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A primary use of malaria parasite genomics is identifying highly related infections to
quantify epidemiological, spatial, or temporal factors associated with patterns of
transmission. For example, spatial clustering of highly related parasites can indicate
foci of transmission and temporal differences in relatedness can serve as evidence
for changes in transmission over time. However, for infections in settings of
moderate to high endemicity, understanding patterns of relatedness is
compromised by complex infections, overall high forces of infection, and a highly
diverse parasite population. It is not clear how much these factors limit the utility of
using genomic data to better understand transmission in these settings. In
particular, further investigation is required to determine which patterns of
relatedness we expect to see with high quality, densely sampled genomic data in a
high transmission setting and how these observations change under different study
designs, missingness, and biases in sample collection. Here we investigate two
identity-by-state measures of relatedness and apply them to amplicon deep
sequencing data collected as part of a longitudinal cohort in Western Kenya that
has previously been analysed to identify individual-factors associated with sharing
parasites with infected mosquitoes. With these data we use permutation tests, to
evaluate several hypotheses about spatiotemporal patterns of relatedness compared
to a null distribution. We observe evidence of temporal structure, but not of fine-
scale spatial structure in the cohort data. To explore factors associated with the
lack of spatial structure in these data, we construct a series of simplified simulation
scenarios using an agent based model calibrated to entomological, epidemiological
and genomic data from this cohort study to investigate whether the lack of spatial
structure observed in the cohort could be due to inherent power limitations of this
analytical method. We further investigate how our hypothesis testing behaves under
different sampling schemes, levels of completely random and systematic
missingness, and different transmission intensities.
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Introduction

Plasmodium falciparum genetic data can complement existing epidemiological surveillance

strategies to inform transmission dynamics and patterns. For example, malaria genomics has

been used to understand changes in transmission intensity (1) including following the

implementation of interventions (2–4), to monitor the emergence and spread of drug (5–7)
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and diagnostic resistance(8, 9), and to identify patterns of

connectivity between parasite populations impacting control efforts

(10–13). Aside from genomic applications associated with

phenotypic signatures in the parasite populations, such as drug or

diagnostic resistance, many applications of malaria genomics rely

on identifying levels of parasite relatedness (14, 15). More closely

related parasites are suggestive of infections that are closer together

in a transmission chain (16, 17). This information is particularly

relevant for investigating spatial and temporal patterns of

transmission or possible introduction events of parasites into

populations.

Genetic relatedness is a measure of shared ancestry, and is often

estimated using the concepts of identity by state (IBS) or identity by

descent (IBD). Two genomes are identical by state at a particular

locus if they have identical genetic sequences. Two genomes are

identical by descent (IBD) at this locus if they are IBS and the

segment of DNA was inherited from a common ancestor without

recombination (16, 18). The overall relatedness between two

genomes can be defined as the proportion of loci that are identical

by state or by descent, with closely related genomes generally

having a higher proportion of identical loci both by state and by

descent (19, 20). While IBS metrics are straightforward to calculate

using observed sequences, estimating IBD is complicated by the

need to account for the possibility that these observed sequences

are identical by chance rather than inheritance (16–19).

Estimating the relatedness of P. falciparum parasites in two

infections using IBD metrics requires minimising the potential role

of chance in observing sequences with identical genotypes. To

minimise this possibility with a level of precision that can be used

to understand transmission dynamics and patterns, multiple long

segments of the P. falciparum genome are desirable for analysis

(21–24). Currently, however, the most widely used sequencing

platforms limit the size of DNA fragments that can be genotyped

(25) and are further limited by the quality of DNA to be extracted,

with longer reads requiring higher quality samples. Estimating IBD

with shorter reads requires phasing, i.e., stitching together shorter

genotyped segments into contiguous sequences. However, phasing

methods for short-read sequences have not been validated for

infections consisting of a high number of genetically distinct

parasite clones (greater than 3 distinct clones) since it is difficult to

identify which segments come from the same clone, and the

efficacy of these methods is dependent on the within-host

frequency of these clones (26). Therefore, IBD based metrics of

relatedness are not well suited to settings of moderate to high

malaria transmission where highly complex infections are the

norm and longer reads cannot be consistently obtained (27–32).

