32.5, 40, ..., 77.5, 85.

To estimate the absolute number of people with a false-
positive diagnosis of type 2 diabetes, we interpolated the FPR,
the corrected prevalence p [according to Equation 2a], and the
number of peopleN in the claims data with their age-distribution
to all age groups from 20 to 100 years. Then, the number of people
N(fp) with a false-positive diagnosis is calculated by 4.

N(fp) =

100∑

a=20

S(a)× FPR(a) (4)

where S(a) is the estimated number of people aged a without
type 2 diabetes S= (1 – p)× N.

Since we sampled 100,000 sensitivity values, we obtained
a large number of estimates for FPR in men and women
using Equation 3. Accordingly, Equation 4 provides a random
distribution of possible values in men, women, and total.
Empirical quantiles (2.5, 50, and 97.5%) for the resulting
distributions are reported.

All calculations are performed in the free statistical software
R, version 4.1.0 (The R Foundation for Statistical Computing).
The source code and data for running the analysis have
been published in the open-access repository Zenodo with
digital object identifier (DOI) 10.5281/zenodo.5906275 (9). The
data from the Human Mortality Database are available after
registration only (8). We respect this policy and do not upload
the raw mortality data to the Zenodo repository. Instead, in the
uploaded source code we present the fitted coefficients of the
regression model for the mortality rates. Using the coefficients
instead of the raw data, which the coefficients were derived from,
guarantees that the code is fully functional without unveiling data
protected under a policy. Of course, using the coefficients from
the regressionmodel does not affect any of the conclusions drawn
in this work, because the results are identical.

RESULTS

The data points in Figures 1, 2 show the reported prevalence
p and incidence i, respectively, from the claims data, separately
for men (left panel) and women (right panel) (6) These are
opposed to the fitted curves (lines) after applying the logit
and log transform to the data points. Similarly, in Figures 3, 4
the reported mortality rate ratios R and general mortality m,
respectively, for men (left panel) and women (right panel) are
shown together with their fitted curves (lines).

After fitting the input data, that is, prevalence, incidence,
mortality rate ratios, and general mortality, we have all data
at hand to estimate the age-specific FPR for men and women.
For both sexes, 100,000 random samples of the sensitivity se are
drawn uniformly from the range 50–99.9%, and the associated
FPRs were calculated by Equation 3. The results are shown in
Figure 5. Each of the 100,000 age-specific FPRs for men (left
panel) and women (right panel) are depicted as a line, which at
higher ages yield the impression of forming an area of possible
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FIGURE 1 | Age-specific prevalence of type 2 diabetes for men (left panel) and women (right panel) in the years 2009 and 2015. The data points and curves are the

reported values from the claims data (6) and the fitted functions (lines), respectively.

FIGURE 2 | Age-specific incidence of type 2 diabetes for men (left panel) and women (right panel) in the years from 2012 to 2014. The data points and curves are the

reported values from the claims data (6) and the fitted functions (lines), respectively.

FIGURE 3 | Age-specific mortality rate ratio (diabetes over non-diabetes) for men (left panel) and women (right panel) in the year 2014. The data points and curves are

the reported values from the claims data (7) and the fitted functions (lines), respectively.
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FIGURE 4 | Age-specific general mortality rate for men (left panel) and women (right panel) in the years from 2010 to 2014. The data points and curves are the

reported values from the Human Mortality Database (8) and the fitted functions (lines), respectively.

FIGURE 5 | Age-specific ratio of false-positive diagnoses (FPR) in men (left panel) and women (right panel); 100,000 (random) scenarios about the age-specific

sensitivity are simulated, and each line represents the FPR generated by one of these scenarios.

TABLE 2 | Number of patients with falsely diagnosed type 2 diabetes in the claims

data of approximately 70 million people in Germany.

