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Epidemiologic investigations of extreme precipitation events (EPEs) often rely on
observations from the nearest weather station to represent individuals’ exposures,
and due to structural factors that determine the siting of weather stations, levels of
measurement error and misclassification bias may differ by race, class, and other
measures of social vulnerability. Gridded climate datasets provide higher spatial
resolution that may improve measurement error and misclassification bias.
However, similarities in the ability to identify EPEs among these types of datasets
have not been explored. In this study, we characterize the overall and temporal
patterns of agreement among three commonly used meteorological data sources
in their identification of EPEs in all census tracts and counties in the conterminous
United States over the 1991–2020 U.S. Climate Normals period and evaluate the
association between sociodemographic characteristics with agreement in EPE
identification. Daily precipitation measurements from weather stations in the Global
Historical Climatology Network (GHCN) and gridded precipitation estimates from
the Parameter-elevation Relationships on Independent Slopes Model (PRISM) and
the North American Land Data Assimilation System (NLDAS) were compared in
their ability to identify EPEs defined as the top 1% of precipitation events or daily
precipitation >1 inch. Agreement among these datasets is fair to moderate from
1991 to 2020. There are spatial and temporal differences in the levels of agreement
between ground stations and gridded climate datasets in their detection of EPEs in
the United States from 1991 to 2020. Spatial variation in agreement is most
strongly related to a location’s proximity to the nearest ground station, with areas
furthest from a ground station demonstrating the lowest levels of agreement. These
areas have lower socioeconomic status, a higher proportion of Native American
population, and higher social vulnerability index scores. The addition of ground
stations in these areas may increase agreement, and future studies intending to use
these or similar data sources should be aware of the limitations, biases, and
potential for differential misclassification of exposure to EPEs. Most importantly,
vulnerable populations should be engaged to determine their priorities for
enhanced surveillance of climate-based threats so that community-identified needs
are met by any future improvements in data quality.
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Introduction

As the frequency and intensity of extreme precipitation events

(EPEs) increases due to warming atmospheric temperatures and

land use changes, interest in epidemiologic investigations of the

negative health effects of EPEs have increased as well. EPEs have

previously been found to increase the risk of injury and drowning

(1–3), enteric illness (1, 3–6), vector-borne infectious diseases (7–

9), and allergic diseases (10–12), among others (13–15). However,

many of these previous studies rely on assignment of precipitation

measured at a single weather station’s location to represent the

average exposure experienced by a study’s population of interest.

Sometimes these exposures are assigned to relatively small

geographic areas, but other times a single station’s observations

are meant to represent an area as large as a county (16–19). As

many quality-controlled weather stations are located at airports

outside of population centers, it is possible, perhaps even likely,

that the meteorological conditions experienced by a study

population could differ systematically and substantially from the

conditions measured and assigned to represent their exposure to

extreme weather events like EPEs. This may be particularly true in

rural areas where official weather stations are spatially scarce.

Environmental and community determinants of health also vary

across space, raising the possibility that the likelihood of exposure

misclassification bias related to weather station location may vary

differentially across classes of sociodemographic vulnerabilities

relevant to the health impacts of EPEs.

A proposed improvement to these methodological limitations

was the use of high spatial resolution gridded climate datasets

that involve spatial interpolation or statistical downscaling of

weather stations observations, sometimes incorporating remote

sensing data as well, to produce spatially resolved estimates of

meteorological conditions across an entire geography. In studies

of the health impacts of extreme heat events, researchers have

found that the use of such datasets, and the choice between

gridded climate products, can significantly impact the measures

of association (20–24), suggesting that the exposure data source

decisions should be evaluated carefully and with a full

understanding of candidate data sources’ strengths, limitations,

and biases. While the mechanisms responsible for fine spatial

variability in temperature related to factors like land use, artificial

and natural albedo, proximity to water bodies, and urban heat

island effect differ from the mechanisms driving spatial patterns

in precipitation and EPEs, regional and local feedback systems

related to land use, atmospheric aerosol concentrations, and

temperature can strongly influence the patterns of EPEs at small

spatial scales (25–29). However, the authors are unaware of

similar investigations into the various effects that data source

selection may have on future epidemiologic investigations into

the health effects of EPEs or other precipitation-related

meteorological threats to health. Furthermore, while

meteorological validation studies have identified systematic

geographic and orographic biases in climate datasets, biases and

errors have not been evaluated along sociodemographic, racial,

and economic lines. Beyond scientific interest in the role that

differential exposure misclassification might have on study
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findings, there may be serious climate and environmental justice

implications for communities for whom accurate measurements

of exposures to dangerous climate hazards are not available.

Therefore, the objectives of this study were to characterize the

overall and temporal patterns of agreement among three

commonly used, but variably rigorous, meteorological data

sources and methods in their identification of EPEs in the

conterminous United States (CONUS) from 1991 to 2020 and to

evaluate the association between sociodemographic population

characteristics with agreement in EPE identification. We

considered three common data sources, (1) weather stations from

the U.S. Global Historical Climatology Network (GHCN), (2)

interpolated gridded climate data from the Parameter-elevation

Relationships on Independent Slopes Model (PRISM), and (3)

the model and observation informed meteorological fields of the

North American Land Data Assimilation System (NLDAS). We

compared agreement in identification of EPEs among these three

data sources across commonly identified vulnerability factors and

using the Centers for Disease Control and Prevention’s social

vulnerability index (SVI), and finally explored the practical

effects of differences in agreement at three hypothetical example

study locations in rural Pennsylvania, a Native American

Reservation in Washington, and New Orleans, Louisiana.
Materials and methods

Geographic data sources and methods

Many epidemiologic investigations into the effects of climate

and extreme weather on human health compare meteorological

data with geospatial health data aggregated to some administrative

spatial unit. To analyze and provide useful summaries for future

epidemiologic investigations into extreme weather and climate

events, two levels of geographic units were considered as exposure

assessment locations for the present analysis, census tract and

county borders, two of the most commonly used areal units to

which health data are aggregated in the United States. Shapefiles

for census tracts (N = 72,333) and county boundaries excluding

water area (N = 3,108) were downloaded from the U.S. Census

Bureau’s TIGER/Line database using the “tigris” package in R

(30). The most recent 2019 shapefiles were used, and all census

data sources were filtered for only those states and the District of

Columbia within the CONUS to allow for direct comparison

among meteorological data sources, some of which are limited to

that geographic region. Eight census tracts (coastal islands and

nature/aquatic reserves) in the CONUS were located outside the

coverage area of one or more of the meteorological data sources

and were therefore excluded from analysis, leaving 72,325 census

tract exposure assessment locations.
Meteorological data sources

Meteorological data were obtained from a variety of sources

from 1991 to 2020, the same period of time described by the
frontiersin.org
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recently released U.S. Climate Normals (31). To evaluate exposure

assessments of EPEs, three classes of data sources, selected in

increasing degree of complexity, were considered. The selected

data sources were chosen as an attempt to represent a variety of

commonly used data sources including directly observed weather

station observations, gridded interpolation data, and gridded

assimilation data incorporating remotely-sensed observations.