It is more difficult to determine common ancestry from measures

of identity by state, however, statistical methods are frequently used

to attempt to indirectly account for the role of randomness in

acquiring identical genetic sequences alongside IBS measures (10,

12, 33–35). In the context of using genetic relatedness to determine

the level of parasite connectivity between two populations (often

across two locations or two timepoints), these statistical methods

often aim to test the null hypothesis that there is no clear pattern

of connectivity between populations. This is done by repeatedly

permuting the labels of the observations (i.e., which population

they belonged to) and recomputing the IBS similarity metric,
Frontiers in Epidemiology 02
producing a distribution of this statistic under the null hypothesis

of these populations being well mixed (12). The determination of

whether or not connectivity exists between two populations is

usually made on the basis of how extreme the observed relatedness

is relative to this null distribution. This method quantifies the

strength of evidence for patterns of connectivity. However, when

the null hypothesis is not rejected, it is not clear how much this

reflects a true lack of effect and how much this is due to

limitations of the study design, sample sizes, or relatedness metrics.

Less work has been done to better understand the statistical power

of these analyses and in particular the possible impact of missing

or unsampled infections on estimates of relatedness using IBS-

based measures of similarity.

Measures of relatedness, particularly when applied to parasite

connectivity, form the core of many applications for integrating

genomic data into disease surveillance. Understanding how

measures of genetic relatedness behave under different sampling

and transmission scenarios is an important component translating

genomic data into information about transmission dynamics and

patterns that can, in turn, guide optimal malaria control strategies.

This work adds to the current understanding by exploring

observed patterns of parasite population structure in a more

densely sampled cohort than has been previously used and

subsequently using a simple set of simulated scenarios to

understand how measures of relatedness are impacted under

different sampling, and transmission scenarios. We first use data

from a longitudinal cohort in a moderate transmission setting in

Western Kenya (36) to investigate the spatiotemporal patterns of

population structure that can be seen with densely sampled

parasite genomic data. We then calibrate an simple agent-based

model of malaria transmission with this data and investigate the

power using of genomic data to detect spatially-structured patterns

of transmission under different sampling schemes, levels of missing

data, and transmission intensities in a similar setting. We consider

cases where data is missing completely at random, by symptom

status to simulate passive case detection, and by complexity

infection to simulate other potential biases in sampling. We use

two pairwise metrics of genetic similarity, one based on proportion

of genetic material shared and one based on the probability of the

observed genotype sharing occurring by chance.
Methods

Cohort data

A longitudinal cohort of 38 households in Bungoma County,

Kenya, a region of high malaria transmission (37, 38) was followed

from June 2017 to July 2018. All household members 1 year of age

and older were eligible for enrollment with a total of 268

individuals in the cohort. Households were in one of three nearby

villages: Kinesamo (n = 80), Maruti (n = 73), Sitabicha (n = 86). On

average, households in Kinesamo are 11 km away from those in

Sitabicha and 5 km away from those in Maruti, and households in

Maruti and Sitabicha are 7 km apart. Dried blood spots (DBS),

demographic and behavioural information including questions

about recent travel were collected from participants monthly. In
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https://doi.org/10.3389/fepid.2023.1058871
https://www.frontiersin.org/journals/epidemiology
https://www.frontiersin.org/


Arambepola et al. 10.3389/fepid.2023.1058871
addition to regular monthly sampling, symptomatic visits were

conducted with participants at the time of reported symptoms

consistent with malaria infection where the same information and

DBS were collected (see Supplementary Figure S1 for sampling

scheme). Treatment was offered for individuals with a positive

RDT result. Further details of the sampling and laboratory

procedures were previously published (36, 39). Genomic DNA was

extracted from the DBS and tested for P. falciparum with a duplex

TaqMan real-time PCR targeting the P. falciparum Pfr364 motif

and the human B-tubulin gene.

As previously reported in Sumner et al. (2021), a total of 902

asymptomatic infections were identified over 2,312 monthly visits

and a total of 137 symptomatic infections were identified across

501 symptomatic visits. Those positive for P. falciparum by

quantitative real-time PCR were sequenced at the genes encoding

the apical membrane antigen-1 (Pfama1) and the circumsporozoite

protein (Pfcsp) using an Illumina MiSeq platform. Further details

on PCR, sequencing, read filtering, and haplotype calling can be

found in (39). The study was approved by the ethical review

boards of Moi University (2017/36), Duke University

(Pro00082000), and the University of North Carolina at Chapel

Hill (19–1273). As reported in Sumner et al. (2021), multiplicity of

infection (MOI) defined as the number of distinct Pfcsp or Pfama1

haplotypes (each locus is considered separately due to the inability

to phase these two segments in polyclonal infections) in each

infection was generally high, but similar, across the three villages

in this cohort (see Supplementary Figure S2). The overall

haplotypic diversity across the infections sampled in the cohort

was also high with 209 unique haplotypes identified at the Pfama1

locus and 155 unique haplotypes identified at the Pfcsp locus after

filtering (procedure and similar results described in Sumner et al.