Number of patients with false diagnoses of type

2 diabetes (in thousands)

Median 95% confidence interval

Men 39.9 31.6 to 47.3

Women 172 162 to 180

Total 217 204 to 229

values, blue and red, for men and women, respectively. In men,
the FPR is <6 per 1,000 for all ages. In age groups below 50
years, the FPR in men increases linearly to approximately 2.5
per 1,000. At ages greater than 50 years, the maximum possible
FPR is plateauing with a slight dip at age 77.5 years followed
by an increase to approximately 6 per million. In women, the
age-specific FPR steeply increases until age 60 years and peaks

at about 12 per 1,000. For ages greater than 60 years, the FPR of
women is decreasing again. In all age groups, the FPR is higher in
women than in men.

In terms of absolute numbers of false diagnoses in men and
women, we obtained the median and 95% confidence bounds
from the 100,000 random samples as reported in Table 2. For a
better visual comparison of men and women, medians and 95%
confidence intervals are presented in Figure 6. The associated
empirical distributions of the 100,000 random samples are shown
in Figure 7.

Overall, the vast majority of people wrongly diagnosed with
type 2 diabetes in the claims data are women.

DISCUSSION

In this work, we estimated the age-specific FPR of type 2 diabetes
in German women and men in a huge claims database. We
used a mathematical relation between prevalence, incidence, and
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mortality for chronic conditions. To balance this relation, false-
positive and false-negative diagnoses in the claims data need to
be considered. Usually, the amount of false-positive and false-
negative diagnoses is not accessible in such data. However, as
the false-positive findings dominate the impact of false-negative
findings by magnitudes, making coarse assumptions about the
percentage of false-negative findings allows to examine FPRs.

We found that the age-specific FPR of men and women
differed substantially. Across all age groups, FPR in men is lower
than in women at the same age. At 60 years of age, the FPR
of women is at least three times as high as the FPR of men.
An anonymous reviewer pointed out that the FPR of women
increases drastically due to around peri-menopausal age and
thereafter. Hormonal changes during menopause increase the
risk of several diseases (10) and clinicians are recommended to
recognize early signs and symptoms of the menopause transition
for accurate diagnoses and management (11). As a consequence
of the difference between women and men, across all age groups
approximately 172,000 women and 40,000 men have a false-
positive diagnosis in the claims data. Reasons for the differences
can only be speculated about. For example, in Germany, women
are known to visit a physician more frequently than men
(12). It seems plausible that less-frequent contacts decrease the
probability of making a false-positive diagnosis in the claims data.

Reports about false-positive diagnoses of type 2 diabetes in
huge databases are rare. More than a decade ago, a project
about quality improvement for diagnoses of type 2 diabetes
using computerized algorithms, found a percentage of false-
positive diagnoses of approximately 5% in primary care patient
records (13), which is similar to the percentage of 3.7% found
in this study (217,000/5,800,000 = 0.037). The authors conclude
their report with the note that the current practice of coding
diabetic diagnostic data probably overestimates the prevalence
of diabetes. We come to the same conclusion in the claims
data examined in this study but should remind ourselves of
the huge number of people with undiagnosed diabetes in
Germany. In a representative population survey 2008-2011,
the prevalence of diagnosed and undiagnosed diabetes in the
overall population has been estimated to be 7.2, and 2.0%,
respectively (14). Applying these findings to the claims data,
we (roughly) estimated 70 million × (100–7.2%) × 2.0% = 1.3
million people with a missing diagnosis of type 2 diabetes in the
claims data. Compared to the estimated 190,000 people with a
false-positive diagnosis, false-negative diagnoses (undiagnosed)
are a greater problem in the claims data than false-positive
findings. Unfortunately, we have not found any report about the
differences of false-positive diagnoses of type 2 diabetes between
men and women.

This work mainly addresses the question of how (large)
secondary data can be used for epidemiological analyses.
Frequently, claims data are easily accessible for large populations.
Thus, concluding relies on large numbers of cases, which
seemingly provides enormous statistical power and a large
potential for scientific analyses. However, it is clear that claims
data and diagnoses within these data are collected for non-
scientific purposes such as documentation and reimbursement.
Although making faulty diagnoses, for example, coding a

FIGURE 6 | Number of false-positive diagnoses of type 2 diabetes in the

claims data stratified by sex: men (blue, left) and women (red, right). The black

antennas represent 95% confidence intervals.

tentative diagnosis as an ascertained one, is considered fraud
by national law, it is clear that scientific quality criteria
are rarely met. In the claims data about type 2 diabetes,
there is no difference between the diagnoses of general
practitioners and specialists. Validation studies on individual
patient level conclude that diagnoses in claims data have
contextual problems, which requires careful and critical analysis
(15). Our analysis provides insights into diagnostic accuracy,
especially into the amount of false-positive diagnoses of type
2 diabetes.

