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to estimate haplotype
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alongside multiplicity of
infection from SNP data
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The introduction of genomic methods facilitated standardized molecular

disease surveillance. For instance, SNP barcodes in Plasmodium vivax and

Plasmodium falciparum malaria allows the characterization of haplotypes,

their frequencies and prevalence to reveal temporal and spatial transmission

patterns. A confounding factor is the presence of multiple genetically

distinct pathogen variants within the same infection, known as multiplicity

of infection (MOI). Disregarding ambiguous information, as usually done

in ad-hoc approaches, leads to less confident and biased estimates. We

introduce a statistical framework to obtain maximum-likelihood estimates

(MLE) of haplotype frequencies and prevalence alongside MOI from malaria

SNP data, i.e., multiple biallelic marker loci. The number of model parameters

increases geometrically with the number of genetic markers considered and

no closed-form solution exists for the MLE. Therefore, the MLE needs to be

derived numerically. We use the Expectation-Maximization (EM) algorithm to

derive the maximum-likelihood estimates, an e�cient and easy-to-implement

algorithm that yields a numerically stable solution. We also derive expressions

for haplotype prevalence based on either all or just the unambiguous genetic

information and compare both approaches. The latter corresponds to a biased

ad-hoc estimate of prevalence. We assess the performance of our estimator by

systematic numerical simulations assuming realistic sample sizes and various

scenarios of transmission intensity. For reasonable sample sizes, and number

of loci, the method has little bias. As an example, we apply the method

to a dataset from Cameroon on sulfadoxine-pyrimethamine resistance in P.

falciparum malaria. The method is not confined to malaria and can be applied

to any infectious disease with similar transmission behavior. An easy-to-use

implementation of the method as an R-script is provided.
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1. Introduction

With ever-decreasing costs, genomic/molecular

technologies are commonly supporting traditional

means of disease surveillance. Rather than clinical data,

demographic, or behavioral risk factors, molecular methods

provide information on a fine-grained scale that allows

to reconstruct sources and routes of disease transmission

by reverse engineering or to identify and monitor specific

pathogen variants, for instance those associated with

drug resistance [cf. (1, 2)]. Improvements in molecular

technologies and bioinformatics facilitate the collection of

genetic/molecular data on temporal and spatial scales [cf.

(3, 4)].

On the epidemiological scale, characterizing pathogen

variants on a genomic level, allows, e.g., to identify the

emergence of variants resistant to vaccines or therapeutics.

Further, by monitoring their prevalence in time and space,

paths of transmission can be reconstructed. This might point

to weak points in disease control and prevention [cf. (5)]. For

the two most relevant species of human malaria, P. falciparum

and P. vivax, even SNP barcodes were developed to standardize

molecular surveillance [cf. (6)].

On the individual scale, genomic characterization

of pathogen variants can be informative on the clinical

pathogenesis of the disease [cf. (7, 8)]. Namely, the presence of

drug-resistant variants or the interaction of genetically distinct

variants within an infection can influence disease outcomes.

Different pathogen variants can assemble in an infection

due to co-transmission or independent infective events as a

consequence of multiple infectious contacts [cf. (9)]. In malaria

this is commonly referred to as multiplicity of infection (MOI)

or complexity of infection (COI) (9–12). The concept of MOI

and COI is particularly well-recognized in malaria as it is

informative on transmission intensities and disease exposure

[cf. (11, 13)]. Despite their recognition, MOI or COI are not

uniformly defined in the literature [cf. (14)]. Here, we will define

MOI in terms of a statistical framework. Although, the concept

of MOI and the framework presented here are applicable to a

variety of infectious diseases, we have applications to malaria

in mind.

A common problem—well recognized in malaria—is

the characterization of several different pathogen variants

within an infection, because molecular methods do not yield

phased genetic information [cf. (15, 16)]. In fact, molecular

characterization of pathogen variants (typically haplotypes)

and MOI are intrinsically coupled. In practice, two main

approaches emerged. The first are ad-hoc approaches, which

avoid the need to phase molecular information, by disregarding

infections with multiple pathogen variants. These approaches

are simple to apply at the cost of dismissing the full potential

of molecular surveillance. The second are based on formal

statistical models. The theoretical background of these methods

is sophisticated and applications require some expertise in

programming or bioinformatics. For malaria, several such

methods have been developed. (Importantly, these methods are

in general not restricted to malaria.) The most common ones

have a similar underlying statistical framework and are based

either on maximum-likelihood (ML) estimation [cf. (14, 17–

20)], or Bayesian methods, e.g., classical Bayesian estimation

[cf. (21, 22)], or Bayesian hidden Markov models [cf. (23, 24)].

Several methods to estimate MOI and haplotype frequencies

are available as software tools [cf. the model comparison in

(22)]. For instance, (18) provides a ML method to estimate the

distribution of MOI and allele frequencies at one or two genetic

markers, assuming that MOI follows either a (conditional)

Poisson or (conditional) negative binomial distribution. In the

case of the conditional Poisson distribution the method was

further developed by (20, 25), who also provided efficient

implementations. A user-friendly implementation which allows

flexible data handling is provided by the R package MLMOI

[cf. (26)]. A bias-corrected ML approach was provided by

(14). MalHaploFreq [cf. (27)] uses a ML approach to estimate

the distribution of haplotypes characterized by up to three

biallelic loci (e.g., SNPs) and the distribution of MOI, which

is assumed to follow either a Poisson, conditional Poisson, or

negative binomial distribution. This approach was generalized

to an arbitrary number of SNPs for the cases of the Poisson

and conditional Poisson distribution [cf. (28)]. It makes use

of the expectation-maximization algorithm (EM algorithm)

to derive the ML estimates. However, the algorithm was

neither derived in an explicit and efficient way, nor was an

implementation made available. A different ML approach to

estimate haplotype frequencies based on several approximations

that guarantee numerical feasibility was suggested [cf. (29)]. This

method also provides estimates for MOI, but based on several

simplifications. Bayesian approaches include the method based

on Gibbs sampling by (22) to estimate haplotype frequencies

from SNP data including an error model, the Metropolis-

Hastings algorithm of (30, 31) to estimate frequencies of

haplotypes which are not restricted to biallelic loci. However,

this approach requires heuristic estimates of MOI. For biallelic

loci, the program COIL offers a classical Bayesian approach

to estimate MOI (COI) [cf. (32)]. THE REAL McCOIL [cf.

(33)] is a generalization based on the Metropolis-Hastings

algorithm. It estimates MOI and minor-allele frequencies at

uncorrelated SNPs in two different ways. Importantly, ML-based

methods and Bayesian methods should yield consistent results,

as both involve the likelihood function. In the strict sense, ML

approaches provide point estimates for parameters, whereas

Bayesianmethods provide posterior distributions for parameters

of interest. Agreement should be particularly strong if the prior

distribution is uninformative, or if the prior distribution gives

substantial weight to the true parameters and the data set is

representative. Discrepancies between the methods are expected

if: (i) the data is an “outlier” and the prior gives substantial
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weight to the true parameters (in which case, essentially all

information is excerpted from the prior, which is more reliable

than the posterior); (ii) the data is reliable, but the prior gives too

much weight to the wrong parameters.

As genomics data is becoming more common in diseases

like malaria, methods capable to handle such data became

popular. For example, an approach to estimate MOI from

deep-sequencing data is provided in (34). Moreover, methods

considering relatedness of pathogen variants within infections

become increasingly popular [cf. (35–40)]. Models such as

DeploidIBD [cf. (40)] estimate the number and proportions of

haplotypes in an infection alongside their identity-by-descent

(IBD) profiles.

Here, we use a ML approach to estimate the frequencies of

haplotypes, determined by n biallelic loci, and the distribution

of MOI, assuming a conditional Poisson distribution. As with

related methods, MOI is defined as the number of super-

infections (i.e., independent infectious events during the course

of the disease under the assumption of no co-transmission of

pathogen variants). The proposed method is intended for a

moderate number of loci, i.e., n should not be so large that

individual haplotypes will be characterized. In particular, we

employ the EM algorithm as in (28). While the general form

provided by (28) is easily derived, a more explicit form is

combinatorically involved and complicated. Here, we provide

such an explicit form. This is the foundation of an efficient

implementation of the algorithm. Such an implementation is

provided as an easy-to-use R script. Importantly, we derive

expressions for prevalence of haplotypes, i.e., the probability

that a given haplotype occurs in an infection. Prevalence is

mediated byMOI, i.e., it is derived from the haplotype frequency

distribution and the distribution of MOI. If primarily interested

in disease outcomes rather than the population genetics of

the pathogen, prevalence is more relevant than the frequency

distribution of haplotypes. Prevalence is notoriously difficult

to estimate, especially from unphased molecular data. Namely,

a statistical model, as the one presented here, is required for

its estimation. Without such a model, ad-hoc estimates can

be made from samples without ambiguity regarding haplotype

phasing [e.g., as done in some of the analyses in (41)]. Such

estimates are however biased. We assess the performance of

the estimator of MOI, frequencies, prevalence, and ad-hoc

approximations of prevalence in terms of bias and variance by

numerical simulations.