2021). The frequency distribution of haplotypes at each of these

loci is shown in Supplementary Figure S3.
Metrics of genetic relatedness

The genome-wide probability of two parasites being identical by

descent (IBD) is the gold standard for measuring genetic relatedness

of infections since it is the result of inheritance from a common

ancestor. However, this metric requires genotyping data from

several longer segments of parasite DNA to be accurately

calculated. Oftentimes, particularly when smaller segments are

sequenced, other measures of IBS-based similarity are used to

approximate relatedness, such as the count or proportion of shared

alleles between infections. Hypothesis tests for evaluating the

strength of evidence for certain hypotheses are particularly useful

when using IBS-based metrics, given the possibility of sharing

genetic material by chance. When evaluating the level of structure

across populations, permutation tests can be used as described below.

First, we propose the following two metrics to estimate the

observed genetic similarity and approximate relatedness across

pairs of infections. To define the first measure, we first define the

asymmetric function of two infections, r, as the proportion of
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haplotypes in the first infection that are also found in the second,

r infection 1; infection 2ð Þ
¼ number of haplotypes that occur in both infections

number of haplotypes in infection 1
:

(1)

We can then define the symmetric measure r as the average in

both directions,

r infection 1; infection 2ð Þ ¼ 1
2
ðr infection 1; infection 2ð Þ

þ r infection 2; infection 1ð ÞÞ: (2)

This metric encodes the expectation that more related infections

are more likely to have haplotypes in common while adjusting for the

fact that infections with a higher number of clones have more

chances to share haplotypes with other infections. The estimate, r,

produces values between 0 and 1 with values closer to 1 indicating

higher possible levels of relatedness between infections.

This approximation of relatedness is similar to the Jaccard IBS

metric (40), which in this case, would be defined as the number of

haplotypes in common divided by the number of distinct

haplotypes across both samples. The two metrics generally produce

similar results but the proposed metric, r, is higher when the set of

haplotypes in one sample is entirely or almost entirely contained in

the set of haplotypes in the other (see Supplementary Material for

more detail).

The second metric, d, is derived by considering the likelihood

that different numbers of shared haplotypes would have occurred

in a situation where haplotypes in infections were drawn randomly

from the general parasite population. In more detail, for infections

1 and 2 with MOI values m1 and m2 that share k haplotypes, the

metric is defined as the probability that sets of haplotypes of size

m1 and m2 drawn randomly from all observed haplotypes would

share at least k haplotypes. The probability of sharing exactly k

haplotypes can be written as

P sharing exactly k out of m1; m2ð Þ

¼ m1

k

� � m1 þm2

m2 � k

� �
=

m1 þm2

m2

� �
(3)

and therefore the probability of sharing at least k can be written as

d infection 1; infection 2ð Þ

¼
Xmin m1;m2ð Þ

i¼k
P sharing exactly i out of m1;m2ð Þ

(4)

A low probability of sharing a particular set of haplotypes by

chance can be interpreted as some evidence of relatedness. This is

a measure of differentiation; low values are more likely to be

associated with highly related pairs. This measure also gives

different values for the comparison of, for example, a pair of

monoclonal infections with the same haplotype and a pair of

infections with an MOI of 2 with the same two haplotypes. The

latter will have a lower value, suggesting less differentiation and
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higher relatedness. This represents the fact that even for a fixed

proportion of shared haplotypes, the greater the number of shared

haplotypes between two infections, the more likely the two

infections are closely related by a transmission event. This is unlike

the first metric, r, or the Jaccard IBS metric, which, in the two

cases described above would estimate the same level of relatedness

regardless of the absolute number of shared haplotypes.

To obtain expected distributions of, r, and d, under a null

hypothesis of no clear pattern of connectivity between two parasite

populations, we randomly permute the population labels (labels

can be based on location of origin for the sample, or based on

time of sampling) for each infection, and use these permuted labels

to estimate the level of structure across these populations. The

method for measuring structure across populations depends on the

particular question of interest and is detailed below for spatial

structure (based on locations of sampling) and temporal structure

(based on timing of sampling).
Population structure by village

If transmission is more likely between individuals in the same

village, we would expect to see pairs of infections sampled in the

same village to be more related on average than pairs of infections

from different villages. We compute the difference between average

within and average between village pairwise relatedness and call

this the spatial structure metric. For village j we define the spatial

structure as:

spatial structure jð Þ ¼ 2

Nj Nj � 1
� � X

k;l [village j k<l
r in fk; in flð Þ

� 1
NjN�j

X
k[village j; l�village j

r in fk; in flð Þ

(5)