While the data sources included here represent a non-exhaustive

list of those available and used in epidemiologic research, the

selected datasets aim to demonstrate limitations in exposure

assessment so that future research using these three common

classes of data might be better guided toward more accurate

analyses. First-order data sources, that is, raw, unadjusted

observations at weather stations throughout the CONUS were

taken from the National Oceanic and Atmospheric

Administration’s GHCN (32). This dataset represents a subset of

all available weather observations within its Cooperative Observer

Program that undergo rigorous quality assurance and quality

control processes and thus represent some of the highest

accuracy first-order weather observations available in the world.

GHCN daily observations are available from the year 1833 to

present and record information on five core elements –

precipitation, snowfall, snowfall depth, maximum temperature,

and minimum temperature – with numerous other

supplementary elements. Although rigorous quality control and

assurance practices are applied to these data, these policies do

not provide for consistent data collection and therefore spatial

and temporal gaps in data availability are present.

Beyond first-order, point-level observations, many gridded

climate datasets exist that might be used by epidemiologists to

estimate meteorological conditions at any location in the

CONUS. These gridded datasets are constructed with varying

numbers of contributing data sources and factors and with

variable complexity. The first gridded data source considered in

the present investigation was PRISM (33, 34). PRISM is a spatial

interpolation model that uses observations from many U.S.

weather networks, including GHCN and the Cooperative

Observer Program, and applies spatial weighting to account for

differences in precipitation across elevation and orography to

estimate values on a 4 km × 4 km grid across the CONUS.

PRISM data are available from the year 1981 to present and

estimate daily precipitation, minimum temperature, mean

temperature, maximum temperature, dew point, minimum vapor

pressure deficit, and maximum vapor pressure deficit.

A second, more complex gridded dataset frequently used in

climate and epidemiologic literature is the Land Data Assimilation

System developed and maintained by the National Aeronautics

and Space Administration (NASA). Specifically, the model

developed specifically for North America, NLDAS, was selected for

the present investigation (35, 36). This data source contains

estimates created by combining a regional atmospheric model with

surface station observations, spatial interpolation modeling, and

satellite observations from the Geostationary Operational

Environmental Satellites and low-earth Polar Orbiting

Environmental Satellites. Hourly NLDAS data are available from

the year 1979 to present over a 0.125° × 0.125° (∼12.5 km×
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11.5 km at CONUS latitudes) grid across the CONUS and

estimate precipitation, temperature, specific humidity, wind speed

and direction, surface pressure, and downward radiation.
Extreme weather event definitions

Broadly speaking, EPEs were considered due to the severity of

their effects on population health, the increased frequency with

which they are predicted to occur in the coming decades due to

climate change, and the high confidence with which those

predictions are made (14, 28, 37). There are multiple possible

mechanisms by which EPEs might negatively affect health (13),

some of which may overwhelm wastewater and stormwater

handling infrastructure with more precipitation than is typical

for a given location, and others that influence behavioral risk

factors through heavy precipitation beyond a fixed threshold,

regardless of what is locally typical.

To replicate commonly used methods and provide useful

recommendations to future epidemiologic studies on climate and

health, two definitions of EPEs were used – a locally specific and

a more general threshold for extreme events were both included

in the present investigation. To provide locally specific

thresholds, distributions of daily observed precipitation values on

days with precipitation were drawn for each location and in

keeping with previously published methods (38), EPEs were

defined as days where the observed daily precipitation exceeded

the 99th percentile of total days with precipitation from 1991 to

2020. While absolute thresholds vary in the published literature

(39), a more general threshold for EPEs was also considered and

defined here as daily precipitation of more than one inch

(2.54 cm), consistent with previous investigation (40).
First-Order meteorological data processing

Precipitation data (in tenths of millimeters) from 35,334

GHCN stations within the CONUS in operation from 1991 to

2020 were identified and all observations were downloaded using

the “rnoaa” package (41) resulting in 131,765,655 total

observations. All observations with quality issues flagged by

NOAA were removed from the analysis (N = 6,235, 0.005%). All

non-flagged observations were considered valid and therefore

included in the analysis (N = 131,759,420) after being converted

into millimeters for consistency with the remaining data.

To create the 99th percentile thresholds for EPEs, stations were

subsetted if they had 99% complete daily precipitation

observations, consistent with previously published methods (42).

This strict inclusion criteria for the distribution-based thresholds

ensures that the threshold for each included station is entirely

representative of the climate of that location. Of all the GHCN

stations in operation from 1991 to 2020, 648 stations were

included in the EPE threshold calculation subset and these

included stations provide good geographic coverage across the

CONUS (Figure 1). Pairwise distances between the locations of

these subsetted stations with 99% complete observations and the
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FIGURE 1

GHCN stations used in EPE threshold calculation, 1991–2020. Locations of GHCN stations with ≥99% complete daily observations in the CONUS from
1999 to 2020 included in EPE threshold calculation.
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exposure assessment locations (centroids of census tracts and

counties) were calculated and the locally specific EPE thresholds

of each tract and county were assigned as the threshold of the

nearest included station.

Next, daily precipitation measurements were assigned to each

exposure assessment location. Matrices of pairwise distances

between all station locations and exposure assessment locations

were created and the value of the closest station in operation on

each day was assigned to each exposure assessment location.

Since strict inclusion criteria for complete observations were not

applied here, these were often different stations than those from

which local 99th percentile thresholds were calculated. However,

thanks to rigorous quality control in the underlying GHCN data,

these values still represent accurate daily measurements. While

averaging of nearby stations or employing inverse distance

weighting could produce a potentially more representative

estimate of experienced precipitation, only the nearest station’s

value was considered to represent the simplest methods that

many environmental exposure assessments employ. Daily EPE

occurrences were then calculated for each exposure assessment

location as days with assigned precipitation values exceeding the

defined EPE thresholds, the local 99th percentile and one inch.
Gridded climate data processing

Daily PRISM data for total precipitation (in millimeters) were

downloaded from the PRISM FTP site for 1991–2020 (43) as
Frontiers in Epidemiology 04
geoTIFF rasters (N = 10,958 daily files) with 4 × 4 km spatial

resolution (N = 9,560,909,790).