As an example, we apply the method to estimate the

frequency of malaria haplotypes associated with resistance

against sulfadoxine-pyrimethamine (SP). Specifically, we apply

the method to molecular data obtained from malaria-positive

blood samples collected in Cameroon at two time points

[cf. (42)].

We start with a formulation of the underlying statistical

framework and a clear definition of MOI. Readers not focused

on mathematical rigor shall feel free to move directly to the

result section. Formal proofs and derivations are provided in the

Mathematical Appendix.

2. Methods

A formal description of the statistical model is presented

here. The model extends the method of (18), further developed

by (25) to estimate multiplicity of infection (MOI) defined

as the number of super-infections (i.e., independent infectious

events during the course of the disease under the assumption

of no co-transmissions/co-infections) and allele frequencies at

a single-marker locus. Here, we extend the method to an

arbitrary number of marker loci each with two alleles, e.g.,

single nucleotide polymorphisms (SNPs) as used in P. vivax

or P. falciparum barcodes [cf. (6)], to estimate the haplotypes

frequency distribution and MOI. As pointed out in (43),

the assumption of no co-infections is not too strict. More

precisely, the model approximately also holds if co- and super-

infections occur.

2.1. Statistical model

Consider pathogen haplotypes, denoted hhh, characterized by

n biallelic markers. At each locus, the wildtype allele is coded by

0 and the mutant allele by 1. Hence, a haplotype is represented

by a 0-1-vector indicating its allelic configuration, i.e., hhh =

(h1, . . . , hn), with hk ∈ {0, 1}. A total of H = 2n haplotypes

are possible. The set of all possible haplotypes is thus given by

hhh ∈ H = {0, 1}n.

Each haplotype hhh (0-1-vector) corresponds to a binary

representation of the numbers 1, . . . , 2n, namely to [hhh]2 : =

1+
n
∑

l=1

hl2
l−1. (As an example for n = 4 the haplotype (1, 0, 0, 1)

corresponds to the number 1+1·20+0·21+0·22+1·23 = 1+1+

8 = 10). We order haplotypes according to that representation.

The frequency of haplotype hhh, denoted by phhh, is its relative

abundance in the pathogen population (assessed at a particular

census point). For example, in the case of malaria, the frequency

of a haplotype is its relative abundance in the sporozoite

population in the mosquitoes’ salivary glands (20). Collectively,

the frequencies form the vector ppp : = (phhh)hhh∈H = (p1, . . . , pH),

where pk = phhh if [hhh]2 = k. In practice, pk = 0 for several

haplotypes, since not all 2n possible haplotypes will be present

in the pathogen population.

It is assumed that at each infective event, exactly one

pathogen haplotype is transmitted. However, individuals can

get (super-) infected several times during one disease episode.

The number of (super-) infections during one disease episode

is referred here to as multiplicity of infection (MOI). We

treat the terms complexity of infection (COI) and MOI

synonymously here. The term super-infections refers here to
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FIGURE 1

Ambiguity in haplotype information for two biallelic loci. Illustrated are three di�erent infections from the same pathogen population. The first

infection (middle left) describes a super-infection with two haplotypes, i.e., MOI = 2. The corresponding observation (bottom left) provides only

unphased (i.e., ambiguous) haplotype information. It is impossible to reconstruct with certainty the haplotypes actually present in the infection

and the corresponding MOI. The second infection (middle), illustrates a super-infection with two haplotypes transmitted one and two times,

respectively, i.e., MOI = 3. From the observed information, the haplotypes present in the infections can be unambiguously phased. However,

MOI remains unknown. The last infection (middle right) is similar to the second, however with MOI = 4.

independent infective events without co-transmissions, i.e., only

one pathogen variant is transmitted. In contrast, a co-infection

is one infective event during which several pathogen variants

are co-transmitted. However, the model is still approximately

applicable if co-transmissions occur [cf. (43)].

Assuming that infections are rare and independent, MOI

follows a Poisson distribution. When considering only disease-

positive individuals, MOI follows a conditional (or positive)

Poisson distribution. Thus, the probability to be (super-)

infected exactlym times (MOI= m) is given by [see (25)]

κm =
1

eλ − 1

λm

m!
, m = 1, 2, 3, . . . . (1a)

Note that, a zero-inflated Poisson distribution [cf. (44)]

yields the same conditional Poisson distribution. Therefore,

m ∼ CPoiss(λ), where λ is the parameter characterizing the

conditional Poisson distribution.

The probability generating function (PGF) of the

conditional Poisson distribution is given by

G(z) : = E[zm] =

∞
∑

m=1

κmz
m =

eλz − 1

eλ − 1
, (1b)

and the mean MOI is given by (see 25)

ψ : = E[m] =
λ

1− e−λ
. (1c)

At each infective event, exactly one haplotype, randomly chosen

from the pathogen population, is transmitted to the host. Given,

an individual is super-infected m times (MOI = m), the process

of infection corresponds to multinomially sampling from the

pathogen population. Ifmhhh is the number of times an individual

was infected with haplotype hhh (necessarily |mmm| : =
∑

hhh∈H

mhhh =

m1 + . . . + mH = m), the infection is subsumed by the vector

mmm : = (mhhh)hhh∈H = (m1, . . . ,mH). Therefore, given MOI m,

infectionmmm (with |mmm| = m) occurs with probability

P(mmm |m) =

(

m

mmm

)

pppmmm, (2)

where
(m
mmm

)

= m!
m1!...mH !

, and pppmmm = p
m1
1 . . . p

mH
H .

In practice, the vectormmm and even MOI m are unobservable

from a clinical specimen. In addition, assays to determine

genetic information usually do not yield full haplotype

information, i.e., if multiple different haplotypes are present

within an infection, assays yield ambiguous genetic information

due to the lack of phasing (cf. Figure 1) (15). It is assumed

here, that only the absence/presence of alleles at every locus is
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assessable. [Notably, in the case of phased data, haplotypes as

defined here, would be equivalent to alleles at a single multi-

allelic marker locus and can be analyzed with the methods of

(18, 20, 25).]

We denote allelic information of an infection by a vector

xxx = (x1, . . . , xn), where xk is the set of alleles detected at locus

k in the sample. It is assumed that all alleles that are present

in an infection are actually detected and that alleles are not

erroneously detected. Therefore, xk equals one of the sets {0},

{1}, or {0, 1}, corresponding to, respectively, the presence of the

wildtype, the mutant, or both alleles at locus k. The set of all

possible observations is O : = ({{0}, {1}, {0, 1}})n. There are

a total of 3n possible observations. Several different infections

mmm can yield the same observation xxx (mmm → xxx). The set of all

infections with MOI equal to m which yield observation xxx is

denoted by

M
(m)
xxx : = {mmm |mmm → xxx, |mmm| = m}. (3a)

Furthermore, we denote the set of all haplotypes which are

compatible with observation xxx (i.e., the set of all haplotypes that

could potentially be present in the underlying infection) by

Axxx : = {hhh = (h1, . . . , hn) | hk ∈ xk for all k}. (3b)

Let us denote the set of sub-observations of observation xxx, i.e., all

observations with at most the same alleles detected at each locus

as in xxx (cf. Supplementary Figure 1), by

Axxx : = {yyy = (y1, . . . , yn) | yk ⊆ xk for all k}. (3c)

If yyy is a sub-observation of xxx, i.e., yyy ∈ Axxx, we write yyy � xxx.

Note that “�” defines a partial order on the set of possible

observations. We further define the proper sub-observation yyy of

xxx by

yyy ≺ xxx : ⇔ yyy � xxx ∧ xxx 6= yyy. (4)

Using this notation the setM
(m)
xxx is rewritten as

M
(m)
xxx ={mmm |mhhh = 0 if hhh /∈ Axxx,

|mmm| = m} \
⋃

yyy≺xxx

{mmm |mhhh = 0 if hhh /∈ Ayyy, |mmm| = m},
(5)

where Ayyy is defined as (3) but for the proper sub-observation

yyy rather than for the original observation xxx. Given an infection

with MOIm, the probability of observing xxx is

P(xxx |m) =
P(xxx,m)

κm
. (6a)

Therefore,

P(xxx,m) =P
(

M
(m)
xxx

)

=
∑

mmm∈M
(m)
xxx

P(mmm) =
∑

mmm∈M
(m)
xxx

P(mmm|m)κm

=κm
∑

mmm∈M
(m)
xxx

(

m

mmm

)

pppmmm.

(6b)

The probability of observation xxx becomes

P(xxx) =

∞
∑

m=1

P(xxx,m) =

∞
∑

m=1

κm

∑

mmm∈M
(m)
xxx

(

m

mmm

)

pppmmm. (6c)

Henceforth, to simplify the notation we will use Pxxx to denote the

probability of observing xxx instead of P(xxx). By using (3a) and the

inclusion-exclusion principle the inner sum on the right-hand

side of (6c) can be rewritten as

∑

mmm∈M
(m)
xxx

(

m

mmm

)

pppmmm =
∑

mmm : |mmm|=m
mhhh=0 if hhh/∈Axxx

(

m

mmm

)

pppmmm

+
∑

yyy≺xxx

(−1)

n
∑

k=1

(

|xk|−|yk|
)

∑

mmm : |mmm|=m
mhhh=0 if hhh/∈Ayyy

(

m

mmm

)

pppmmm,

(7a)

where |xk| and |yk| are, respectively, the cardinals of xk, and

yk. Let Nxxx denote the number of loci in observation xxx at which

both alleles were detected, i.e., Nxxx = |{k | |xk| = 2}|. The

number of loci with a single allele detected is then n − Nxxx.

