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Data that is collected at the individual-level from mobile phones is typically
aggregated to the population-level for privacy reasons. If we are interested in
answering questions regarding the mean, or working with groups appropriately
modeled by a continuum, then this data is immediately informative. However,
coupling such data regarding a population to a model that requires information
at the individual-level raises a number of complexities. This is the case if we aim
to characterize human mobility and simulate the spatial and geographical spread
of a disease by dealing in discrete, absolute numbers. In this work, we highlight
the hurdles faced and outline how they can be overcome to effectively leverage
the specific dataset: Google COVID-19 Aggregated Mobility Research Dataset
(GAMRD). Using a case study of Western Australia, which has many sparsely
populated regions with incomplete data, we firstly demonstrate how to
overcome these challenges to approximate absolute flow of people around a
transport network from the aggregated data. Overlaying this evolving mobility
network with a compartmental model for disease that incorporated vaccination
status we run simulations and draw meaningful conclusions about the spread of
COVID-19 throughout the state without de-anonymizing the data. We can see
that towns in the Pilbara region are highly vulnerable to an outbreak originating
in Perth. Further, we show that regional restrictions on travel are not enough to
stop the spread of the virus from reaching regional Western Australia. The
methods explained in this paper can be therefore used to analyze disease
outbreaks in similarly sparse populations. We demonstrate that using this data
appropriately can be used to inform public health policies and have an impact in
pandemic responses.
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1. Introduction

In the age of mobile technology and the ever-increasing dependence on our electronic

devices there is a complex interaction with inevitable data collection. The flow of data

between a user and their smartphone is bidirectional. On the one hand, smartphones give

access to a myriad of information we rely on as users. On the other hand, the individual’s

personal data may be shared with apps for a variety of uses. For example, tracking of the

user’s location can be enabled via their settings and used for related services such as

traffic/weather updates or targeted advertising.
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Mobile data collection also provides a means for the

individual’s data to contribute to larger anonymized datasets,

where aggregation of the individual-level data across space and

time provides information about the broader population. For

example, approximations of near real-time population-level

mobility from individual GPS information (1).

The recent pandemic of COVID-19 caused an unprecedented

shift in behavior as lockdowns and social isolation were employed

to curb the spread of the disease. This is reflected in data that

captures population movement over this time (2). Comparisons of

the reduced movement patterns against pre-COVID baselines can

enable us to properly quantify this change and determine the

effectiveness of public messaging and large scale social distancing (3).

Despite these potential benefits, these datasets (often belonging to

private companies) are typically not utilized to their fullest. In part,

this can be attributed to the data’s “crypticness”, which results from

having the appropriate legal, organizational and computational

safeguards in place (4). This can be a significant first hurdle to

using this data to drive or augment studies. Other hurdles include

the sparseness of the data, as we will see in this paper, that can

come from specific circumstances such as geographical remoteness.

We are interested in developing a more realistic epidemiologic

model to explore how varying degrees of lockdown impact

movement. To do so requires a proper understanding of movement,

which can be achieved with these aggregated datasets. The primary

aim of this paper is to outline the steps we took in order to make a

particular dataset – The Google COVID-19 Aggregated Mobility

Research Dataset (GAMRD) – compatible for such a task. We

demonstrate how this dataset can be leveraged using Western

Australia’s response to COVID-19 as a case study. Western

Australia is unique both geographically and in how the pandemic

was handled and while topical and close to home for the authors,

this example was selected mostly because it captures many aspects

of the challenges that can be faced when working with aggregated

data. Specifically, we deal with sparse and small flows between rural

towns with small populations, meaning our raw data is often

incomplete, which necessitates a different approach to that of

similar work done for densely populated regions (5).

To demonstrate the effectiveness of our methods in overcoming

these issues we employ various data science techniques and a

simulated compartmental model of disease dynamics to draw

meaningful conclusions for the state of Western Australia.

Specifically, we model the disease spread in Western Australia

under three levels of movement: free movement, regional

restrictions and full lockdown, exploring the impact on rural

towns and the role that mining towns play in this spread. These

constitute important, but secondary, aims of our work.