Hourly NLDAS data for total precipitation (in kg/m2,

equivalent to millimeters) were downloaded from the NASA

Goddard Earth Sciences Data and Information Services Center

(44) for 1991–2020 as GRIB raster bricks (N = 262,992 hourly

files) using wget. These hourly rasters were summarized to daily

values by calculating the raster pixel sum of hourly precipitation

totals for each day (N = 10,958 daily files) at 0.125° × 0.125°

spatial resolution (N = 1,294,095,968).

Daily values for PRISM and NLDAS data at census tracts and

counties were assigned as the spatially weighted average of all cell

values contained within or intersecting a polygon’s border. EPE

thresholds were created for each exposure assessment location as

the 99th percentile of daily values assigned to that location.

Finally, daily EPE occurrences were identified for each location

as described previously.
Statistical analyses

Agreement in identification of each definition of EPEs (as

binary variables: 1, EPE; 0, No EPE) was assessed by calculating

Cohen’s kappa statistic for each two-way comparison of data

sources – GHCN vs. PRISM, GHCN vs. NLDAS, and PRISM vs.

NLDAS. Cohen’s kappa (45) is a measurement of percent

agreement between two raters in categorizing an observation as a

discrete outcome that takes into account the likelihood of chance
frontiersin.org
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agreement and ranges from 0 to 1. Landis (46) provide guidance for

the practical interpretation of kappa statistics with scores < 0.00

considered as poor, 0.00–0.20 as slight, 0.21–0.40 as fair, 0.41–

0.60 as moderate, 0.61–0.80 as substantial, and 0.81–1.00 as

almost perfect. Modification of agreement in EPE identification

among the data sources was explored across strata of variables

related to time, space, and population characteristics. Since each

data source has undergone changes during the time period of

interest, longitudinal temporal differences in agreement were

explored through calculation of annual kappa statistics.

Because of substantial time-varying differences in agreement

over the entire 1991–2020 period, the 2011–2020 time period

was used to explore the effect of location characteristics on EPE

identification agreement from using data from the U.S. Census

Bureau using the R package “tidycensus” (47). Evaluation of this

time periods limits the contribution of systematic changes to the

datasets from our evaluation of their performance across social

vulnerability factors. Because counties are geographically large,

do not exhibit uniform distribution of underlying population

characteristics, and often exhibit more variability within a given

county than among a group of counties, these analyses were

performed only at the census tract level. Population demographic

differences were explored through calculation of a kappa statistic

for strata of locations according to % minority population, %

Black population, % Native American population, % Asian

population, % Hispanic population, and % population in a

household below the federal poverty threshold using the average

of the 2011–2015 5-year American Community Survey (ACS)

estimates and the 2016–2020 ACS estimates. Tracts were

categorized as majority Black, majority Native American,

majority Asian, majority Hispanic, or majority minority (i.e., <

50% non-Hispanic White) using dichotomous indicator variables

such that each tract was categorized as majority Black or not

majority Black, and so on for each racial distinction. Tracts were

classified as low income or not low income according to the U.S.

Treasury Department’s definition as tracts with >20% of

residents below the federal poverty threshold (48). Tracts were

also classified according to U.S. Census Bureau urbanicity

designation as either rural, urban cluster, or urban. Finally, a

measure of overall social vulnerability of tracts was considered

using the U.S. Centers for Disease Control and Prevention

Agency for Toxic Substance and Disease Registry’s SVI

composite index for overall vulnerability from 2018 (49). Briefly,

SVI scores represent a percentile ranking of all U.S. tracts’ values

in four domains – socioeconomic, household composition and

disability, minority status and language, and housing type and

transportation – with higher scores representing higher social

vulnerability. For comparisons, SVI was categorized as very low

(0.00–0.25), low (0.25–0.50), high (0.50–0.75), and very high

(0.75–1.00).

Given the interdependencies of the data sources (PRISM

interpolates GHCN station data; NLDAS incorporates the

interpolated GHCN data from PRISM) and the fact that the

primary determining factor behind measurement uncertainty in

these models is distance from the GHCN input data, the effect of

the distance from a census tract to the nearest GHCN station
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was investigated. Since GHCN station availability is not constant

over time, the distance from the nearest station to the centroid of

each census tract was calculated for each day from 2011 to 2020

and the mean of these daily distances for each census tract was

considered for further analyses. Daly (33), in detailing the

methods for PRISM interpolation, describe statistical clustering

of observation values between GHCN stations within 7–10 km of

one another and subsequently downweight the values of stations

<7 km from one another, so census tracts with 7 km of the

nearest GHCN station were considered as a stratum of locations

for which agreement among the data sources would be expected

to be highest. The radius of influence of a single GHCN station

measuring precipitation is then described as 30–50 km depending

on topology (33). Therefore, tracts 7–30 km from the nearest

GHCN station were then considered as a stratum of locations

with the next highest expected agreement, and tracts >30 km

from the nearest GHCN station were expected to have the lowest

agreement.

In order to attempt to isolate social and racial associations with

measurement accuracy from other sociogeographic factors

potentially related to weather station siting like rurality and

terrain, matched subset kappa analyses were performed.

Population density was considered as a proxy for rurality and

areal topographic prominence was considered as a proxy for

terrain. Population density was measured as 1,000 persons/km2

using ACS data. United States Geological Survey LANDFIRE

elevation data (50) were downloaded at 1 arc-second resolution,

then aggregated to 500 m resolution to ease computational

requirements, and topographic prominence was calculated as the

difference between the highest and lowest elevation in each

census tract. Matched analyses compared the agreement of tracts

(1) with a social or racial characteristic of interest, (2) without

the social or racial characteristic but with population density and

topographic prominence within one standard deviation of the

referent group, and (3) without the social or racial characteristic

and with unmatched population density and topographic

prominence.

Population characteristics were compared with respect to each

location’s average daily distance from the nearest GHCN station

using one-way analyses of variance (ANOVA). Comparisons of

kappa statistics across strata were made using 95% confidence

intervals. Evaluations of sociogeographic determinants of a tracts’

distance to the nearest GHCN station were made using linear

regression models. Social vulnerability factors found to be

associated with distance to nearest GHCN stations through

ANOVA were regressed univariably on distance to nearest

GHCN station, and multivariably with population density and

topographic prominence. All statistical analyses were conducted

using R version 4.0.3 and all statistical comparisons were made

at the α = 0.05 level.
Local examples

To aid in practical interpretation of these results, locations for

three motivating examples were selected. With the strongest
frontiersin.org
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TABLE 1 Agreement in EPE (>99th percentile) identification, 1991–2020.