Hence, the number of alleles detected in observation xxx is given

by 2Nxxx + n− Nxxx = n+ Nxxx. We hence obtain

n
∑

k=1

(

|xk| − |yk|
)

= Nxxx − Nyyy, (7b)

and

∑

mmm∈M
(m)
xxx

(

m

mmm

)

pppmmm =
∑

mmm : |mmm|=m
mhhh=0 if hhh/∈Axxx

(

m

mmm

)

pppmmm

+
∑

yyy≺xxx

(−1)Nxxx−Nyyy
∑

mmm : |mmm|=m
mhhh=0 if hhh/∈Ayyy

(

m

mmm

)

pppmmm

=
∑

yyy�xxx

(−1)Nxxx−Nyyy
∑

mmm : |mmm|=m
mhhh=0 if hhh/∈Ayyy

(

m

mmm

)

pppmmm

=
∑

yyy∈Axxx

(−1)Nxxx−Nyyy
∑

mmm : |mmm|=m
mhhh=0 if hhh/∈Ayyy

(

m

mmm

)

pppmmm.

(7c)

Therefore, the probability of observing xxx in (6c) becomes

Pxxx =

∞
∑

m=1

κm

∑

yyy∈Axxx

(−1)Nxxx−Nyyy
∑

mmm : |mmm|=m
mhhh=0 if hhh/∈Ayyy

(

m

mmm

)

pppmmm. (8a)

By the multinomial theorem, we have

∑

mmm : |mmm|=m
mhhh=0 if hhh/∈Ayyy

(

m

mmm

)

pppmmm =

(

∑

hhh∈Ayyy

phhh

)m

. (8b)
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Using the PGF (8a) becomes

Pxxx =

∞
∑

m=1

κm

∑

yyy∈Axxx

(−1)Nxxx−Nyyy

(

∑

hhh∈Ayyy

phhh

)m

=
∑

yyy∈Axxx

(−1)Nxxx−Nyyy

∞
∑

m=1

κm

(

∑

hhh∈Ayyy

phhh

)m

=
∑

yyy∈Axxx

(−1)Nxxx−NyyyG

(

∑

hhh∈Ayyy

phhh

)

.

(8c)

This probability depends on the model parameters λ, which

appears in the PGF, and the vector of haplotype frequencies ppp.

Hence, the parameter space of the model is

2 : = R
+ × SH =

{

(λ,ppp) | λ > 0 and ppp ∈ SH

}

, (9)

where, SH : =
{

(p1, . . . , pH)
∣

∣

∣

H
∑

k=1

pk = 1 and pk ≥ 0, for all k
}

is the H − 1-dimensional simplex.

The true parameter vector θθθ = (λ,ppp) is unknown and

has to be estimated from empirical data. Assume a dataset X

consisting of N observations xxx(1), . . . ,xxx(N), where the notation

xxx(j) =
(

x
(j)
1 , . . . , x

(j)
n
)

is used for the jth observation. For the

dataset X , let nxxx be the number of times observation xxx is made.

Naturally,

∑

xxx∈O

nxxx = N.

Using (8c), the likelihood function of the parameter θθθ = (λ,ppp)

given the data X is given by

LX (θθθ) =

N
∏

j=1

Pxxx(j) =
∏

xxx∈O

(

∑

yyy∈Axxx

(−1)Nxxx−NyyyG

(

∑

hhh∈Ayyy

phhh

)

)nxxx

.

(10)

Hence, the log-likelihood function becomes

ℓX (θθθ) = log
(

LX (θθθ)
)

=
∑

xxx∈O

nxxx log

(

∑

yyy∈Axxx

(−1)Nxxx−NyyyG

(

∑

hhh∈Ayyy

phhh

)

)

. (11)

To obtain the maximum-likelihood estimate (MLE) θ̂θθ =

(λ̂, p̂pp) the log-likelihood function needs to be maximized. The

complexity of the log-likelihood function does not permit a

closed solution, and must be maximized numerically. For this

purpose the expectation-maximization (EM)-algorithm will be

used (17). This will be discussed in Section 3.2.

2.1.1. Confidence intervals

To ascertain uncertainty of the estimates, confidence

intervals (CIs) can be derived. A straightforward approach is to

derive bootstrap CIs. The simplest type of boostrap CIs are the

non-parametric percentile CIs [cf. (45), Chapter 13]. To obtain

a (1 − α)% bootstrap CIs from a dataset X of sample size N,

we sample B (e.g., B = 10, 000) datasets X1, . . . ,XB, each of

sample size N with replacement from X . For each dataset Xb,

we obtain the MLEs θ̂θθ
(b)

. For the desired parameter θk, the
α
2%

and (1 − α
2 )% percentiles, θ̂∗

k, α2
and θ̂∗

k,(1− α
2 )
, respectively, are

determined from the sequence θ̂θθ
(1)
k , . . . , θ̂θθ

(B)
k . The (1−α)% CI is

then given by

(

θ̂∗k, α2
, θ̂∗k,1− α

2

)

. (12)

Clearly, more advanced bootstrap CIs, e.g., bias-corrected and

accelerated (BCa) boostsrap CIs [cf. (45), Chapter 14] or

parametric bootstrap CIs [cf. (45), Chapter 12] can be calculated

similarly.

2.1.2. Assessing bias and variance of the
estimator

MLEs have desirable asymptotic properties, i.e., for large

sample size. In practice, sample size is often limited, and the

quality of the estimator needs to be investigated under finite

sample sizes. Because no explicit solution exists for the MLE,

its performance in terms of bias and variance needs to be

investigated by numerical simulations.

Bias and variance of the MLE will be affected by: (i) sample

size N; (ii) the number of considered loci n, i.e., the genetic

architecture; (iii) the value of the MOI parameter λ; (iv) the

frequency distribution of haplotypes ppp.

To investigate the properties of the MLE for a representative

range of parameters we proceeded as follows (parameters used

in the simulation study are described below and summarized

in Table 1). For a set of parameters (N, n, λ, ppp) we generated

K = 100, 000 datasets X1, . . . ,XK of size N according to the

model (8c). For each dataset Xk, the MLE (θ̂θθk) = (λ̂k, p̂pp
(k)

)

was calculated. From each λ̂k the mean MOI ψ̂k was calculated

according to (1c). The bias and variance of the mean MOI ψ

were estimated as

bias(ψ̂) = ψ − ψ , (13a)

and

Var(ψ̂) =
1

K − 1

K
∑

k=1

(ψ̂k − ψ̄)
2, (13b)

where

ψ =
1

K

K
∑

k=1

ψ̂k. (13c)
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TABLE 1 Summary of model parameters chosen for the simulations to assess the estimator’s performance.

Parameter Description Value

K Number of simulated datasets 100, 000

n Number of loci markers 2, 5, 10

N Sample size 50, 100, 150, 200, 500

λ MOI parameter 0.1, 0.25, 0.5, 1, 1.5, 2, 2.5

Symmetric Skewed

ppp Hapl. freq. (simulated data) n = 2: p1 = . . . = p4 =
1
4

p1 = 0.7,

p2 = . . . = p4 = 0.1

n = 5: p1 = . . . = p32 =
1
32

p1 = 0.7,

p2 = . . . = p32 =
0.3
31

Freq., Frequency; Hapl., Haplotype.

To allow comparisons between different parameter ranges it is

more appropriate to consider the relative bias and coefficient of

variation which are independent of the scale, i.e.,

bias(ψ̂)

ψ
, (14a)

and

√

Var(ψ̂)

ψ
. (14b)

For each haplotype frequency phhh, bias and variance were defined

in the same way with obvious modifications.

2.1.2.1. Genetic architecture

Considering the number of biallelic loci, for the simulations

we assumed n = 2, 5 to perform systematic investigations of the

estimator. The number of possible haplotypes was then 4 and

32, respectively, for n = 2, 5. As the number of loci increases

due to the curse of dimensionality it becomes too exhaustive to

perform systematic investigations. Hence, in addition, we chose

two specific distributions for n = 10, which correspond to

distributions of drug-resistant haplotypes which were previously

empirically estimated. Importantly, the method is not limited to

just 10 loci.

2.1.2.2. MOI parameter

Concerning the MOI parameter we chose λ =

0.1, 0.25, 0.5, 1, 1.5, 2, 2.5, corresponding to a mean MOI

ψ = 1.05, 1.13, 1.27, 1.58, 1.93, 2.31, 2.72. In the case of malaria,

this corresponds to low transmission ψ < 1.27, intermediate

transmission 1.27 ≤ ψ < 1.93 and high transmission ψ ≥ 1.93

(14).