The paper is organized as follows. We first describe the dataset

and outline how it has been used in studies thus far in Sections

2.1–2.2. We then demonstrate the steps taken to make this data

useful when studying the movement patterns of a sparse

population, as in Western Australia, in Sections 2.3–2.4. Section

2.5 gives an overview of COVID-19 in Western Australia, with

relevant information pertaining to its geography, population and

government responses. The compartmental model used to

simulate the spread is described in Section 2.6 and in the
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Supplementary Materials. Our main results are in Section 3.

The conclusions follow in Section 4.
2. Materials and methods

2.1. The google COVID-19 Aggregated
Mobility Research Dataset (GAMRD)

The process below is all done by Google. The authors have only

received the completed, anonymized version of the GAMRD in

order to carry out our research.

The GAMRD contains anonymized mobility flows aggregated

over users who have turned on the Location History setting,

which is off by default. This is similar to the data used to show

how busy certain types of places are in Google Maps—helping

identify when a local business tends to be the most crowded. The

dataset aggregates flows of people from region to region. This

dataset has been used in several papers to study phenomena

relating to human movement and mobility.

To produce the GAMRD, machine learning is applied to logs

data to automatically segment it into semantic trips (6). To

provide strong privacy guarantees, all trips were anonymized and

aggregated using a differentially private mechanism (7) to

aggregate flows over time (see https://policies.google.com/

technologies/anonymization). This research is done on the

resulting heavily aggregated and differentially private data. No

individual user data was ever manually inspected, only heavily

aggregated flows of large populations were handled. All

anonymized trips are processed in aggregate to extract their origin

and destination location and time. For example, if users traveled

from location a to location b within time interval t, the

corresponding cell (a, b, t) in the tensor would be n+ h, where h

is Laplacian noise. The automated Laplace mechanism adds

random noise drawn from a zero mean Laplace distribution and

yields (e, d) - differential privacy guarantee of e ¼ 0:66 and

d ¼ 2:1� 10�29 per metric. Specifically, for each week W and

each location pair (A, B), we compute the number of unique users

who took a trip from location A to location B during week W. To

each of these metrics, we add Laplace noise from a zero-mean

distribution of scale 1=0:66. We then remove all metrics for which

the noisy number of users is lower than 100, following the process

described in (7), and publish the rest. This yields that each metric

we publish satisfies (e, d)-differential privacy with values defined

above. The parameter e controls the noise intensity in terms of its

variance, while d represents the deviation from pure e-privacy.

The closer they are to zero, the stronger the privacy guarantees.

These results should be interpreted in light of several important

limitations. First, the Google mobility data is limited to smartphone

users who have opted in to Google’s Location History feature,

which is off by default. These data may not be representative of

the population as whole, and furthermore their

representativeness may vary by location. Importantly, these

limited data are only viewed through the lens of differential

privacy algorithms, specifically designed to protect user

anonymity and obscure fine detail. Moreover, comparisons across
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rather than within locations are only descriptive since these regions

can differ in substantial ways.
2.2. Uses of the GAMRD

The GAMRD has been used in many different ways in recent

times, such as investigating relationships between socioeconomic

status and movement patterns in the US and Brazil (8), or to

develop a metric that establishes a connection between mobility

indicators and key urban indicators relating to the livability of cities (6).

Regarding disease modeling, the GAMRD has been used to

model spatial disease transmission and forecast influenza activity

(9) to predict disease spread across state boundaries. This model

performed on-par with models formed based on commuter

surveys, which are less available and more expensive,

investigating regions such as New York and New Jersey (dense

population), and Australia (sparse population). Their study of

Australia included an aggregation at the state level. In this work,

we take this a step further and aggregate at a rural town level.

Aguilar et al. (10) used the GAMRD to assess the impact of

urban structure on the spread of COVID-19, finding that

hierarchical cities, where flows are concentrated primarily between

mobility hotspots, are vulnerable to the rapid spread of epidemics,

however mobility restrictions are very effective in mitigating the

spread of the virus. Conversely, sprawled cities with many centers

of activity experience slower spread, but response to mobility

restrictions is less effective. Venter et al. (11) used the GAMRD to

assess whether mobility in blue-green spaces (parks, natural areas)

related to COVID-19 transmission, and found no such evidence.