Geography GHCN-PRISM GHCN-NLDAS PRISM-NLDAS

EPEs > 99th Percentile
Census Tract 0.446 (0.445–0.446) 0.341 (0.340–0.341) 0.329 (0.328–0.329)

County 0.448 (0.445–0.450) 0.297 (0.294–0.299) 0.378 (0.375–0.380)

EPEs > 1 inch
Census Tract 0.550 (0.550–0.550) 0.455 (0.454–0.455) 0.439 (0.439–0.439)

County 0.581 (0.580–0.582) 0.422 (0.421–0.423) 0.487 (0.486–0.488)
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observed and predicted increases in EPE frequency in the U.S.

occurring in the Northeast (51), and given the particular

vulnerability rural residents experience to EPEs and flooding

(52), Jefferson County, Pennsylvania was selected to represent a

typical rural, Northeast study location. Jefferson County, PA is

made up of 13 census tracts in west-central Pennsylvania and in

2020 had a population of 43,846, was 97% non-Hispanic White,

15% of its population were below the federal poverty threshold,

and tracts in Jefferson County were on average 14.3 km from the

nearest GHCN station. Given the known racial vulnerabilities to

the effects of EPEs and climate change (53, 54), the Yakama

Indian Reservation in Washington was chosen to represent a

typical Native American study location. The Yakama Reservation

is located in south-central Washington on the eastern side of the

Cascade Mountains and consists of ten census tracts. In 2020,

the population in the Yakama Reservation was 54,024, was 45%

non-Hispanic White, 13% Native American, 38% Hispanic, 18%

of its population were below the federal poverty threshold, and

tracts in Yakama Reservation were on average 22.7 km from the

nearest GHCN station. Finally, given its ubiquity in early

discussions of the effects of climate change through heavy rains

and extreme storms (55–58), the New Orleans, Louisiana

metropolitan statistical area was selected to represent studies of

large urban areas currently experiencing threatening changes to

weather and flooding patterns. The New Orleans metropolitan

statistical area is made up of eight parishes and 422 census tracts

in southern Louisiana centered around the city of New Orleans.

In 2020, the area had a population of 1,267,777, was 51% non-

Hispanic White, 35% Black, 9% Hispanic, 17% of its population

were below the federal poverty threshold, and tracts in the New

Orleans metropolitan statistical area were on average 6.2 km

from the nearest GHCN station.

For the purpose of illustration, identification of EPEs was

considered using the nearest GHCN station data as the reference

dataset. We emphasize that this choice of reference does not

mean that GHCN is necessarily “correct” for all locations,

particularly in areas with low station density. It simply offers a

consistent standard against which true and false identification of

EPEs in the other datasets can be defined, where “true” and

“false” should be interpreted as indicators of agreement or

disagreement between datasets. Under this framework, the total

count of false positive and false negative EPEs were summed for

the tracts in each area from 2011 to 2020 and divided by the

total number of tracts to allow for direct comparison in order to

illustrate the practical differences among the three data sources

and methods for identifying EPEs in different example areas with

different demographic profiles and risks of severe impacts of EPEs.
Results

Over the entire 2020 U.S. Climate Normal period (1991–2020),

agreement in identification of EPEs—where daily precipitation

exceeded both locally relative and absolute thresholds—was fair

to moderate when comparing data from GHCN, PRISM, and

NLDAS at the census tract and county levels (Table 1). Overall
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agreement in identification of EPEs was highest when comparing

GHCN and PRISM data and similar when comparing GHCN

and NLDAS or PRISM and NLDAS. Identification of EPEs > one

inch of precipitation produced higher agreement than EPEs >

99th percentile, and agreement was similar when comparing at

the census tract or county level. Agreement was generally higher

when identifying EPEs in counties than in census tracts. While

differences in the degree of agreement exist depending on the

EPE definition, general patterns were consistent between the two

definitions and therefore only results from EPEs > 99th percentile

are described for the remainder of the analyses. Full results for

EPEs > one inch can be found in the Supplementary Material.

Agreement between GHCN-NLDAS and between PRISM-

NLDAS was relatively stable over time (Figure 2), but agreement

in identification of EPEs between GHCN-PRISM data increased

substantially around the year 2010, then stabilized in the final

decade of the time period of interest. Because of this substantial

change in agreement, the following results are presented on

analyses performed using precipitation data from 2011 to 2020.

A number of population characteristics were explored at the

census tract level to evaluate their relationship with agreement in

the identification of EPEs among the three data sources

(Table 2). No significant difference in the overall patterns of

agreement among the data sources was noted. When evaluated

across the entire CONUS, racial/ethnic differences in population

composition were generally not associated with considerable

differences in EPE identification agreement. A slight deviation

from this finding exists with respect to Hispanic population

where Hispanic-majority tracts experienced higher agreement

between GHCN-PRISM data in identification of EPEs. However,

a significant departure from the overall racial/ethnic patterns in

agreement was found with respect to majority Native American

tracts. These areas experienced substantially lower agreement in

EPE identification when comparing all data sources. While there

was not a considerable difference in agreement between the data

sources with regard to the income level of census tracts, there

was a dose-response type relationship between agreement and

SVI score with higher vulnerability relating to lower agreement

in EPE identification. However, these patterns were only present

when comparing GHCN-PRISM data as GHCN-NLDAS and

PRISM-NLDAS agreement statistics were relatively uniform, but

much lower. Urbanicity was not shown to affect agreement

between regardless of data source comparison; however, mean

daily distance from census tracts to the nearest GHCN station

had a considerable effect on comparisons of agreement involving

GHCN data.
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FIGURE 2

Annual trends in EPE identification agreement according to data source and exposure assessment geography. Point estimates and their 95% confidence
intervals for annual Cohen’s kappa statistic for comparisons of daily EPE identification for each 2-way comparison between data sources—GHCN vs.
PRISM, GHCN vs. NLDAS, and PRISM vs. NLDAS—are presented. A LOESS-smoothed trendline is included to aid in visually identifying temporal trends
in agreement. Comparisons among data sources at census tracts appear on the left and comparisons among counties appear on the right.

TABLE 2 Census tract population effects on agreement of EPE (>99th percentile) identification (2011–2020).