where Nj;N�j are the number of observations within and outside

village j respectively. A spatial structure value of 0 would suggest

that on average an infection in village j is as related to other

infections within village j as it is to infections outside village j, in

other words that there is a high level of parasite relatedness and

therefore connectivity between village j and other villages. On the

other hand, if there is lower connectivity across villages we would

expect the spatial structure value to be positive, with a larger value

suggesting lower relatedness and therefore lower connectivity. The

spatial structure metric was calculated for each of the three villages

in the cohort study: Kinesamo, Maruti, and Sitabicha. Similarly, we

defined the spatial differentiation metric with the same formula as

above, replacing the metric r with the differentiation metric d. We

would expect spatial differentiation to be negative where there is

high relatedness between parasites across villages and a high level

of connectivity across villages.

A permutation test was used to evaluate the strength of this

evidence for village-level structure. This was done by randomly

permuting the village labels for each individual and recalculating

the spatial structure metric for each village. This generates an

approximate distribution of this test statistic (spatial structure) for
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each village under the null hypothesis that the village an individual

lives in has no effect on how related their infection is to any other

infection, which would suggest a high level of connectivity between

villages. This hypothesis can then be tested by comparing the

observed value to this distribution, with the null hypothesis being

rejected if it is above a certain percentile in the distribution (such

as the 95th percentile). This was repeated for the spatial

differentiation metric.
Structure over time

To investigate whether infections that occurred closer in

time were more genetically similar, a linear regression was

run on the similarity of each pair of infections

r infection 1; infection 2ð Þ against the absolute number of days

between samples being taken. Again, a permutation test was used

to test whether the resulting relationship was sufficient evidence to

reject a null hypothesis that similarity between infections was

unrelated to when they were sampled. In this instance, the dates

that the samples were taken were permuted and the linear

regression was refit. This produced a null distribution of

associations between genetic similarity and time of sampling

against which the observed association could be compared. This

procedure was then repeated for the metric of differentiation, d.
Structure between the start and end of the
dry season

As an extension to measuring structure over time, we explicitly

considered differences by season to identify if there was higher

similarity among infections that occurred near the end of the first

rainy season (at the start of high transmission) of the study period

and beginning of the dry season (from August 1–September 30,

2017) and among infections that occurred at the end of the dry

season and beginning of the second rainy season (from March 1–

April 30, 2018). If temporal structure exists in general, then we

would expect this to be the case in any two time periods separated

by many months, however this effect may be larger for these

specific time periods as many clones may not persist through the

reduction in transmission observed over the dry season in this

cohort (36). Here we computed temporal similarity and temporal

differentiation metrics in an analogous way to the spatial metrics

defined above, calculating the difference in average pairwise

similarity in infections in the same time period and in different

time periods. Distributions under the null hypothesis of no

temporal structure over these time periods were then obtained by

permuting which time period each genotyped infection was in and

then recalculating the test statistics.
Agent based simulation

A simulation model was developed to investigate the impact of

study design, sampling schemes, sample sizes, and missing data on

the ability to detect population structure under some simplified
frontiersin.org
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scenarios. Full details of this model, and the calibration to the cohort

based data can be found in (41) and the Supplementary Materials.

Briefly, individual-based model of humans (n = 200) and female

Anopheles mosquitoes (stable population of 30,000) was

constructed to simulate malaria transmission within our study

population. To recapitulate the genetic diversity within and

between human infections, as well as some of the transmission

dynamics observed in the cohort data, we explicitly simulated

infections at the individual haplotype level for a year (365 days)

which is roughly the length of the cohort follow up period. We

calibrated the model to the cohort data using mosquito and

human multiplicity of infection (MOI), and estimates of annual

entomological inoculation rate (EIR) (number of infectious bites

per person, per year) in nearby areas of western Kenya (42, 43).

All genetic data, including estimates of MOI, was calibrated using

data from the Pfcsp locus.

In order to explore spatial dynamics and clustering under

simplified scenarios, the human and mosquito population were

split equally into two locations. A proportion (between 0.1 and

0.5) of the population selected at random in each location was

eligible to travel for the duration of the simulation, the remainder

of the population remained stationary. Travel was only modelled

between the two locations in the simulation in order to avoid

measuring potential effects of importation on population structure.

Mosquitoes did not move between locations, and mosquitoes could

only bite people within their designated location. Initially, the

human and mosquito populations in each location did not share

any haplotypes, however, a burn-in period of 357 days in the

simulation allowed some haplotypes to migrate between locations

before sampling began. A total of 25 replicate simulations were run

for each human travel scenario.