2.1.2.3. Haplotype frequency distribution

The following haplotype frequency distributions ppp were

chosen. First, a completely uniform (balanced) distribution

was chosen, i.e., each of the H = 2n haplotype had the

same frequency,

p1 = . . . = pH =
1

H
. (15a)

Second, a skewed distribution with one predominant haplotype

was chosen. The frequency of the predominant haplotype was

chosen to be 70%, while the remaining haplotypes all had the

same frequency. In particular, we chose

p1 = 0.7, p2 = . . . = pH =
0.3

H − 1
. (15b)

For n = 2 this yielded, p1 = 0.7, p2 = p3 = p4 = 0.1 and for

n = 5 loci p1 = 0.7, p2 = . . . = p32 = 0.0097.

Third, we chose specific empirical distributions for the

case n = 10. The reason is that the dimension of the

parameter space becomes high (H = 1, 024), but most

haplotypes will not be realized in a population. Specifically, we

assumed two haplotype frequency distributions that correspond

to empirically estimated distributions of P. falciparum malaria

haplotypes. These haplotypes were characterized by n = 10

SNPs associated with resistance to sulfadoxine-pyrimethamine

(SP). The two haplotype frequency distributions were estimated

from a population in Siaya County, Kenya, respectively, in 2005

and 2010 (see (46)).

In 2005, the frequencies of detected haplotypes were p2 =

0.055, p5 = 0.016, p6 = 0.171, p11 = 0.015, p13 = 0.024,

p14 = 0.719, respectively, while in 2010 they were p1 = 0.007,

p3 = 0.015, p6 = 0.084, p7 = 0.006, p14 = 0.791, p15 = 0.007,

p16 = 0.009, p19 = 0.081, respectively (see Table 2).

2.1.2.4. Sample size

Sample size is crucial to the performance of an estimator.

To evaluate the effect of sample size, we constructed datasets of

size N = 50, 100, 150, 200, 500. In malaria N = 50 − 150 are

typical sample sizes. The large sample size N = 500, which is
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TABLE 2 Frequencies of SP-resistant haplotypes from the Kenyan data

used for simulation study.

Haplotype Frequency ppp

Years

dhfr dhps 2005 2010

NCN SGEA − 0.007

NRN SGEA 0.055 −

ICN SAKA − 0.015

ICN SGKA 0.016 −

ICN SGEA 0.171 0.084

ICN AAKA − 0.006

IRN SAKA 0.015 −

IRN SGKA 0.024 −

IRN SGEA 0.719 0.791

IRN SGEG − 0.007

IRN AAKA − 0.009

IRN AGEA − 0.081

The first column shows the amino acid sequence at codons 51, 59, and 108 at the dhfr

locus and the second column shows the amino acid sequence at codons 436, 437, 540,

and 581 at the dhps locus.

becoming more common in malaria, but might still be infeasible

for low transmission areas. Nevertheless, considering N = 500

helps understand the asymptotic behavior of the estimator.

We used R (47) to implement the simulation study and

create the graphical outputs. The code is available at: https://

github.com/Maths-against-Malaria/MultiLociBiallelicModel.

git.

2.2. Data application

As an application, we estimated the frequency of malaria

haplotypes associated with resistance against SP. The data was

taken from (42, 48, 49) and is described there in detail. In

short, it was collected in Yaoundé, Cameroon in 2001/2002 and

2004/2005. Mutations at codons 51, 59, 108, and 164 at the dhfr

locus on chromosome 4 and 436, 437, 540, 581, and 613 at the

dhps locus on chromosome 8 were determined either by direct

sequencing or pyrosequencing. Due tomissing data, we included

165 samples from 2001/2002 and 165 samples from 2004/2005.

3. Results

For molecular surveillance of parasite haplotypes, obtaining

adequate estimates of haplotype frequencies is crucial. From a

clinical point of view, the occurrence of particular haplotypes in

infections, i.e., the prevalence of haplotypes, is more relevant.

Importantly, frequency and prevalence are not the same, as

the latter is mediated by MOI [cf. (43)]. First, we clarify

the relationship between frequency, prevalence, and MOI.

Second, an efficient algorithm for estimating MOI, haplotype

frequencies, and prevalence is provided. Finally, the properties

of the estimator are investigated numerically.

3.1. Prevalence and similar quantities

The frequency of haplotype hhh, i.e., phhh, defines its relative

abundance in the pathogen population. According to the

underlying model, phhh is the probability that haplotype hhh is

transmitted at a given infective event. However, several infective

events (super-infections) can cause an infection, so that the

probability that haplotype hhh is transmitted at any infective event

exceeds phhh. The probability that haplotype hhh is present in an

infection is called its prevalence.

Typically, molecular assays do not provide phased

information. Hence, if several haplotypes are present within

an infection, it is ambiguous which haplotypes are actually

infecting (cf. Figure 1).

Observations that carry only one haplotype are called

single infections, i.e., an observation xxx is a single infection if

|xk| = 1 ∀k. Molecular information from single infections

are unambiguous. However, even for single infections MOI is

unobservable (since it is unclear how many times the host was

super-infected with the same haplotype).

Infections with two or more distinct haplotypes are called

multiple infections. The resulting molecular information is

ambiguous, except in the case of exactly two super-infecting

haplotypes that differ at only one locus. We call such super-

infections unambiguous multiple infections. Namely, x̃xx is an

unambiguous multiple infection if there exist a unique locus k

such that |x̃k| = 2 and |x̃l| = 1 ∀ l 6= k. Clearly, MOI—as for

every sample—is unobservable.

Since haplotype information is ambiguous in multiple

infections, to assess the prevalence of haplotypes sometimes

only unambiguous samples are considered in practice. Here,

we first define prevalence in general (unobservable prevalence).

Second, we derive the probability to observe a given haplotype

in unambiguous samples (conditional prevalence).

3.1.1. Prevalence

Since haplotype information is typically unavailable from

molecular assays, haplotypes are per se not observable in

molecular samples. To emphasize this fact we call the

probability that a haplotype occurs in an infection “unobservable

prevalence.” The unobservable prevalence of hhh is denoted by qhhh
and the probability that haplotype hhh does not occur in infection

by q−hhh = 1 − qhhh. The unobservable prevalence is hence
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qhhh = 1− q−hhh = 1−

∞
∑

m=1

κm

∑

mmm : |mmm|=m
mhhh=0

(

m

mmm

)

pppmmm. (16a)

By using the multinomial theorem one

obtains

∑

mmm : |mmm|=m
mhhh=0

(

m

mmm

)

pppmmm =
(

∑

iii∈H

piii − phhh

)m
= (1− phhh)

m. (16b)

This yields

qhhh = 1−

∞
∑

m=1

κm(1− phhh)
m = 1− G(1− phhh)

= 1−
eλ(1−phhh) − 1

eλ − 1
. (16c)

Hence, prevalence is derived readily from the

MOI parameter λ and the frequencies. Given

the frequency of haplotype hhh its unobservable

prevalence increases with increasing MOI

(increasing λ).

The unobservable prevalence qhhh always exceeds the

frequency phhh of haplotypehhh. The higher transmission intensities,

the more does prevalence exceed frequency. This is illustrated

in Figures 10–13. In the limit of λ → 0, i.e., every infection

is a single infection with MOI m = 1, prevalence and

frequency coincide. Distinguishing between frequency and

prevalence is hence particularly important in areas of seasonal

disease transmission, where the parameter λ will fluctuate

between seasons.

3.1.2. Conditional prevalence

Because of ambiguity of haplotype information in multiple

infections, it is impossible to identify the number of samples

containing haplotype hhh in a dataset. In practice, often only

unambiguous samples are considered, to determine prevalence.

Here, we derive the corresponding quantity in the underlying

framework, i.e., the prevalence of haplotype hhh, conditioned on

observing only unambiguous data. The quantity is referred to as

“conditional prevalence.”

We denote the set of all possible unambiguous observations

by Õ . The conditional prevalence is

r
hhh|Õ

: = P(hhh | Õ) =
P(hhh, Õ)

P(Õ)
=

rhhh

P(Õ)
, (17)

where rhhh : = P(hhh, Õ) is the probability to observe haplotype hhh

in an unambiguous observation, and P(Õ) is the probability of

unambiguous observations. For each haplotype hhh, let Uhhh be the

set of all haplotypes iii, which yield unambiguous observations

with hhh (i.e., if only hhh and iii are present in an infection, it is an

unambiguous infection). Note that there are exactly n haplotypes

iii such that iii ∈ Uhhh. Formally, we have

Uhhh : = {iii ∈ H | ∃ ! k : iiik 6= hhhk}. (18)

The quantity rhhh is obtained as the sum of the probabilities of

multiple infections with only one haplotype iii ∈ Uhhh and hhh, or

single infections with haplotypehhh. An unambiguous observation

with hhh and MOI m is obtained by randomly sampling miii times

iii ∈ Uhhh and mhhh = m−miii times hhh. Note, if mhhh = m or miii = m,

a single infection with hhh or iii is obtained, respectively. The latter

are irrelevant for the prevalence of hhh. One obtains

rhhh : =

∞
∑

m=1

κm

∑

iii∈Uhhh

m−1
∑

miii=1

(

m

miii

)

p
miii
iii p

m−miii

hhh
+

∞
∑

m=1

κmp
m
hhh
. (19a)

As shown in Section Prevalence estimates of the Mathematical

Appendix, this quantity simplifies to

rhhh =
∑

iii∈Uhhh

[

G(phhh + piii)− G(piii)
]

− (n− 1)G(phhh), (19b)

where G is the PGF (1b).