GHCN-PRISM GHCN-NLDAS PRISM-NLDAS

>50% Racial/Ethnic Minority
Majority Minority 0.539 (0.537–0.541) 0.342 (0.340–0.344) 0.352 (0.350–0.354)

Non-Majority Minority 0.569 (0.568–0.570) 0.329 (0.328–0.330) 0.350 (0.349–0.351)

>50% Black
Majority Black 0.559 (0.556–0.562) 0.347 (0.344–0.349) 0.350 (0.347–0.353)

Non-Majority Black 0.561 (0.561–0.562) 0.331 (0.330–0.332) 0.350 (0.349–0.351)

>50% Native American
Majority Nat. Am. 0.309 (0.288–0.330) 0.226 (0.207–0.244) 0.268 (0.245–0.291)

Non-Majority Nat. Am. 0.562 (0.561–0.563) 0.333 (0.332–0.333) 0.350 (0.350–0.351)

>50% Asian
Majority Asian 0.432 (0.417–0.446) 0.275 (0.260–0.290) 0.280 (0.266–0.295)

Non-Majority Asian 0.562 (0.561–0.563) 0.333 (0.332–0.333) 0.351 (0.350–0.352)

>50% Hispanic
Majority Hispanic 0.488 (0.484–0.492) 0.351 (0.348–0.355) 0.360 (0.356–0.364)

Non-Majority Hispanic 0.566 (0.565–0.567) 0.331 (0.330–0.332) 0.350 (0.349–0.351)

Income Level
Low Income 0.531 (0.523–0.539) 0.352 (0.343–0.360) 0.357 (0.348–0.365)

Non-Low Income 0.562 (0.561–0.562) 0.332 (0.331–0.333) 0.350 (0.349–0.351)

Social Vulnerability Index
Very Low 0.600 (0.598–0.602) 0.331 (0.329–0.333) 0.351 (0.349–0.353)

Low 0.563 (0.562–0.565) 0.328 (0.326–0.330) 0.348 (0.346–0.349)

High 0.548 (0.546–0.550) 0.329 (0.327–0.331) 0.348 (0.346–0.350)

Very High 0.531 (0.529–0.532) 0.342 (0.340–0.344) 0.355 (0.353–0.357)

Urbanicity
Rural 0.518 (0.515–0.521) 0.300 (0.298–0.303) 0.347 (0.344–0.350)

Urban Cluster 0.538 (0.536–0.541) 0.322 (0.320–0.324) 0.356 (0.353–0.358)

Urban 0.571 (0.570–0.572) 0.339 (0.338–0.341) 0.350 (0.349–0.351)

Distance to Nearest GHCN Station
0–7 km 0.594 (0.593–0.596) 0.346 (0.345–0.347) 0.354 (0.353–0.356)

7–30 km 0.518 (0.516–0.519) 0.316 (0.314–0.317) 0.345 (0.344–0.347)

>30 km 0.346 (0.338–0.355) 0.242 (0.235–0.250) 0.310 (0.301–0.319)

Kappa agreement statistics and 95% confidence intervals are presented for each two-way comparison of datasets. Census values were taken from the average of the 2011–

2015 and the 2016–2020 5-year American Community Survey estimates. Low income defined as tracts with≥ 20% population below the federal poverty threshold.
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The contribution of sociogeographic characteristics to the

observed disparities related to Native American race were

explored through a matched sub-analysis. Population density,

serving as a measure of rurality, and topographic prominence

(measured as difference between highest and lowest elevation),

serving as a measure of terrain characteristics, were calculated for

each CONUS tract. Kappa statistics were calculated and

compared among (1) majority Native American tracts; (2)

matched non-majority Native American tracts within one

standard deviation of the mean population density and

topographic prominence of majority Native American tracts; and

(3) unmatched, non-majority Native American tracts (Table 3).

After controlling for the potential contribution of rurality and

terrain to agreement in EPE exposure assessment, agreement

remains only fair in Native American census tracts while it is

higher (though still only fair or moderate) in matched and

unmatched non-majority Native American tracts.
TABLE 3 Sociogeographically-Matched analysis of native American tracts.

Native
American
Tracts

Matched Non-
Native

American
Tracts

Unmatched
Non-Native
American
Tracts

GHCN-PRISM 0.309 (0.288–0.330) 0.535 (0.533–0.537) 0.568 (0.567–0.569)

GHCN-NLDAS 0.226 (0.207–0.244) 0.311 (0.309–0.313) 0.338 (0.337–0.339)

PRISM-NLDAS 0.268 (0.245–0.291) 0.352 (0.350–0.355) 0.350 (0.349–0.351)

Kappa agreement statistics and 95% confidence intervals are presented for each

two-way comparison of datasets among three strata of U.S. census tracts: (1)

majority Native American tracts, (2) matched non-majority Native American

tracts within one standard deviation of the mean population density and

topographic prominence of majority Native American tracts, and (3) unmatched,

non-majority Native American tracts.

FIGURE 3

Census tract distance to nearest GHCN station, 2011–2020. Mean daily distan
2020 are presented. Distances are binned according to their reliability at r
estimated for census tracts >30 km from the nearest GHCN station are le
influence of a GHCN station (30–50 km depending on topology).
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Given the dependency of agreement in EPE identification on

distance from the nearest GHCN station, geographic and

population characteristics of these census tracts are presented

in Figure 3 and Table 4. 42,971 (59%) tracts are located within

7 km of a GHCN station, 28,465 (39%) are 7–30 km away, and

897 (1%) tracts are further than 30 km from the nearest

GHCN station. Tracts located >30 km from the nearest GHCN

station can be found throughout the entire CONUS but are

generally concentrated in the Great Basin region of Oregon,

Nevada, and California and in the Canyon Lands region of

Utah and Arizona. Residents of tracts located >30 km from the

nearest GHCN station tend to be non-majority minority areas,

but have 11.2 times more Native American residents, 40%

more residents below the federal poverty threshold, and have

an average SVI 15 percentile points higher than tracts within

30 km of the nearest GHCN station. While tracts >30 km from

the nearest GHCN station represent a very small proportion of

the total number of tracts and overall population, there are

over 3 million individuals for whom the nearest precipitation

monitor is located at or beyond the radius of influence of a

single station.

Sociogeographic contributions to the disparity in GHCN

station proximity to Native American-majority tracts were also

evaluated through linear regression models (Table 5). Increasing

levels of Native American population (%) were associated with

further distance from the nearest GHCN station. This significant

association remained after controlling for topographic

prominence and population density, though topographic

prominence substantially dampened the effect, suggesting that

terrain in Native American-majority tracts may impact the siting

of GHCN stations.
ces from census tract centroid to the nearest GHCN station from 2011 to
epresenting precipitation observed at that location. Precipitation values
ss reliable as they are located at or beyond the limit of the radius of
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TABLE 5 Associations between census tract sociogeographic characteristics and distance to nearest GHCN station.