Ruktanonchai et al. (3) used the GAMRD to model COVID-19

transmission within Europe, specifically aiming to provide

guidance on the best way to ease restrictions after the initial

lockdown in Europe, finding that a large amount of coordination

between countries is required to avoid a second spike of cases.

Lemey et al. (12) similarly concluded that more effective and

coordinated measures were required to contain the spread through

cross-border travel, having used the GAMRD as part of their

model of transmission of new variants in Europe.
1For example, the distance between Kalgoorlie and the closest town in the

dataset North of it, Newman, is almost 1,000 kilometers! Moreover, the

distance between Margaret River in the South West corner and Kununurra

in the North East corner of the state is almost 2,500 km!
2A 50 km cutoff causes a loss 6.47% of data, 100 km leads to 2.99% loss, 150

km leads to 1.51% loss, 200 km leads to 1.14% lost.
2.3. Data preprocessing

The sparseness of the population in Western Australia has large

implications on our model and the ability to draw conclusions from

the GAMRD. In the GAMRD, cells are defined as 5.07 km2 regions

across the entire globe, where movement by an individual (phone)

between two different cells is recorded. As Western Australia’s

population is sparse, there are times the GAMRD records zero

movement between two towns that we would normally expect

there to be movement between (more on how cells are assigned to

towns below). Further, from a disease modelling perspective, the

sparseness of the population in Western Australia meant that the

disease spreads differently than the diffusion effect seen within

cities or densely populated regions such as Europe (13). Therefore,

in order to be able to use the GAMRD to draw meaningful
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conclusions on the spread of an infectious disease between towns

in a population as sparse as Western Australia’s, several steps need

to be taken to convert the data to a more usable form. These steps

are generic and can for the most part be re-applied by other

researchers looking to use the GAMRD in similar ways.

It is also important to note that these steps do not de-

anonymize the information, due to the level of noise and other

anonymization mechanisms included by Google in Section 2.1.

2.3.1. Step 1: Assigning cells to towns
Firstly, we restrict the data to only include movement where the

source and destination cells were inside Western Australia. After

filtering out any cell outside Western Australia, we allocated cells

to nearby towns, based on the geodesic distance between the cell

and the town—so a cell is allocated to its closest town. This way,

instead of having 5.07 km2 cells all around Western Australia, we

define a network where each node is a town, and a connection

between two nodes means movement has occurred between two

towns over the course of the week. We selected the towns based

on their population and location, with 44 towns across Western

Australia (see Supplementary Material for full list of towns).

A cell was assigned to the closest town if that town center was

at most 250 km away from the cell. If there are multiple town

centers within 250 km of the cell, we assigned the cell to

whichever town was closer. Setting an upper limit on the

distance from town center meant that we inevitably lose some

data, where one of the source cell or destination cell was not in

the catchment area of any of the towns. The total amount lost

was 0:881% of the total number of entries, a number we

accepted. An upper limit of 250 km may appear large, however

when considered in context of the vast distances in rural

Western Australia,1 we decided it was an appropriate limit. A

larger radius around each town may have captured more overall

movement, however we risk having less clear boundaries between

towns, particularly in areas more densely populated such as the

South West. Smaller cutoffs could also be chosen, however these

result in higher loss of data.2 Further, for cutoff values lower

than 250 km, some mobility data from mining towns such as

Newman, Port Hedland, Karratha, and Kalgoorlie-Boulder was

discarded. These towns are particularly important in the context

of Western Australia as they serve as regional hubs, with all of

them having associated mine sites nearby. Therefore, we select

250 km as an effective compromise. In effect, the 250 km cutoff

includes visitation to the nearest remote place as the data for a

given town. In practice there is often movement from large

population centers to locations that are up to 250 km (and
frontiersin.org
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more) from the nearest town. These reflect visits to individual

settlements or parts of mine sites that are connected to the

“nearby” remote center.
2.3.2. Step 2: Adding a Kalman filter to deal with
zero movement and noise

It is possible that zero movement may be recorded between two

towns that we expect there to be movement between. This may be

genuinely zero records or there may be too few records as the

privacy algorithm stipulates a lower bound of 100 people after

noise is added, with any number below being recorded as zero.