The probability of all unambiguous observations P(Õ) is

derived in Section Prevalence estimates of the Mathematical

Appendix and is given by

P(Õ) =
∑

hhh∈H

[

1

2

∑

iii∈Uhhh

[

G(phhh + piii)− G(piii)
]

−
(n

2
− 1

)

G(phhh)

]

.

(20)

Hence, the prevalence of hhh conditioned on ambiguous

observations is given by

r
hhh|Õ

=

∑

iii∈Uhhh

[

G(phhh + piii)− G(piii)
]

− (n− 1)G(phhh)

∑

jjj∈H

[

1

2

∑

iii∈Ujjj

[

G(pjjj + piii)− G(piii)
]

−
(n

2
− 1

)

G(pjjj)

] .

(21)

The conditional prevalence also exceeds the frequencies. Its

value, however, seems to be closer to the frequencies phhh than

that of the unobserved prevalence qhhh. The reason is that a

mixed infection with haplotype hhh is much more likely to

be ambiguous than unambiguous. Particularly, the fraction of

single infections with haplotype hhh in unambiguous infections

is disproportionately higher than in ambiguous infections. This

is more pronounced if the genetic architecture of haplotypes

consist of more loci (larger n). While this is true in theory, in real

samples, when considering a large number of loci, unambiguous

observations are increasingly unlikely (cf. Figures 10–13). The

reason is that most haplotypes are not realized in a real

population, which can be characterized by the presence of a few

haplotypes which differ at multiple loci.
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3.1.3. Relative unambiguous prevalence

Due to unobservable information, a statistical model is

required to obtain estimates for frequencies. However, in

practice, “ad-hoc” estimates are popular if statistical methods

are not available [cf. (50)]. Frequency estimates can be obtained,

by first disregarding all ambiguous observations, calculate the

empirically observed unambiguous prevalence of all haplotypes,

and finally normalizing them - here we refer to this as the

“relative unambiguous prevalence.” To assess how accurate such

estimates are, this quantity can be expressed in terms of the

statistical model introduced here, namely

fhhh : =
r
hhh|Õ

∑

jjj∈H

r
jjj|Õ

. (22a)

Using (21) this can be rewritten as

fhhh =

∑

iii∈Uhhh

[

G(phhh + piii)− G(piii)
]

− (n− 1)G(phhh)

∑

jjj∈H

[

∑

iii∈Ujjj

(

G(pjjj + piii)− G(piii)
)

− (n− 1)G(pjjj)

] . (22b)

Not surprisingly, the relative unambiguous prevalence

resembles the frequency phhh of haplotpye hhh better than either

the unobserved prevalence qhhh or the unambiguous prevalence

r
hhh|Õ

. However, whether it is larger or smaller than the true

frequency, fhhh depends on the genetic architecture and the MOI

distribution. In general there is no clear straightforward pattern,

rendering the relative unambiguous prevalence an inadequate

proxy for frequencies (cf. Figures 10–13).

3.2. Maximization of the likelihood
function with the EM-algorithm

The maximum-likelihood (ML) method is employed here to

obtain estimates for haplotype frequencies and the distribution

of MOI. The likelihood function (11) derived in Section 2

does not permit a closed solution and has to be maximized

numerically. A convenient and efficient method to maximize

the likelihood function is the expectation maximization (EM)-

algorithm. It is a two-step recursive method to find maximum

likelihood estimates (MLEs). The steps of the EM-algorithm are:

(i) the expectation (E) step (in which the expectation of the log-

likelihood as a function of the unknown parameters conditioned

on the parameter choice at the current iteration step is found),

and (ii) the maximization (M) step (during which the function

obtained at the E step is maximized with respect to the unknown

parameters). The parameters obtained during the maximization

step are then used in the next expectation step, and the algorithm

is repeated until convergence. The algorithm is derived in the

Mathematical Appendix in section Deriving the EM-algorithm.

In the present case the EM-algorithm leads to a two-step

iterative procedure. The algorithm starts by choosing arbitrary

initial values λ(0) and ppp(0) for the Poisson parameter and

haplotype frequencies. In step t + 1 the frequency estimates

ppp(t+1) are derived as

p
(t+1)
hhh

=
C
(t)
hhh

∑

hhh∈H

C
(t)
hhh

, (23a)

where

C
(t)
hhh

= p
(t)
hhh

∑

xxx∈O

nxxx

∑

yyy∈Axxx

(−1)Nxxx−NyyyG′
λt

(

∑

iii∈Ayyy

p
(t)
iii

)

IAyyy (hhh)

∑

yyy∈Axxx

(−1)Nxxx−NyyyGλt

(

∑

iii∈Ayyy

p
(t)
iii

) ,

(23b)

IAyyy (hhh) =







1 if hhh ∈ Ay,

0 if hhh 6∈ Ay.
(23c)

and Gλt (z) is the PGF (1b) with parameter λt . The parameter

λt+1 is obtained by iterating the equation

xτ+1 = xτ −
xτ −

Bt

N
(1− e−xτ )

1+ xτ −
xτ

1− e−xτ

, (23d)

where

Bt =
∑

xxx∈O

nxxx

∑

yyy∈Axxx

(−1)Nxxx−Nyyy
∑

hhh∈Ayyy

p
(t)
hhh
G′
λt

(

∑

iii∈Ayyy

p
(t)
iii

)

∑

yyy∈Axxx

(−1)Nxxx−NyyyGλt

(

∑

iii∈Ayyy

p
(t)
iii

) ,

(23e)

starting from x0 = λt , until numerical convergence is reached.

In particular, the iteration stops once |xτ+1 − xτ | < ε holds, by

setting λt+1 = xτ+1.

The EM-algorithm terminates once numerical convergence

is reached. This is defined to be the case if |λt+1−λt|+‖p
(t+1)
hhh

−

p
(t)
hhh
‖2 < ε. The MLE are obtained as

p̂hhh = p
(t+1)
hhh

and λ̂ = λt+1. (24)

In practice, the EM-algorithm converges within a few iterations.

Notably, it can be implemented efficiently. Because of the

efficient implementation, bootstrap confidence intervals (CIs)

can be readily obtained, as described in Confidence intervals.

An implementation of the EM-algorithm and the bootstrap

CIs in R is available as Supplementary material. The code

is also available at: https://github.com/Maths-against-Malaria/

MultiLociBiallelicModel.git.
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3.3. Using a plug-in estimate for the
Poisson parameter

Estimates of MOI might be unreliable in the case of

unbalanced haplotype frequency distributions, as they typically

occur for drug-resistance associated haplotypes in malaria. To

compensate for this, the number of loci considered can be

increased. In the case of resistance-associated haplotypes a

typical choice would be a set of unlinked neutral marker loci,

which are likely to have balanced frequencies.

However, adding additional loci can lead to three problems

in practice. First, due to the curse of dimensionality, the

number of parameters to be estimated becomes so large that

haplotypes are characterized at the individual level. This can

be compensated by marginalizing the frequency estimates with

regard to the set of loci of interest. Second, poor data quality

can lead to missing data entries, so that the number of

samples, which have information at all loci (the original and

the additional set), is substantially smaller than if the sets of

loci would be considered separately. Similarly, one set of loci

might just have been process for a sub-sample. Third, molecular

information might, for both sets of loci, have been performed

for different sets of samples. In any of these cases, one could

estimate the Poisson parameter λ based only on the additional

set of loci and use this estimate as a plug-in estimate to obtain

the haplotype frequency distribution for the original set of loci.

If one prefers to use a plug-in estimate for the Poisson

parameter λ, the EM-algorithm can be adapted. This adaptation

is derived in The EM-algorithm using a plug-in estimate for

the Poisson parameter. This algorithm is also implemented

as an R script (see the available User manual in the

Supplementary material).

Notably, it is advisable to use the whole available data,

rather than plug-in estimates, unless one of the situations

outlined above applies. The reason is that as a general guideline,

estimates should be based if possible on the full information

being available.

3.4. Estimating samplewise MOI

Once the population-level MOI parameter λ and the

haplotype frequencies ppp have been estimated as λ̂ and p̂pp, these

can be used as plug-in estimates to infer the true MOI m for

a sample xxx. In line with maximum-likelihood estimation, a

natural estimate m̂ is the value of m which maximizes that has

the highest probability given the observation xxx and the plug-in

estimates λ̂ and p̂pp. More precisely, the samplewise estimate m̂ of

MOI is

m̂ = argmax
m

P(MOI = m|xxx; λ̂, p̂pp), (25)

where P(MOI = m|xxx; λ̂, p̂pp) is defined in Samplewise MOI of

the Mathematical Appendix. The samplewise MOI estimates

are implemented in the R script available at https://github.

com/Maths-against-Malaria/MultiLociBiallelicModel.git. A

numerical example is found in the User manual.