Model 1 Model 2 Model 3 Model 4
Intercept 7.44 (7.40–7.49) 6.89 (6.85–6.93) 7.85 (7.80–7.90) 7.21 (7.16–7.26)

% Native American 26.94 (25.93–27.94) 19.50 (18.54–20.46) 26.28 (25.28–27.27) 19.32 (18.36–20.27)

Topographic Prominence* — 1.05 (1.03–1.08) — 1.01 (0.99–1.03)

Population Density† — — −0.20 (−0.21 to −0.19) −0.14 (−0.15 to −0.13)

Linear regression model coefficients and 95% confidence intervals of sociogeographic tract variables regressed on average daily distance (in km) to nearest GHCN station

are presented. Positive regression coefficients represent a direct association with increased distance from the nearest GHCN station.

*Tract topographic prominence measured as difference between highest and lowest elevation in km.
†Population density calculated as 1,000 population/km2.

TABLE 4 Census tract population characteristics over GHCN distance Strata.

Distance to GHCN Station One-way ANOVA p

<7 km 7–30 km >30 km
Total Population* 189,851,002 (60%) 123,800,885 (39%) 3,015,042 (1%) —

Minority Population (%) 41.6 (41.5–41.7) 32.6 (32.5–32.7) 35.1 (34.4–35.8) <0.0001

Black Population (%) 15.3 (15.2–15.4) 11.8 (11.7–11.9) 9.6 (9.2–10.1) <0.0001

Native American Population (%) 0.6 (0.6–0.6) 1.0 (1.0–1.0) 8.5 (8.0–9.1) <0.0001

Asian Population (%) 5.7 (5.7–5.7) 3.4 (3.4–3.4) 0.7 (0.6–0.7) <0.0001

Hispanic Population (%) 17.7 (17.6–17.8) 14.4 (14.3–14.5) 14.6 (14.1–15.1) <0.0001

Poverty (%) 15.1 (15.0–15.1) 14.8 (14.7–14.8) 19.4 (19.2–19.7) <0.0001

Social Vulnerability Index 0.49 (0.49–0.49) 0.51 (0.51–0.51) 0.65 (0.65–0.66) <0.0001

Median Income ($) 33,700 (33,651–33,750) 30,220 (30,172–30,267) 24,024 (23,877–24,172) <0.0001

Mean values and 95% confidence intervals are presented for census data taken from the average of the 2011–2015 and the 2016–2020 5-year American Community

Survey estimates are presented for strata of census tracts whose average daily distance to the nearest GHCN station is <7 km, 7–30 km, or >30 km.

*Total population and percent of total CONUS population.
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Local examples

Compared to the overall kappa statistic for the entire CONUS

from 2011 to 2020, patterns of agreement vary widely depending

on the location and data source used (Table 6). In more

practical terms, this range of agreement, which varies from

moderate in some areas to only slight in others, results in

substantial differences in EPE identification. Under this

framework, PRISM and NLDAS do not show an EPE in over

half of the cases in each of the local example areas when the

nearest GHCN station does (Table 7; 2011–2020 data). In the

Yakama Reservation, WA, these results are particularly striking—

PRISM and NLDAS data identify only five of the same GHCN-

defined EPEs > the 99th percentile. Interpretation of these results

must be treated carefully, however. While GHCN data are

referred to as “truth” for the purposes of this example, no claim

is made that these data are actually the most accurate when

comparing at grid scale, nor that precipitation values estimated

for sites away from the station location using GHCN data reflect
TABLE 6 Local examples of EPE identification (> 99th percentile), 2011–2020

GHCN-PRISM
Overall U.S. 0.560 (0.560–0.561)

Jefferson County, PA 0.293 (0.230–0.355)

Yakama Reservation, WA 0.158 (0.120–0.195)

New Orleans, LA 0.474 (0.463–0.485)

Kappa agreement statistics and 95% confidence intervals are presented for each two-

agreement across the entire conterminous U.S. is presented for comparison to full re
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the true experienced values. Though it is quite likely that PRISM

or NLDAS offer more accurate diagnosis of EPEs for remote

sites far from a weather station, GHCN is simply used here as

the reference dataset for comparisons.
Discussion

The objectives of this study were to characterize the agreement

among three commonly used meteorological data sources and

methods in their identification of EPEs in the CONUS over the

1991–2020 U.S. Climate Normals period and to evaluate the

association between sociodemographic population characteristics

with agreement in EPE identification. Overall agreement in EPE

identification among the nearest GHCN station, spatially

weighted average PRISM value, and spatially weighted average

NLDAS values was fair to moderate. We identified the potential

for these three commonly used classes of data sources for EPE

classification to vary according to vulnerability status. When
.

GHCN-NLDAS PRISM-NLDAS
0.332 (0.331–0.333) 0.350 (0.349–0.351)

0.448 (0.382–0.513) 0.200 (0.143–0.255)

0.145 (0.109–0.181) 0.375 (0.291–0.459)

0.423 (0.420–0.426) 0.383 (0.379–0.386)

way comparison of datasets at three example locations. Overall kappa statistic for

sults.
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TABLE 7 Local examples of EPE false positives and false negatives – PRISM vs. GHCN, 2011–2020.

PRISM NLDAS

GHCN EPEs* False Positives False Negatives False Positives False Negatives
Jefferson Co., PA 13 10 9 8 7

Yakama Res., WA 57 3 52 7 52

New Orleans, LA 16 6 9 7 11

*EPEs identified by GHCN were considered as “truth” for the purposes of this example, though no claim is made that these data are actually the most accurate when

comparing at grid scale, nor that precipitation values estimated for sites away from the station location using GHCN data reflect the true experienced values. The

terms “false positives” and “false negatives,” therefore, do not provide a description of true measurement accuracy, but rather describe how often each dataset agrees

in its identification of an EPE on a given day.

Aune et al. 10.3389/fepid.2023.1128501
comparing GHCN and PRISM data, there was a substantially lower

level of agreement in census tracts with > 50% Native American

population, and increasing SVI scores were associated with lower

agreement in EPE identification, suggesting the possibility for

differential exposure misclassification according to community

vulnerability to the harmful effects of EPEs.