In order to account for the impact of transmission intensity, and

haplotypic diversity within infections on various measures of

relatedness we also altered some parameters to produce simulation

scenarios with lower transmission than the cohort. The

distributions of EIR, within-host haplotypic diversity, i.e.,

mosquito, and human MOI for the low transmission simulations

are lower than for the high transmission scenarios (see

Supplementary Figure S6).
Effect of structured missing data

We investigated the effect that structured and unstructured

missingness had on the evidence for spatial structure in the

relatedness or differentiation of pairs of infections in the simulated

data. Given that the majority of studies are likely to sample fewer

infections than the cohort, we considered a range of ways that

individuals would be subsampled (relative to our sampling). In

particular, we considered infections being missed at random in

four ways: (1) completely at random (MCAR), (2) missing all

asymptomatic infections and subsampling individuals who were

symptomatic (to simulate passive surveillance), and differentially by

the MOI value with either (3) only if the individual had above

median MOI at the time, or (4) only if the individual had median

or below median MOI at the time. While sampling by an

individual’s MOI is not possible a priori, missing samples from
Frontiers in Epidemiology 05
certain demographics more often (i.e., not MCAR) could have

predictable effects on whether high or low MOI infections are

more likely to be missed.

The baseline sampling scheme was the same as used in the cohort

(see Supplementary Figure S1), monthly sampling of all participants

and sampling of symptomatic episodes at any time during the study

period. This was modified by missing each of these observations with

probabilities 12.5%, 25% or 50% in the missing completely at random

scenario and 25%, 50% or 75% in the missing high or low MOI

scenarios. In each of the high and low MOI scenarios, these

probabilities only applied to around half of the total observations,

so the absolute number of observations missing in these scenarios

was similar to the missing completely at random scenarios.

We also evaluated the impact of missingness in a passive

surveillance scheme (only among individuals who were

symptomatic), considering 25%, 50%, and 75% missingness among

symptomatic infections, assuming asymptomatic infections

remained entirely unobserved.

Each random subsample was repeated five times for each of the

25 simulations used to carry out the permutation test for a total of

125 different datasets to calculate genetic similarity or

differentiation under each sampling scenario.
Results

The parasite population from a longitudinal
cohort in Western Kenya reveals temporal
structure, but no spatial structure

Over the course of the study period, infections that were sampled

closer in time were more likely to be genetically similar than those

sampled further apart. Time between samples and genetic

similarity (quantified by the metric r) were negatively associated

(Figure 1A); when a linear model of relatedness by time apart was

fit, a one day difference in infection observation dates

corresponded to an average difference in genetic similarity of of

8.86 × 10−5. While this effect was small it was statistically

significant, as this value was lower than all values generated under

the null hypothesis of no temporal structure (Figure 1B). Similarly,

infections sampled closer in time were less differentiated

(quantified by the differentiation metric d). Again this effect was

small (on average a 1.05 × 10−4 increase in differentiation per day

apart) but statistically significant (Supplementary Figure S7). If we

discretize the data and only consider seasons (first and second

rainy seasons), we do see some additional evidence of temporal

relatedness, with pairs of infections from the same time period

having higher similarity and lower differentiation on average than

pairs that spanned both time periods. This temporal similarity was

0.052 and 0.087 for the two time periods, respectively, and the

temporal differentiation was −0.017 and −0.041. These values for

genetic similarity (metric, r) were around the 97 and 100th

percentiles of the null distribution but for differentiation (metric,

d) they were only around the 19th and 6th percentile (Figure 2B,

Supplementary Figure S8). Despite having a period of low

transmission, which could theoretically result in a genetic

bottleneck of the parasite population, we did not see strong
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FIGURE 1

The overall patterns of relatedness across time amongst samples from the
cohort data. (A) Relationship between pairwise relatedness and time
between samples. Points represent averages of pairs of observations
similar numbers of days apart. (B) The effect of time between infections
in weeks on relatedness (red dashed line) compared to a null distribution
where there is no temporal structure to relatedness (grey histogram).

FIGURE 2

The overall patterns of differentiation across space and time amongst
samples from the cohort data. (A) Spatial relatedness in cohort data in
each village (difference in mean relatedness in pairs of infections where
both are from the specified village and pairs where only one is from that
village). (B) Temporal relatedness (difference in mean relatedness in pairs
of infections where both are from the same time period and pairs from
different time periods) when considering the end of the first rainy
season and start of the second rainy season. In both panels, the value
observed in the data (red dashed line) is compared to a null distribution
where there is no village or temporal structure, respectively (grey
histogram).