3.5. Data application

As an application, we estimated MOI and haplotype

frequencies of malaria parasites associated with resistance to

sulfadoxine-pyrimethamine (SP) in Cameroon in 2001/2002

and 2004/2005. MOI was estimated to be intermediate at both

time points, and slightly decreased in 2004/2005. The estimated

MOI parameters were λ̂ = 0.9397 (95% CI: 0.7492, 1.1551)

for 2001/2002 and λ̂ = 0.8645 (95% CI: 0.6496, 1.0928)

for 2004/2005. This slight decrease is in accordance with the

downward trend in the number of reported cases in Cameroon

from 1992 to 2005, sustained by programs like the “Roll Back

Malaria” program [cf. (51)].

The estimates of haplotype frequencies are presented in

Table 3 (confidence intervals for the frequencies estimates are

omitted to improve readability). The drug sensitive wildtype

and those with single mutations decreased in frequency between

the two time points, whereas strongly resistant haplotypes with

triple mutations on dhfr and double mutations at dhps increased

in frequency. This is not surprising considering that SP drug

pressure was high during that time. Namely, chloroquine was

officially removed as first line therapy in Cameroon in 2002,

whereas amodiaquine and SP became first- and second-line

treatments [cf. (42)]. Although, the combination of artesunate

and amodiaquine became the official therapy for uncomplicated

P. falciparum malaria in 2004, it was not widely used until 2007

[cf. (42)]. In particular, the frequency of the highly resistant

haplotypes 51I/59R/108N/I164—S436/437G/K540/A581/A613

increased from 38 (95% CI: 31.27, 44.37%) to 46% (95%

CI: 39.28, 53.44%) (see Table 3), whereas the less resistant

haplotypes characterized by just twomutations in dhfr decreased

in frequency.

Although the ad-hoc frequency estimates given by the

relative unambiguous prevalence (see above) are close to

the MLE, some frequency estimates differ substantially. For

instance, the MLEs for the frequency of the highly resistant

haplotype 51I/59R/108N/I164—436A/A437/K540/A581/A613

at both time points are, respectively, 24.5% (95% CI: 18.98,

30.41%) and 25.2% (95% CI: 19.53, 30.93%), the corresponding

ad-hoc estimates are 19.7 and 20.9% (see Table 3). This is not

surprising because, this haplotype is likely to occur in mixed

infections with the predominant haplotype, which would be

disregarded by the ad-hoc estimates.

Obvious is the difference between frequency and prevalence

estimates. The frequencies of the highly resistant haplotype

51I/59R/108N/I164—S436/437G/K540/A581/A613 at both
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TABLE 3 Frequencies estimates of SP-resistant haplotypes from the Cameroonian data.

Haplotype Frequency ppp Prevalence ppp Cond. prevalence ppp Ad-hoc freq. ppp

Years Years Years Years

dhfr dhps 01/02 04/05 01/02 04/05 01/02 04/05 01/02 04/05

NCSI SAKAA 0.0190 0.00468 0.0290 0.0070 0.0168 0.0037 0.0204 0.0063

NCSI AAKAA 0.0604 0.00548 0.0905 0.0082 0.0521 0.0043 0.0476 0.0063

NCSI SGKAA 0.0178 0.00965 0.0272 0.0144 0.0151 0.0075 0.0136 0.0063

ICNI SGKAA 0.0164 < 10−12 0.0250 < 10−12 0.0194 < 10−12 0.0272 −−

NRNI SAKAA 0.0095 0.01025 0.0145 0.0152 0.0084 0.0084 0.0136 0.0127

NRNI AAKAA 0.0122 < 10−12 0.0188 < 10−12 0.0130 < 10−12 0.0136 −−

NRNI SGKAA 0.0475 0.02179 0.0717 0.0322 0.0583 0.0257 0.0612 0.0253

NRNI AGKAA 0.0134 0.00935 0.0205 0.0139 0.0124 0.0082 0.0204 0.0127

IRNI SAKAA 0.0271 0.04085 0.0413 0.0600 0.0387 0.0564 0.0340 0.0506

IRNI AAKAA 0.2447 0.25216 0.3372 0.3384 0.2493 0.2515 0.1973 0.2089

IRNI SGKAA 0.3792 0.46288 0.4921 0.5698 0.4325 0.5202 0.3741 0.4494

IRNI SAKAT 0.0265 0.00776 0.0404 0.0116 0.0230 0.0063 0.0204 0.0063

IRNI AGKAA 0.0606 0.12062 0.0909 0.1711 0.0867 0.1714 0.0884 0.1519

IRNI SGKAT 0.0165 < 10−12 0.0252 < 10−12 0.0198 < 10−12 0.0204 −−

The first column shows the amino acid sequence at codons 51, 59, 108, and 164 at the dhfr locus and the second column shows the amino acid sequence at codons 436, 437, 540, 581, and 613

at the dhps locus. A total of 50 and 36 haplotypes were estimated to have strictly positive frequency in 2001/2002 and 2004/2005, respectively. Only haplotypes with an estimated frequency

>0.01 in 2001/2002 or 2004/2005 are reported. The remaining columns show the MLE of the respective frequencies, the estimated prevalence, the estimated conditional prevalence, and

the ad-hoc estimate (relative unambiguous prevalence) for the haplotype frequencies.

Cond., Conditional; Freq., Frequency.

time points—38 and 46%—are substantially lower than the

prevalences, estimated to be 49 and 57%, respectively (see

Table 3). However, the estimates for the conditional prevalence

(which are not recommendable) are only slightly smaller than

the prevalence estimates and amount to 43 and 52%. Since MOI

is intermediate, the discrepancy is not expected to be too large.

The same is true for the other highly resistant haplotype

51I/59 R/108N/I164—436A/A437/K540/A581/ A613. The

frequency estimates are 24.5% (95% CI: 18.59, 30.07%)

and 25.2% (95% CI: 18.84, 30.95%), whereas the prevalence

estimates are 33.7 and 33.8%. AlthoughMOI is intermediate, the

discrepancy between the prevalence and conditional prevalence

estimates (24.9 and 25.2% at the two time points) are quite large

(cf. Table 3).

3.6. Performance of the estimator

Ideally an estimator is (i) unbiased, i.e., it is accurate and

(ii) precise, i.e., it has low variance. The minimal variance

of an unbiased estimator is given by the Cramér-Rao lower

bound. Typically, MLEs have good asymptotic properties. They

are asymptotically unbiased and efficient (they asymptotically

attain the minimal possible variance). Despite these desirable

asymptotic properties, the quality of MLEs has to be investigated

under finite sample sizes. If bias is small and the variance of

the estimator is close to the Cramér-Rao lower bound, one has

confidence that the estimator is “optimal.” The quality of an

estimator is measured by the mean squared error (MSE)

MSE(θ̂) = Var(θ̂)+ (Bias(θ̂))2, (26)

which is the sum of the estimators variance and squared bias.

Since, the MLE here has no closed solution, bias and

variance cannot be studied analytically. We therefore perform a

numerical simulation to study the estimator’s bias and variance.

3.6.1. Bias of the estimator

To compare bias across a range of different parameter values,

we consider a ‘dimensionless’ quantity, namely the relative bias

(14a) in percent, i.e., the bias of the estimator in percent of the

true value of the parameter.

3.6.1.1. Relative bias for haplotypes frequencies

estimates

The estimator is typically unbiased, with no noticeable effect

of sample size if the true haplotype distribution is symmetric

independently of the number of considered loci n, i.e., all

haplotypes are equally abundant in the pathogen population (see

Figure 2). This is intuitively expected, because the haplotypes are

interchangeable in this case. Deviations from the true frequency

distribution occur only due to random sampling. Although
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FIGURE 2

Bias of frequencies estimates—the symmetric case. Shown is the bias of the frequency estimates in % as a function of the mean MOI (i.e., for a

range of Poisson parameters). The symmetric haplotype frequency distributions (cf. Table 1) for n = 2 (A) and n = 5 (B) are assumed. In both

panels, only the bias for the first haplotype is shown (in the symmetric case, all haplotypes are equivalent and bias looks similarly). Colors

correspond to di�erent sample sizes.

FIGURE 3

Bias of frequencies estimates—the unbalanced case. Shown is the bias of the frequency estimates in % as a function of the mean MOI (i.e., for a

range of Poisson parameters). The skewed haplotype frequency distributions (cf. Table 1) for n = 2 (A,B) and n = 5 (C,D) are assumed. In both

cases only the bias for the predominant haplotype and one underrepresented haplotype are shown (all underrepresented haplotypes are

equivalent and bias looks similarly). Colors correspond to di�erent sample sizes.

random effects are more pronounced for small sample size and

larger n (also seen from the variation in Figure 2), in terms of

bias this effect averages out. However, it will affect the MLE’s

variance (see below).

Also, if the underlying haplotype frequency distribution is

skewed, the estimator has low bias (see Figure 3). Bias (in relative

terms) is highest for haplotypes with low frequencies. These

tend to be underrepresented in datasets. On the contrary, the

frequencies of predominant haplotypes will be overestimated, as

these tend to be over-represented in datasets. This is particularly

true for highMOI (ψ > 1.8) and small sample size. Bias vanishes

with increasing sample size. The estimates can be considered

almost unbiased for N ≥ 150. Note that the bias of rare

haplotypes will only be large in relative terms, not in absolute

terms. In practice, large sample size is required to detect rare

haplotypes. Bias tends to be larger, if a larger number of loci

is considered (compare Figures 3A,B with Figures 3C,D). The

reason is that the number of possible haplotypes is increasing

geometrically with larger n and in the numerical examples a large

number of haplotypes with low frequencies are assumed.