Further, although we could derive some interesting behavior on

the macro-scale, we found that the GAMRD proved to be quite

noisy on the town level—it may say there was no travel between

two towns one week, before having a considerable spike in the

very next week. This is shown in Figure 1, which displays the

time series between four combinations of towns. This noisy data

would cause problems when we look to use the GAMRD to infer

which towns are vulnerable to the outbreak, as it may say there

was no movement in and out of the town in a given week, even

though we expect that to be false.

Due to this, we chose to apply a Kalman filter on all edges,

which acted as a smoothing mechanism to better represent
FIGURE 1

Relative flow of people between Western Australian towns. Note how the raw
towns, see Supplementary Material.
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overall trends in how the movement between two towns changed

over the time range of the data. We opted to use the Kalman

filter over simpler techniques, such as a moving average, because

the Kalman filter is able to model and estimate the underlying

state of a system using probabilistic inference (14, 15). While the

choice between a Kalman filter and a moving average is marginal

(and discussed further in the Supplementary Material), the

Kalman filter allows us to better integrate the limited temporal

observations from sparse regions. The Kalman filter was defined

by the following equations:

mt ¼ mt�1 þ Ytr�1(yt � mt�1),

whereYt ¼
�
(Yt�1 þ qI)�1 þ 1

r I
��1

:
(1)

Here, mt is the filtered value at week t, which is determined by the

previous value plus a Kalman Gain times the innovation, yt � mt�1.

The Kalman Gain term Ytr�1 is an adaptive term that also updates

depending on its previous value and two noise terms, q and r,

where q is the noise term of the model/estimate (where in our

case, the model is just taking the previous term again) and r is

the noise factor of the observations. Since we typically trust last

week’s adjusted measurement (mt�1) more than this week’s
data can be quite noisy. For detail on the size and population of these
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observation (yt), we set r . q. This is due to the noisiness of this

week’s observation; we decide to trust the dynamics we have set

more than the raw data. Note that I is the identity matrix.

We set the initial values for m0 � N(hmi, y2IN ). This means

that the initial estimate is approximated as the average weight

of all edges, hmi. For the initial covariance matrix, Y0, we

initialise it by finding the Pearson correlation coefficient

between two edges. Hence the initialisation of the covariance

matrix contained information on how the time series of one

edge (e.g. Perth to Broome) related to another (e.g. Albany to

Kalgoorlie). The reason this was chosen is because it

approximated the initial transient of the time series better than

when the covariance matrix was initialised as the identity

matrix. After this initial transient, both choices for the

covariance matrix lead to virtually identical time series. After

experimentation, the parameters r and q were set to be 4 � d
and 0:4 � d, where d is the mean of the initial Pearson

correlation matrix. The aim of this was finding a combination

of parameters that sufficiently smooth out the noise but still

maintain the overall behavior.

The results of the Kalman filter we applied on the four time

series from Figure 1 can be seen in Figure 2. For more details

on the Kalman filter and its comparison to a moving average, see

the Supplementary Material.
FIGURE 2

Results of the four in-focus time series after Kalman filtering was applied. The
features of the overall behavior.
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2.3.3. Step 3: Adding stochastic effects
We also chose to add stochastic effects to our networks in order

to impute a daily resolution from the weekly movement data. This

is due to the fact that in the GAMRD, even if a user travels from

cell A to cell B multiple times in the same week, he or she only

contributes once to the total count. Therefore, we add stochastic

effects to the temporal adjacency matrices. We assumed that a

user can move between two towns once every day, and examined

how that affects the transport networks for the week. To do this

we take the Kalman filtered adjacency matrix for each week, At ;

then normalize each row of the matrix to obtain the probability

of moving to each town given the user is in a particular town;

raise the transition matrix to the exponent of seven (one

for each day of the week); add all matrices together

At þ A2
t þ A3

t þ � � � þ A7
t and divide them by seven to obtain the

average. We then set the diagonal values to zero (we do not care

for self-loops, as this is a transport network between towns), and

convert the probabilities back to relative flows. Hence our

adjacency matrices now include a stochastic element of increased

movement. Heuristically, this stochastic element smooths the

data by spreading out the movement around the different towns

without artificially inflating the movement by adding new travelers.