Our method has several advantages. First, the approach
described in this study can be applied to other chronic diseases
and requires aggregated data only. Hence, the method may be
used in a variety of settings where individual data are hard to
obtain, for example, when strict data protection rules apply.
Second, the method is flexible about the data sources. Data
about the general mortality may frequently be obtained from
the national statistical offices. If, furthermore, only prevalence
and incidence data are available, the missing data about the
mortality rate ratio might be taken from comparable populations,
where it is available. An old argument states that the mortality
rate ratio provides a stable measure in a wide variety of human
populations (16).

Another advantage of the analysis presented in this study may
be seen in the fact that the data used refer to the same population,
that is, insurants of the statutory health insurance in Germany,
and to a similar period (2009-2015). Using them in the same
analysis seems reasonable.

The approach described and used has several limitations.
Irrespective of prevalence data or incidence data are considered,
sensitivity and specificity are assumed to be the same for
both types of data (sep = sei and spp = spi for all age
groups). A justification for this assumption in the diabetes data
analyzed in this study can be seen in the same origin of the
underlying diagnoses that have been used to estimate prevalence
and incidence. However, the case definitions for prevalent and
incident cases differ slightly. In short, a prevalent case is defined
as someone having two ascertained diagnoses of type 2 diabetes
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FIGURE 7 | Distributions of the number of false-positive diagnoses of type 2 diabetes in the claims data stratified by sex: men (left panel) and women (right panel).

in the study year 2009 or 2015 (6). An incident case has been
defined as someone who has two diagnoses of type 2 within a
year during 2012-2014 but is without a diagnosis in the three
preceding years. It is not guaranteed that these definitions are
consistent in all aspects. For example, it might happen that
someone registered as an incident case in 2014 might not
be counted as a prevalent case in 2015. Here, we make the
implicit assumption that these cases are rare. Usually, patient
records are arranged in a way that incident cases of type 2
diabetes are counted as prevalent cases afterward. Unfortunately,
we do not have the individual patient data available such
that this assumption could not be assessed. In theory, the
assumption of the same sensitivity and specificity in both types
of data can be released by applying Equations 2a and 2b,
with sep 6= sei and spp 6= spi.

Another limitation comes from the fact that the data used
to estimate the mortality rate ratio (7) is not the same as
the data used for prevalence and incidence (6). Although
they refer to the same population (people covered by the
German statutory health insurance system), the mortality rate
ratio (R) is estimated on inpatient and outpatient diagnoses
while prevalence and incidence refer to outpatient diagnoses
only. One might think that for type 2 diabetes the differences
are small, but strictly speaking, this has not been validated.
Moreover, estimation of the mortality rate ratio has been
accomplished irrespective of the problem of false-positive and
false-negative diagnoses in that dataset. Thus, we implicitly
assume that the estimates of the age-specific mortality rate
ratios are not affected by imperfect diagnostic accuracy. Until
now, a systematic examination of the quality of mortality
estimates from these claims data is missing. The last drawback
should be mentioned: prevalence, incidence, and mortality
rate ratio are estimated on the roughly 70 million people
within the statutory health insurance. The general mortality,
however, refers to the overall population of Germany (82
million people). Recent analyses indicate that in age groups

below 90 years, there are no differences between the age-
specific mortalities between these groups, see Figure 2 in
Ref. (17).

To sum up, we assessed the age-specific percentage of false-
positive diagnoses of type 2 diabetes in men and women by
applying a partial differential equation to claims data covering
approximately 85% of the German population. We found
differences between age groups and between sexes. In younger
age groups, false-positive diagnoses are less probable than in
older age groups. Women are affected more by false-positive
diagnoses than men. Our findings underpin the importance
of considering false-positive and false-negative findings in
secondary health data.
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