The number of possible haplotypes increases geometrically

with the number of considered loci. For n = 10, 1,024

possible haplotypes exist. In practice only a fraction of the

possible haplotypes circulate in the population. Figures 4, 5
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FIGURE 4

Bias of frequencies estimates—Kenya data 2005. Shown is the bias of the frequency estimates in % as a function of the mean MOI (i.e., for a

range of Poisson parameters). The haplotype frequency distributions (cf. Table 2) for n = 10 are assumed. The bias for the predominant

haplotype and few underrepresented haplotype are shown (A–D), the corresponding haplotype frequencies are shown at the top of the panels.

Colors correspond to di�erent sample sizes.

FIGURE 5

Bias of frequencies estimates—Kenya data 2010. Shown is the bias of the frequency estimates in % as a function of the mean MOI (i.e., for a

range of Poisson parameters). The haplotype frequency distributions (cf. Table 2) for n = 10 are assumed. The bias for the predominant

haplotype and few underrepresented haplotype are shown (A–D), the corresponding haplotype frequencies are shown at the top of the panels.

Colors correspond to di�erent sample sizes.

show the bias of haplotype frequencies assuming the frequency

distributions of malaria haplotypes estimated in Kenya. These

are two rather unbalanced frequency distributions. Also in

these cases, the frequency estimates have little bias that

vanishes with increasing sample size. Again the frequencies of

predominant haplotypes tend to be overestimated, while those

of rare haplotypes tend to be underestimated. Bias increases

with increasing MOI. The reason is that super-infections are

common, and rare haplotypes will be unlikely to occur in single

infections. However, they will likely occur together in mixed
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FIGURE 6

Bias of MOI estimates. Shown is the bias of the mean MOI estimates ψ in % as a function of the true mean MOI (i.e., for a range of Poisson

parameters). Symmetric haplotype frequency distributions (Table 1) are assumed for n = 2 (A) and n = 5 (B), whereas skewed distributions are

assumed in (C,D), for n = 2 and n = 5, respectively. Colors correspond to di�erent sample sizes.

infections with predominant types, resulting in ambiguous

information. As a consequence, the estimator yields positive

frequency estimates for haplotypes that are not circulating in the

population, and thereby understimates those rare haplotype that

are actually present. (Note that in practice, due to ambiguity, it is

typically impossible to determine which haplotypes are actually

circulating in the population.)

3.6.1.2. Relative bias for MOI parameter estimates

Rather than evaluating the bias of the MOI parameter λ,

bias is evaluated in term of the empirically more relevant mean

MOI ψ . For a given n, the estimator has relatively little bias

irrespective of the frequency distribution and true value of

λ. In general, the estimator overestimates the true parameter.

The reason is that λ is positive, and can be overestimated but

not underestimated by arbitrary amounts. In general MLEs

are sensitive to outliers. Here, particularly for large λ, rare

over-representations of multiple infections in the data, lead to

substantial overestimates. This is more likely to occur for small

sample sizes and large n. Consequently, bias is increasing as a

function of λ and decreasing as a function of sample size N.

Typically, bias is decreasing for larger n, because the amount

of information contained in a dataset increases. However, also

sample size has to be adequate for larger n to appropriately

represent the haplotype distribution. Not surprisingly, bias is

higher for more skewed frequency distributions. This is because,

rare haplotypes will be underrepresented and single infections

with rare haplotypes are unlikely to be observed in a dataset,

particularly for largeψ (see Figures 6, 7). In general, bias is small

for samples of size N ≥ 150.

3.6.2. Variance of the estimator

The estimator’s variance was assessed in terms of the

coefficient of variation (14b). This is a dimensionless quantity,

which allows comparisons across a range of parameter values.

As expected the estimator’s variance decreases with

increasing sample size N, because datasets reflect the underlying

population more accurately, leading to less fluctuations between

different realizations of datasets. The variance of the MOI

estimator is relatively small (see Figures 8, 9). Not surprisingly,

it increases with n (compare Figures 8A,C with Figures 8B,D

and see Figure 9). The number of haplotypes increases with

n, and hence, less information is available for each single

haplotype. Thus, for larger n, due to the curse of dimensionality,

the underlying population is less adequately represented in a

dataset of given sample size N.

The variance of the frequency estimates has similar

properties (not shown).

3.6.3. Prevalence and relative prevalence

Sometimes the prevalence of haplotypes is empirically more

important than their frequencies. For example, in the case

of drug resistance, clinically it is more relevant to assess the

probability that a patient is infected with a resistant haplotype,
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FIGURE 7

Bias of MOI estimates. As in Figure 6 but for n = 10 for the haplotype estimated for antimalarial drug resistance in Kenya (see Table 2) in 2005 (A)

and 2010 (B).

FIGURE 8

Variance of MOI estimates. Shown is the variance of the mean MOI estimates ψ in % as a function of the true mean MOI (i.e., for a range of

Poisson parameters). The symmetric haplotype frequency distribution is assumed respectively for n = 2 and n = 5 (A,B) as well as the skewed

haplotype frequency distributions (C,D) (cf. Table 1). Colors correspond to di�erent sample sizes.

rather than its frequency in the parasite population. Due to

multiple infections, the absence and presence of haplotypes

in infections is in general ambiguous. Hence, prevalence is

an unobservable quantity (unobservable prevalence). However,

estimates for (unobservable) prevalence are readily derived

as plug-in estimates from the MLE and (16c). In fact, these

estimates are very accurate (Figures 10–13), except if haplotypes

are rare and sample size is small, in which case the prevalence is

underestimated (cf. Figures 12B, 13B).

In practice, prevalence is often estimated as the conditional

prevalence (21). This quantity substantially underestimates the

(unobservable) prevalence (Figures 10–13). Hence, it should

not be used as a proxy for prevalence. However, although

the conditional prevalence is not recommendable, it can be

accurately recaptured from the MLE and (21).

In the absence of a statistical model, haplotype frequencies

can be estimated by normalizing the conditional prevalences

of the haplotypes (relative unambiguous prevalence) (22b).

These are undesirable ad-hoc estimates, because they are biased

(Figures 10–13). Particularly unfortunate is that bias depends on

MOI. The larger themeanMOI, the larger the bias. However, it is

rather unpredictable whether a particular haplotype’s frequency

is over- or underestimated (Figures 10–13). This depends on

the true haplotype frequencies and MOI. The relative bias can

be accurately obtained as a plug-in estimate from the MLE

and (22b).
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FIGURE 9

Variance of MOI estimates. Shown is the variance of the mean MOI estimates ψ in % as a function of the true mean MOI (i.e., for a range of

Poisson parameters). The haplotype frequency distributions for n = 10 are assumed, respectively, for the year 2005 (A) and 2010 (B) (cf. Table 2).

Colors correspond to di�erent sample sizes.

FIGURE 10

Prevalence estimates—the symmetric case. Shown is the prevalence of the haplotypes as a function of the mean MOI (i.e., for a range of Poisson

parameters). The symmetric haplotype frequency distributions (cf. Table 1) for n = 2 (A,B) and n = 5 (C,D) are assumed. In both cases of n only

the prevalence estimates for the first haplotype are shown for a small (N = 50) and big (N = 500) sample size (in the symmetric case all

haplotypes are equivalent and prevalence looks similarly). Colors correspond to di�erent prevalence models. The solid line show the true

prevalence and the dashed line the estimates.

4. Discussion

Public health strategies are increasingly relying on

genomic/molecular surveillance to monitor infectious diseases

[cf. (2, 3)]. This is particularly true for malaria, where

molecular surveillance is a standard approach to monitor

pathogen variants, which are associated with drug resistance,

or jeopardize reliable diagnostics (e.g., P. falciparum variants

with deletions in the HRP2/3 genes, which can lead to false-

negative rapid diagnostic test results [cf. (52)]. Moreover,

patterns of transmission, disease exposure, or the evolutionary

genetics can be ascertained by studying genomic/molecular data

[cf. (53–55)].

A usual problem in molecular surveillance in the context

of malaria is the presence of several genetically distinct parasite

haplotypes within an infection—this is particularly common

in areas of high transmission [cf. (41, 54)]. Unfortunately,

in such cases, usual molecular methods provide only

ambiguous information concerning the haplotypes present

in infections [cf. (15)]. Namely, molecular information is

typically unphased. In the case of, e.g., antimalarial drug

resistance, precise estimates of the frequency of particular

haplotypes and the likelihood that they are observed in an

infection (prevalence) are required. This requires sophisticated

statistical models that resolve the underlying ambiguity in

the observations.
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FIGURE 11

Prevalence estimates—the unbalanced case. Shown is the prevalence of the predominant haplotypes as a function of the mean MOI (i.e., for a

range of Poisson parameters). The skewed haplotype frequency distributions (cf. Table 1) for n = 2 (A,B) and n = 5 (C,D) are assumed. In both

cases of n only the prevalence estimates are shown for a small (N = 50) and big (N = 500) sample size. Colors correspond to di�erent

prevalence models. The solid lines show the true prevalence and the dashed lines the estimates.