The severity of impacts of climate change on health exist on a

continuum, with some populations being more protected and

others being more at risk. Some of these populations are referred

to as susceptible, meaning they are biologically predisposed to

more severe health outcomes, while others are considered

vulnerable, meaning there are societal and structural issues that

place them at higher risk (59). While investigations in the heat

and health literature identify ways that data source decisions can

affect measures of association by changing exposure

misclassification rates, results from the present study show that

while different data sources may decrease levels of measurement

error and minimize the impact of exposure misclassification,

these changes do not occur uniformly across strata of many

common environmental and community determinants of health

such as race, socioeconomic status, and social vulnerability,

which vary substantially over space (49, 60–62). These factors all

increase a population’s vulnerability to negative health effects of

climate change (53, 54, 60, 63–67). The results presented here

demonstrate that the evaluated data sources and methods vary

across commonly identified vulnerability factors, suggesting that

different exposure data may limit the ability to detect harmful

health effects of climate change in a population at higher risk. As

investigations of environmental and climate justice issues continue

to emerge as an important area of concern for researchers and

funding organizations, the concerns identified in the present study

highlight an important potential limitation of researchers to conduct

these investigations using the existing climate and meteorological

infrastructure available in wealthy, developed countries like the

United States (these issues are far more prevalent in low- and

middle-income countries) (68). The disappointing irony of this

situation is that researchers may not be able to accurately assess

exposures to climate hazards in the very communities that are most

vulnerable to the effects of those hazards, potentially leading to an

inability to accurately characterize associations between weather

exposures and health outcomes that could identify areas most in

need of interventions, resources, or further study.

Native Americans specifically were identified as a vulnerable

population for whom challenges in accurate exposure assessment

were found. These challenges are primarily related to the proximity
Frontiers in Epidemiology 10
of Native American-majority areas to first-order weather

monitoring stations, a factor that was found to be affected by the

terrain of these areas; however, the Native American composition of

census tracts nonetheless remained significantly associated with

proximity to the nearest GHCN station even after adjustment for

terrain and population density. This is an especially prescient

finding given the unique threats that climate change poses to

Indigenous physical and mental health, economies, and livelihoods

(54), challenges that are not accidental. Farrell (69) found that

Indigenous lands in the CONUS have been reduced by nearly 99%

in area, and that the lands to which Native peoples have been

displaced expose residents to greater average climate hazards. In

fact, the Quinault Indian Nation, located on the Pacific coast on the

Olympic Peninsula in Washington, plans to relocate in response to

rising sea levels and increased threats of tsunamis, storm surge, and

river flooding (70, 71). However, many federal Indigenous areas are

located in arid climates with small predicted risks of EPEs

throughout the coming century (51), areas where the importance of

accurate assessment of exposures to EPEs might not seem to be as

important, though the various other effects brought about by rising

global temperatures that might affect these communities—drought,

extreme heat, and wildfire risk (28, 37, 69)—all benefit from

accurate exposure assessment characterization as well. Beyond

findings related to specific vulnerable groups, a more general

measure of social vulnerability, the Centers for Disease Control and

Prevention Agency for Toxic Substances and Disease Registry’s SVI

was also correlated with moderate to poor agreement in exposure

assessment among the three evaluated data sources. SVI scores have

been associated with climate and environmental disaster-related

health outcomes like heat-related illness and mortality, wildfires and

vulnerability to climate extremes, and tropical storms (49, 72–76)

further highlighting the importance of accurate assessment of

exposures to climate extremes in these populations at increased risk.

In the United States, the Interagency Working Group on

Climate Change and Health explored existing research on the

health implications of weather-related morbidity and mortality

and identified several key research needs, among them better

characterizations of the health impacts of extreme weather

events, improvements to the predictive power of modeling the

health effects of extreme events, and development of regional

climate models for early warning of extreme events (67). While

existing weather monitoring infrastructure provides excellent

spatial and population coverage of the CONUS (99% of the

population resides within the 30 km radius of influence of a

precipitation monitoring station), the vulnerable
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sociodemographic makeup of the remaining 1%—more than three

million individuals for whom exposure to intense rain and

snowfall, drought, and extreme heat or cold is not well-

characterized—highlights the need for further investment in

reliable meteorological monitoring systems that will enhance not

only academic study of population effects of climate change, but

also increase the accuracy of early warning and real-time

meteorological modeling and forecasting for these vulnerable

populations. While the present investigation found that

proximity to the nearest ground station was a strong indicator of

agreement among exposure datasets, there was still not perfect

agreement even in areas very close to first-order stations,

suggesting substantial differences among the datasets likely

driven by modeling components. These include elevation and

orography for PRISM-modeled data; complex land-surface

modeling involving temperature, humidity, surface pressure,

wind, and other factors for NLDAS-modeled data; and a number

of other factors specific to the many alternative gridded

precipitation modeling datasets that were not explored here.

These distinctions necessitate a nuanced approach to the

selection of the dataset chosen to represent exposure assessment

for a given study population that understands the sources of

error and bias for observed and interpolated model components.

Still, the use of gridded datasets clearly improves the spatial

resolution of weather monitoring for extreme events, a definite

benefit for vulnerable populations located far from existing

weather monitoring infrastructure. However, the gridded datasets

evaluated here and indeed many alternative gridded climate

datasets rely on or incorporate first-order weather station

observations, so improvements to the spatial distribution of this

network of monitoring sites would have downstream benefits to

the accuracy and precision of nearly any climate dataset.

Nevertheless, while improvement of measurement accuracy

through increased station density may serve to provide

meteorologists, climatologists, and epidemiologists with better

tools to measure and study community-level effects of climate

change and extreme weather, it is imperative that such

improvements meet community-identified needs. Indeed, the

most important first step to addressing racial inequity in climate-

based threats to health is to work with affected and vulnerable

communities to define what is measured, what is not measured

but needs to be measured, and how to gauge success or failure (77).

PRISM precipitation data previously have been validated against

ground station observations, and they have generally been found to

have good agreement with precipitation measurements made at

ground stations with low absolute error and minimal regional

biases (23, 78–80). NLDAS precipitation data have also been

compared against ground station observations and while high

temporal-scale (i.e., hourly) measurements experienced large

deviations, daily and longer-term observation periods were highly

similar (81). However, these validation studies were only able to

compare values at known locations and while observations at

ground stations are considered the “gold standard” for

meteorological conditions experienced at that location, population

distributions are often dispersed far from these stations, leading to

misclassification when these values are used as a proxy of
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individual or population exposure (82). It is important to note,

however, that there was also no “gold standard” for the purpose of

comparison or validation in this study. Good vs. poor agreement in

the results reported here, therefore, is not a reflection of model

performance, but rather an indicator that model selection may have

a significant effect on subsequent analyses depending on the

strengths and limitations of a given dataset’s specific application.