Arambepola et al. 10.3389/fepid.2023.1058871
statistical evidence for these comparisons possibly due to the smaller

number of comparisons or the overall sustained moderate levels of

transmission (see Supplementary Figure S9).

In comparison, there was little evidence of village-level structure in

genetic similarity among infections sampled in the longitudinal cohort.

In Kinesamo and Maruti, infections within the village were on average

slightly more related to others within the same village compared to

elsewhere, with spatial similarity values of 0.01 and 0.0038, while in

Sitabicha there was little difference (spatial relatedness of −7.46 ×
10−5). These values were around the 75th, 63rd and 45th percentiles

of their respective distributions under the null hypothesis of no

village-level structure or high connectivity between villages

(Figure 2A) and therefore there was little evidence to reject this null

hypothesis. The spatial differentiation metric also showed little

evidence of village-level structure (Supplementary Figure S8).

Restricting the pairs of infections used to those observed less than

21 days apart, infections that should be more likely to be related by

transmission, produced similar results (Supplementary Figure S10).

Additionally, extremely low Fst and Jost’s D statistics computed

based on observed Pfcsp and Pfama1 haplotype frequencies across

the three villages further corroborate the lack of evidence in these

data for population structure at the village level (See Supplementary

Figure S11).
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Investigating the lack of spatial structure with
a simplified agent-base model of
transmission

To further explore the lack of village-level structure in relatedness

or differentiation of infections in cohort data, we constructed a

simplified agent-base model of malaria transmission amongst a

population similar to our cohort (see Supplementary Materials).

There are multiple factors that could result in a lack of structure,

some of these mechanistic in nature and others via our observation

process. For example, particularly in higher transmission settings

with high parasite diversity, the metrics used may not be sensitive

enough to observe differences in such complex infections.

Moreover, movement between two populations can result in less

structure between locations with infections being both imported

and acquired via infected travellers. Finally, the observation process

including who is sampled, at what frequency, and what types of

infections could result in an underpowered analysis. While it is not

feasible to investigate all of these possible factors in the data
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directly, with the simulation model we generated individual human

infection histories in two locations to evaluate how our metrics of

similarity are impacted by various scenarios comparing these

possible causes. We varied levels of mixing, transmission intensity,

and sampling to explore how differentiation and genetic similarity

metrics performed in these simulated populations with a focus on

rejecting the null hypothesis of no structure or high connectivity

with high enough probability.

Here, we present results of between-infection relatedness across

the two locations in our simulation model under different levels of

mixing between the populations. We allowed between 10% and

50% of the population in each location to be mobile (i.e., could

ever take a trip in the other location) and set the probability of

taking a trip to the other location for these individuals in the

model at any given day to be 0.01. While we considered lower

values for this probability, a probability of 0.01 best matched the

distribution of trips recorded in the study (Supplementary

Figure S5). This is equivalent to around 3 trips a year by each

individual who was mobile. The first sampling scheme we

considered approximates the sampling carried out in the real study

(see Supplementary Figure S1). Under this sampling scheme, as

the proportion of the population able to move increased from 10%

to 50% genetic similarity between locations decreased from around

0.1 to less than 0.025 on average (Figure 3A). This statistic was

also highly variable between different simulation iterations (25 in
FIGURE 3

Simulated results of spatial relatedness under various mobility and
missingness conditions. (A) Spatial relatedness across multiple
simulations and different proportions of the population moving between
locations. Values for each location are shown in different colours and
the median is shown by the line. (B) Rate that the null hypothesis of no
location relatedness structure was rejected at different proportions of
random missingness.
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total for each scenario) relative to the values of genetic similarity

between locations. When smaller proportions of the population

were eligible to move, the null hypothesis of no spatial structure

was almost always rejected suggesting lower connectivity, however

when 40% and 50% of the population were able to move the rate

of rejecting the null hypothesis (essentially the power of the

hypothesis test) fell to 0.84 and 0.64 respectively (Figure 3B).

These results were similar for the differentiation metric, though

power was slightly lower when mixing was high (Supplementary

Figure S12).
The impact of sampling and transmission
intensity on inferring relatedness

We also assessed how different kinds of missing data affected the

evidence for spatial structure or connectivity. Missing symptomatic

and asymptomatic infections completely at random did not change

average estimates of spatial relatedness (i.e., did not introduce

bias). As expected, as missingness increased, we saw greater

variation in these estimates in each simulation across the different

sampling repeats (125 total datasets), resulting in lower rates of

rejecting the null hypothesis. When up to 50% of observations

were missing, this reduction in power was relatively small, at most

reducing from 0.64 with no missing data to 0.58 with 50%

missingness when half of the population were mobile. At higher

rates of missingness, however, the power decreased substantially.