In Figure 3 we can see the effects that adding the stochastic

elements has had on the individual time series. Some time series
time series now have a smoother shape whilst still retaining the essential

frontiersin.org
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FIGURE 3

Results of the four in-focus time series after stochastic elements were added to each week.
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increase their overall values, still maintaining their overall shape,

while others decrease. This effect can be substantial, such as the

Karratha to Wickham time series, however this can be explained

by the fact that adding these stochastic effects actually adds edges

that had not existed before, and this flow needs to come from

other edges as we cannot add extra flow than what had existed

previously. For an illustration of how the stochastic step changed

the transport network for a given week, see the Supplementary

Material.

2.3.4. Step 4: Approximating absolute flow
The GAMRD provides us with some useful insights on the

macro-scale. For example, analyzing the total movement around

Western Australia in a given week since the start of the

pandemic in Figure 4, we can see the initial low total amount of

movement when the travel and regional movement restrictions

were imposed in early 2020, and as restrictions slowly lift and

people become more comfortable traveling within the state, the

flow gradually increases. The two biggest dips occur when

Western Australia had an immediate lockdown in response to a

detected case of COVID-19; the first one occurring in Feb 2021

(16), and the second in late June to early July 2021 (17).

While the GAMRD is very useful for the relative flow of people

between two towns, it is not so useful for the absolute flow between

two towns that a model of disease transmission requires. Without
Frontiers in Epidemiology 06
absolute values describing how many people travel between two

towns, we cannot deduce information such as when the disease

reaches a new town.

Flows are aggregated temporally at a weekly level to obtain the

GAMRD. This dataset contains normalized flows between pairs of

cells in each week from March 22nd 2020 to January 29th, 2022.

The flow is the natural logarithm of Ut,ij

F , where Ut,ij is the

number of unique users making a trip between cells i and j at

week t, and F is an undisclosed constant (for privacy reasons)

larger than the maximum flow over the entire year F . maxt,i,j Ut,ij.

Disease modeling is a human subject; we deal in discrete,

absolute number of human infections, discrete and absolute

number of deaths, and a discrete absolute population in each

town. We therefore need to know the probability that an

individual who, for example, moves between town A and town B

carries the disease with them, and hence we need to know how

many individuals move between towns A and B each week in

order to best estimate when the epidemic would reach town B.

The relative flow is insufficient for this purpose; it tells us which

towns are more closely connected to Perth, and hence may be

more likely to get the virus if it originates in Perth, but it does

not help us answer the critical question of how many days it will

take for the virus to break into their towns. For this, we will

need to have a better understanding of the absolute flow, which

will require a more careful treatment of the value of the constant
frontiersin.org
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FIGURE 4

Relative total movement around Western Australia since the start of the pandemic.
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F. Note here that we are seeking to derive a model for movement

that is representative of individual movement, but not of specific

individuals.

We elected to do this by taking a known number of absolute

travelers, obtained from the Australian Bureau of Statistics (ABS)

(18) for a certain time period and comparing it to the relative

flow according to the GAMRD for the same period. This allowed

us to approximate a value for F, which will remain undisclosed.

This method of reverse-engineering does not cause a privacy

concern as it only provides a rough figure. The privacy of

individuals is still protected using the differentially private

algorithm and the lower bound of 100 people on recorded values

being imposed.
3The source of the infection was unknown.
4This hard border included international travel which was severely limited,

and often included similar restrictions on travelers from other Australian

states which had not controlled their outbreak.
2.4. Transport network results

Having taken the steps above to convert the GAMRD to a more

usable form for our purposes, we can now form temporal adjacency

matrices. The nodes are the towns and the entries (edges) are the

aggregated flow. These temporal adjacency matrices allow us to

observe the evolution of the mobility network over time. An

example of such a movement network over a week in Western

Australia is presented in Figure 5.