FIGURE 12

Prevalence estimates—the unbalanced case: Shown is the prevalence of the underrepresented haplotypes as a function of the mean MOI (i.e.,

for a range of Poisson parameters). The skewed haplotype frequency distributions (cf. Table 1) for n = 2 (A,B) and n = 5 (C,D) are assumed. In

both cases of n only the prevalence of one of the underrepresented haplotypes estimates are shown for a small (N = 50) and big (N = 500)

sample size (all underrepresented haplotypes are equivalent and prevalence looks similarly). Colors correspond to di�erent prevalence models.

The solid lines show the true prevalence and the dashed lines the estimates.

Here, we introduced a statistical model to estimate the

frequencies and prevalence of pathogen haplotypes from

molecular data. More precisely, hosts can be super-infected

several times with the same or different pathogenic variants.

The number of super-infections is referred to as multiplicity

of infection (MOI). Concerning the genetic architecture
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FIGURE 13

Prevalence estimates—the unbalanced case: Shown is the prevalence of the dominant and one underrepresented haplotype for the years 2005

(A,B) and 2010 (C,D) as a function of the mean MOI (i.e., for a range of Poisson parameters). The haplotype frequency distributions (cf. Table 2)

for n = 10 are assumed. The prevalence estimates are shown for N = 50. Colors correspond to di�erent prevalence models. The solid lines

show the true prevalence and the dashed lines the estimates.

of pathogen variants, we assumed the pathogen to be

haploid, and haplotypes to be determined by n biallelic loci.

Typical applications are malaria parasites associated with drug

resistance, where loci correspond to specific codons in one or

more genes, e.g., codons 51, 59, 108, 164 in the dhfr locus and

codons 436, 437, 540, 581, 613 in the dhps locus of P. falciparum

associated with resistance to sulfadoxine-pyrimethamine (SP).

The method is intended to derive frequencies of haplotypes

which are “aggregates,” e.g., certain drug resistant haplotypes.

It is not intended to characterize parasites at the individual

level. Hence, the number of loci (n) should not be so large, that

each haplotype occurs only once in the overall sample. In our

simulations, we used up to n = 10. However, the method is not

limited to 10 loci. Importantly, n is the number of loci, which

are found polymporphic in the data, as monomorphic loci can

be dropped.

We suggested a maximum-likelihood estimation of

haplotype frequencies and the distribution of MOI, assuming

an underlying conditional Poisson distribution. As in (28), we

employ the expectation-maximization (EM) algorithm to derive

the maximum-likelihood estimate (MLE). However, Li et al. (28)

provided only a general form, which can be derived numerically

by brute force. We derived a more explicit version that allows

an efficient implementation, which is provided as an easy-to-use

R script. Importantly, based on the statistical framework, we

provided explicit expressions for prevalence.

Based on this, the MLE can be used as a plug-in statistic,

to provide estimates for prevalence. For instance, in the

context of antimalarial drug resistance, the prevalence of drug-

resistant haplotypes is a more relevant quantity regarding

disease outcomes. The frequency of a haplotype is its relative

abundance in the pathogen population, whereas prevalence

is the probability that the haplotype occurs in an infection.

Estimating prevalence is notoriously difficult. If transmission is

low, i.e., the average MOI is small, prevalence and frequency

almost coincide. However, if transmission is high (large average

MOI), prevalence can be substantially higher than frequency.

If MOI is high, several pathogen haplotypes commonly

occur in infections. However, if molecular methods provide

only unphased information, they do not allow to directly

observe haplotypes in such infections [cf. (16)]. Therefore,

a statistical model is required to resolve this ambiguity.

Ad-hoc methods to estimate prevalence do not require an

explicit statistical model. However, they must necessarily be

based only on unambiguous information. We investigated

the deviations of conditional prevalence (conditioned on

unambiguous information) and prevalence and concluded

that ad-hoc approximations to prevalence might substantially

underestimate the true prevalence. Indeed it might be highly

problematic for treatment policies if prevalence of drug-resistant

pathogen variants are underestimated.

Here, we applied the method to an empirical dataset of

mutations associated with SP resistance from Cameroon in the

years 2001/2002 and 2004/2005. Furthermore, we investigated

the performance of the MLE in terms of bias and variance. In

general, the estimates of the haplotype frequencies have little

Frontiers in Epidemiology 19 frontiersin.org

https://doi.org/10.3389/fepid.2022.943625
https://www.frontiersin.org/journals/epidemiology
https://www.frontiersin.org


Tsoungui Obama and Schneider 10.3389/fepid.2022.943625

bias. Bias tends to be higher for higher average MOI. Moreover,

in relative terms, bias is higher for rare haplotypes. The MOI

parameter has a higher bias than the frequency estimates,

particularly if average MOI is high. However, bias decreases

quickly with sample size. Also, the variance of the estimator,

in terms of the coefficient of variation tends to be small. Due

to the good performance of the estimator, also the estimates of

prevalence are reliable.

Although the method performs well, it has certain

limitations. So far it (i) is restricted to SNP data (or biallelic

data); (ii) does not account for missing information; (iii) does

not incorporate errors in the data (due to the molecular methods

used to generate the data); (iv) does not take relatedness

between pathogen variants and co-transmissions into account.

The first three limitations are however justified by the curse

of dimensionality. Assuming n loci with three instead of two

alleles would result in 3n rather than 2n possible haplotypes.

For n = 5 loci this amounts to 243 rather than 32 haplotypes.

Importantly, the biallelic genetic architecture is justified by the

popularity of SNP data. In the case of malaria, sample sizes

of N = 50 to N = 500 are realistic. With n = 10 loci,

1,024 haplotypes are possible. Hence, the number of parameters

would by far exceed the sample size. Importantly, in practice,

not all of the 1,024 possible haplotypes are compatible with the

data. Hence, only a subset of haplotypes is relevant, rendering

a realistic sample size to be adequate. However, when aiming

to incorporate missing information and errors, all possible

haplotypes have to be considered in a statistical model, with the

majority of them being irrelevant. An exact statistical model will

be hopelessly over-parameterized if the number of considered

loci is large. Therefore, approximate models would need to be

considered, which disregard infrequent haplotypes. The fourth

limitation deserves particular attention. With genomic data

becoming more available in molecular surveillance, methods

have been developed to account for relatedness of pathogen

variants within infections [cf. (35–40)]. Genetic relatedness

is informative on transmission dynamics, i.e., knowledge of

whether pathogen variants co-occurring in a single infection are

identical by state or identical by descent, or whether they were

co-transmitted together rather than sequentially is informative

on possible routes of transmission (35, 40). Such methods

however require genomic information or at least larger SNP

barcodes. Although genomic sequencing is becoming more

affordable, obtaining such data requires efforts and resources,

which are still not feasible in many settings. Note that in vector-

borne diseases like malaria, genetic relatedness is only partially

informative on transmission dynamics. Namely, it is unclear

whether relatedness is caused by some mosquitoes infecting

many hosts, or whether mosquitoes get infected by many hosts.

Particularly, the admixture of the vector and host populations

influence relatedness of the pathogen within the hosts and

vectors. To an extreme, if the disease is transmitted mainly

within households, i.e., the vectors are not well mixed with the

host population, high relatedness of pathogen variants within

infections is expected, independently of the overall transmission

intensity. On the other hand, if infections within households

are uncommon, less relatedness is expected. Hence, relatedness

might be more informative on the routes of transmission than

on transmission intensities themselves. In the latter case, the

proposed approach to estimate MOI seems preferable. Some

methods also estimate the relative abundance of haplotypes

in an infection (40). Such information is important if there

is evidence that the pathogenesis of the disease depends on

the interactions of pathogen variants within the infection—

especially, if the emphasis is on the clinical manifestation of the

disease rather than on the pathogen population level. Notably, all

methods that consider relatedness have their limitations. Since

(due to the curse of dimensionality) they are not haplotype

based, typically independence of genetic markers is assumed. For

applications such as drug resistance in malaria, this assumption

is not justified, such that a haplotype based approach as proposed

here seems more appropriate. In vector-borne diseases, one

of the main advantage of the proposed method, is that it

does not require an explicit model of vector-host dynamics.

Incorporating relatedness, tailored to the characteristics of the

disease, would require imposing suchmodel to be accurate. This,

however, would require several assumptions, which might yet be

poorly justified by empirical evidence. In case co-transmission

of pathogen variants are important, it would be interesting to

ascertain how well the proposed method performs. However,

such assessment is notoriously difficult, because a true model for

transmission needs to be specified based on empirical evidence.

In conclusion, we provided a method to estimate haplotype

frequencies and prevalences alongside the distribution of MOI

from malaria genetic data. The estimator shows convenient

statistical properties and can be efficiently implemented. The

estimator is implemented in an easy-to-use R script available

on Github at https://github.com/Maths-against-Malaria/

MultiLociBiallelicModel.git.
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