For example, when 87.5% of observations were missing the power

when half of the population were mobile was around 44%

(Figure 3B, Supplementary Figure S13).

We further explored additional biases such as only sampling

symptomatic infections (passive sampling) which might be a more

feasible way to sample a large number of infections than capturing

both asymptomatic and symptomatic infections as we have in the

cohort. Only sampling symptomatic infections (passive sampling)

did not introduce any bias and generally had a similar effect on

the power as missing the same proportion of infections under the

cohort’s active sampling scheme (Supplementary Figure S15). We

further explored other types of infections that may be differentially

sampled such as by MOI and found that including more complex

infections in the analysis did result in higher estimates of spatial

relatedness (see Supplementary Figure S14).

Finally, we explored the impact of high transmission (and

corresponding high parasite diversity) could also impact our ability

to detect spatial structure in the population. We explored lower

transmission (and corresponding lower parasite diversity) in the

simplified simulation model and compared these results to our

high transmission scenarios. As expected, in a lower transmission

setting, we found that estimates genetic similarity were consistently

higher than in the original simulations reflecting the higher

transmission setting of the cohort (Figure 4). Furthermore, this

increased evidence of spatial structure resulted in much higher

rates of rejecting the null hypothesis for high levels of mixing.

When 50% of the population were able to move, for example, the

null hypothesis was rejected more than 90% of the time in the low

transmission scenario compared to 64% in the higher transmission

scenario.
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FIGURE 4

The comparison of relatedness results in simulated high and low transmission settings. (A) Spatial relatedness (averaged across both locations) and (B) rate of
rejecting the null hypothesis under normal sampling in the high and low transmission intensity settings.
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Discussion

In this study, we evaluated Plasmodium falciparum genetic

similarity and differentiation across geographic location and time

in a longitudinal cohort from a region of high malaria

transmission region of Western Kenya. Using IBS-based metrics,

we observed statistically significant temporal structuring. Since we

considered changes in relatedness over a continuous timescale, the

effect size was predictably small, but the level of statistical

significance suggests that there are temporal changes in the genetic

composition of the parasite population which merit further

investigation to evaluate the degree to which these genetic changes

could be evidence of population bottlenecks across transmission

seasons. Conversely, we found no evidence of spatial structure in
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the data. To explore factors that may have contributed to the lack

of spatial structure, we constructed a simplified simulation study of

small villages to evaluate the impacts of connectivity, transmission,

and sampling on measures of genetic similarity and differentiation.

We found that a study design similar to that of the cohort was

able to detect spatial structure in the simulated data at low levels

of connectivity across two locations with high power. However, as

the connectivity increased and higher rates of missingness were

introduced in these data, the power to detect spatial structure

decreased sharply. This was despite only moderate decreases in the

average value of the test statistic – the difference between within

and between location pairwise relatedness, as measured by IBS

metrics of genetic similarity and differentiation. Then, using the

simulation model, we investigated how these results translated to a
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hypothetical setting with lower malaria transmission. In general, the

decrease in power under higher rates of missingness and connectivity

was far less pronounced in the low transmission scenarios.

Together, these results suggest that the active sampling scheme

employed in the cohort can detect spatial structure under many

scenarios and is quite robust to different patterns of missing data.

However, in high transmission settings in particular, the sample

sizes required to reject a null hypothesis of no spatial structure

across areas with similar observed levels of genetic similarity or

differentiation may be vastly different, since the drop off in power

was quite steep for moderate to high levels of connectivity.

Furthermore, in these high transmission settings, even intensive,

active sampling, may not be sufficient to detect spatial structure

under moderate to high amounts of connectivity. More

sophisticated IBD-based metrics that make efficient use of genetic

data may be ideal in these settings, however, these methods remain

difficult to employ among infections with high within-host genetic

diversity.