Beyond the sociodemographic and temporal factors demonstrated

to be related to exposure assessment agreement here, there are also

geographic factors that deserve consideration. Understanding these

limitations, the results of these analyses cannot support the

recommendation of any specific data source or modeling method,

but rather reinforce the importance of careful consideration of the

strengths and limitations of the full range of climatological datasets

available to represent the exposures of a given population. For

health applications, the actual “gold standard” is personal exposure

assessment (83). However, epidemiologic research involving

personal climate exposure is often financially or logistically

unfeasible, and therefore high-spatiotemporal resolution gridded

climate datasets are often a reasonable proxy for individual

exposure to ambient meteorological conditions. In truth, estimates

of meteorological conditions from fine-scale interpolated or

downscaled systems may ultimately decrease the measurement error

from systematic differences observed between ground station

observations and the true conditions a study population experiences

(24). The use of a single observation to represent multiple

individuals is also subject to Berkson measurement error which,

while not expected to bias effect estimates, can lead to decreased

precision in effect estimates and smaller effect sizes (84, 85).

Finally, agreement between PRISM estimates and GHCN

observations was seen in this analysis to increase substantially in

the late 2000s. The two most likely explanations are a change to

the PRISM modeling methods in 2008 (33) and a large increase in

the number of GHCN stations that came online around the same

time (86), both of which would serve to increase levels of agreement.

Differences in exposure assessment, biases, measurement errors,

and exposure misclassification can have substantial impacts on effect

estimates, effect sizes, and internal validity when correlating climate

exposures with health outcomes. While we are not aware of similar

comparisons of first-order stations with gridded climate data on

precipitation or EPEs, investigations into the practical implications

of dataset choice have been conducted with respect to

temperature, heat index, and extreme heat. In an investigation of

113 U.S counties from 1987 to 2006, Weinberger et al. (24)

compared the risk of heat-related mortality using temperature data

from single stations using the Integrated Surface Database Lite

with temperature data using PRISM. Due to the lack of spatial

resolution when assigning a single station’s observation as the

temperature experienced by an entire county, the authors found

that risk ratios of heat-related mortality were higher using the

enhanced spatial resolution data from PRISM compared to the

single stations. Clemens et al. (20) investigated heat- and heat

index-associated mortality in Ontario, Canada from 2005 to 2012

using weather station data and 1 km× 1 km gridded temperature

data and found that the added spatial variability afforded by the

gridded data sources provided higher estimates of daily maximum
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temperature and narrower confidence intervals in calculations of the

daily relative risk of mortality. In a similar analysis of heat-related

mortality in Switzerland and the United Kingdom, de Schrijver

et al. (21) explored the effect of data from weather stations and

three gridded climate datasets at 1.6 km× 2.3 km, 5 km× 5 km,

and 0.25° × 0.25° spatial resolution. While they did not find

substantial differences in the measures of association or effect

sizes, use of the high-resolution data products provided better

predictive ability of statistical models. Practically speaking, when

planning a study exploring the effects of EPEs, spatial resolution

of the exposure dataset and the areal unit to which exposures are

being assigned play into the accuracy of exposure measurements,

but so too does the definition used to identify EPEs. In this

analysis, locally specific 99th percentile thresholds demonstrated

lower agreement than an absolute threshold of one inch. While

alternative definitions exist that were not explored here, these

findings suggest that more strict definitions resulting in rarer event

occurrences might be more susceptible to the influence of

measurement errors and biases among potential datasets.

These findings represent practical analyses of commonly used

methods in the published climate literature. The data sources

selected are widely used within the established literature and the

more nascent field of the health effects of precipitation and climate,

and evaluations were made at spatial units to which epidemiologic

data are commonly aggregated. Extreme events are observed and

predicted with high confidence to increase with increasing global

temperatures and their frequency is reliably attributed to

anthropogenic causes (28, 37). The calculation of the kappa

agreement statistic is sound and robust to the effects of random

agreement when outcome events are rare (45). However, this study

does have a number of limitations. First, only two gridded datasets

were used among the many that exist, and the simplest methods for

considering ground station data were used. Alternative uses that

might be considered in future work could incorporate multiple

ground stations through spatial interpolation modeling like inverse

distance weighting or kriging for comparison against gridded

climate datasets. Second, while many different valid definitions for

EPEs exist, only two were considered here. Though these two

definitions are commonly used in climate and health literature,

alternative definitions of EPEs may have resulted in different relative

performance of the climate datasets. Relatedly, comparisons were

made using extreme event occurrences, not actual precipitation

values. While many health effects and climate predictions involve

extreme events, the performance of different sources of daily

precipitation measurements may have some bearing on research in

other fields, such as infectious, allergic or respiratory disease

outcomes, air quality exposures, agricultural productivity, or

planetary health factors and should be considered by future

research. While important modifiable community vulnerability

factors were considered, there are likely differences in the agreement

and performance of these and other climate datasets according to

seasonality, geography, elevation, and orography that were not

explored here. While the data for these analyses were taken from the

entire 1991–2020 U.S. Climate Normals time period, the

associations with race and social and vulnerability were detected

using a 10-year subset (2011–2020) due to systematic changes in the
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GHCN and PRISM methods that would have complicated

interpretation of analyses involving the full 30-year period.

Geographic centroids and area-weighted averages were used to

approximate population exposure using each of the three datasets

rather than calculating population centroids and population-

weighted areal averages. Finally, more complex statistical modeling

involving the use of mixed methods were considered to allow for the

evaluation of agreement and correlation across continuous scales of

modifying factors, but due to the very large size of the datasets

under consideration, this approach was found to be computationally

unfeasible. However, future work may be able to apply such an

approach to a smaller regional analysis or over a shorter timeframe,

and may also include sociogeographic and other variables to

develop a better understanding of the factors related to accurate

exposure assessment of extreme climate events.
Conclusion

Agreement in identification of EPEs among GHCN, PRISM, and

NLDAS is fair to moderate from 1991 to 2020. There are spatial and

temporal differences in the levels of agreement between ground

stations and gridded climate datasets in their detection of EPEs in the

U.S. Spatial variation in agreement is most strongly related to the

proximity to the nearest ground station, with areas furthest from a

ground station demonstrating the lowest levels of agreement. These

areas include areas that are lower socioeconomic status, have a higher

Native American population, and have higher SVI scores. The

addition of ground stations in these areas may increase agreement,

and future studies hoping to use these or similar data sources should

be aware of the limitations, biases, and potential for differential

exposure misclassification across a potential study population. Most

importantly, vulnerable populations should be engaged to determine

their priorities for enhanced surveillance of climate-based threats so

that community-identified needs are met by any future improvements

in data quality.
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