Our model makes several simplifying assumptions about malaria

transmission and is heavily informed by the observations from the

cohort study in western Kenya. However, by exploring some

extreme models of parasite connectivity and sampling schemes, we

were able to infer certain general trends about the likelihood of

detecting spatial structure under different scenarios. Furthermore,

if no spatial structure was detectable under these more extreme

scenarios, it is unlikely that this structure would be detectable in

other real-world scenarios. Interestingly, under scenarios where the

probability of sampling an individual was conditioned on the MOI

of their infection, we found that sampling more complex infections

with a higher probability resulted in higher estimates of spatial

relatedness. While it is not possible to design sampling schemes

based on MOI a priori, there are several factors known to be

associated with differences in MOI, such as age and transmission

intensity (44, 45). Therefore, sampling schemes that are more likely

to miss certain age groups, such as household sampling that takes

place while children are at school, or sampling strategies that tend

to miss adults who routinely travel to regions of differing

transmission intensities, may systematically miss high or low MOI

infections. Furthermore, independent of possible sampling

schemes, differences in MOI have been shown to be associated

with differences in transmission intensity (44, 45). Therefore,

understanding how measures of genetic similarity or differentiation

are impacted by within-host diversity is an important component

of understanding how parasite connectivity can be measured across

a wide range of malaria endemic areas. Many studies have revealed

that asymptomatic infections contribute disproportionately to the

infectious reservoir (39, 46–49), therefore, we investigated whether

missingness based on symptom status impacted our inference of

parasite population structure and connectivity. We found that

passive sampling schemes where only symptomatic infections were

captured did not bias estimates of genetic similarity or

differentiation.

There are several limitations to this study, most importantly,

while every effort was made to calibrate the model to data from a

natural setting, it falls short of replicating reality in several ways.

First, we only allow travel between two locations where genetic

data on parasite populations was available from both locations. In
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reality, human movement is far more complex, and in most

circumstances, it is not possible to obtain parasite genetic data

from all visited locations where infections may be acquired or lead

to secondary transmission. These gaps can obscure patterns of

spatial structure in ways that we did not account for in our study.

Additionally, we did not allow for mosquito movement between

locations which may also be an important driver of connectivity on

small spatial scales, and therefore would be an important

component of transmission to evaluate. Furthermore, this model

simulates two populations of 100 individuals each therefore, we are

unable to investigate how our findings about the ability to reject a

null hypothesis of no spatial structure may scale to much larger

population sizes, such as counties or other administrative units in

Kenya, which may be more relevant for control programs.

However, the use of malaria genomics to explore connectivity may

be most relevant in low transmission settings where transmission

can be focal, and therefore interventions are deployed on finer

spatial scales. In this same vein, correlation structures that arise at

the household level and among individuals with repeated

measurements were not accounted for in the model. In previous

analyses (41) we did not find strong evidence of household

correlation in this cohort study however, other have found

evidence of household structure (50). We also did not model

individual level correlation structures which could arise from

individual immunity to particular parasite clones making

reinfection or symptomatic episodes with certain haplotypes more

or less likely and impacting relatedness over time and across space.

Some more sophisticated models do accomplish this (51), and

previous studies of this cohort found differences in the likelihood

of symptomatic infection in infection events with only haplotypes

that had not previously been detected in that individual. However

this same analysis failed to find clear patterns in the probability of

symptomatic infection when both previously detected and new

haplotypes were found and did not find any clear trends in the

probability of reinfection with particular haplotypes making it

difficult to use these data to inform a model individual-level

immunity (52).

Additionally, we calibrated the model to genetic data from a

single locus in the P. falciparum genome, adapting our proposed

measures of relatedness to incorporate information across more

loci and evaluating the effects of added genetic information would

be an important expansion since oftentimes more than one locus is

genotyped in a study. Moreover, we tested only two extreme levels

of transmission in study; future analyses that explore a wider range

of transmission scenarios, particularly low transmission settings,

and that are calibrated to detailed epidemiological and genomic

data from a range of malaria endemic areas would be informative

to help control programs determine the appropriate sampling

scheme, size, and frequency for malaria genomic studies. Finally,

we did not compare our results to those obtained under an IBD

metric, this is largely because IBD based metrics have yet to be

adapted and validated for the amplicon deep sequencing data

available from the cohort study. The majority of these methods

have relied on longer reads or whole genome sequencing data that

allows for more substantial measures of relatedness to be inferred.

However, it would be useful to leverage other datasets that may be

better suited to IBD based metrics to directly compare the
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performance of our IBS based metrics under different sampling

schemes to IBD based metrics, since these are a gold standard of

measuring genetic relatedness.

Genomic surveillance has the potential to reveal patterns in

malaria transmission aiding in effectively targeted control

measures. Leveraging P. falciparum genetic data for these purposes

relies on measuring parasite relatedness. While genetic relatedness

measures that are based on IBD remain the gold standard, there

are several challenges to adapting these methods for P. falciparum.

Currently, IBS based measures of relatedness are much more

practical to implement, particularly in settings of high transmission

where complex infections are common. Therefore, understanding

the ability of IBS based measures to detect various levels of genetic

relatedness and patterns of connectivity under different sampling

schemes, and across different levels of malaria transmission is an

important component of designing effective studies and producing

data that can be used to inform malaria control strategies.
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