Again, note that these steps do not de-anonymize the

information, due to the level of noise and other anonymization

mechanisms included by Google. However, now that the data is

in this form, we can hope to obtain more realistic and valuable

insights on the geographical spread of a disease in a sparsely

located region such as Western Australia.
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2.5. COVID-19 in Western Australia

Western Australia recorded its first confirmed case of

COVID-19 on February 21st, 2020 (19). A State of Emergency

was declared in Western Australia on March 15th, with a

Public Health State of Emergency declared the next day (20).

Gradual restrictions were introduced over the coming days by

both the National Cabinet and the Western Australian

government, with Western Australia banning regional travel on

March 31st, and closing the interstate border on April 6th, 2020

(21). The last case of unknown3 community transmission of

COVID-19 in Western Australia was recorded on April 11th

2020, and two weeks later restrictions slowly started being

eased. However, the state border closure remained in place for

far longer, with varying levels of Western Australia’s hard

border4 in place for the next two years depending on the

COVID-19 situation in other Australian states. This border

would not come down for 697 days, until March 3rd, 2022 (22).

For the majority of this time Western Australians experienced a

relatively unaffected lifestyle within the state as no community

transmissions were recorded. This was unique, as many states

in Australia went through varying levels of outbreaks at
frontiersin.org
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FIGURE 5

A movement network around Western Australia for a given week, generated from the GAMRD. Node size is correlated to population of the town, and edge
thickness is correlated to the flow of people recorded within the specified week.
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different times during those two years. However, on December

21st, 2021, Western Australia recorded its first case of the

Omicron strain of COVID-19 that is believed to have lead to

the full outbreak experienced in Western Australia between

from January 2022, despite early efforts to contain the virus as

had been done previously (23, 24).

Western Australia’s remoteness, even when borders are open,

is substantial; there are only two sealed roads leading in and out

of the state that is 2.6 million km2 in size yet populated by just

under 2.8 million people, leading to a population density of

roughly one person per square kilometer. The majority of

Western Australia’s population is located in the South West

corner, with the capital city of Perth having a population of

around 2 million people. The sparsity of population of Western

Australia outside of Perth makes it an intriguing context in
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which to examine COVID-19 transmission. Knowing which

towns are more susceptible to an outbreak that begins in Perth

can inform governments on appropriate policies, and aid in

making better informed decisions around implementing

regional borders such as the one implemented on March 31st,

2020. Western Australia contains many remote Aboriginal

communities who are more vulnerable to respiratory diseases

such as COVID-19 (25). Hence, this information is of

particular interest and government concern, as seen on

February 20th, 2021, when a positive Omicron case was

recorded in a remote Aboriginal community about 1,000 km

east of Kalgoorlie (26).

One of the key aims of this work was to quantify how the virus

spreads under three levels of movement: free movement, regional

restrictions and full lockdown. To quantify the differences
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FIGURE 6

Total movement around Western Australia in a given week after the data preprocessing was carried out. Times when regional restrictions and free
movement were in place are highlighted in yellow and blue respectively. Y-axis numbers were removed.
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between these three levels of movement, we compared the

difference in movement between towns as is shown in Figure 6.

We selected four weeks that correlate to when the initial

lockdown occurred, and free movement during periods of

relatively high movement, with some weeks left as grace period

for movement to return to normal after a snap lockdown. Then,

we quantified the difference to a full lockdown by analyzing the

reduction in movement within towns during weeks of lockdown

by analyzing the self loops of the initial transport networks we

created. We used this reduction to modify the rate of infectivitiy,

d, in our compartmental model.
5As of March 2022, there are approximately 2.8 million Western Australians at

1.0 persons per km2, versus 1.8 million South Australians at 1.7 persons per

km2.
2.6. Compartmental model

We chose to use a compartmental model for disease spread

within each town, as is often done when mathematically

modelling COVID-19 in a homogeneous, fully-mixed

population (5, 27, 28–30). Our model is based on the

Susceptible-Exposed-Infected-Removed (SEIR) model, but the

Susceptible (S) state has been split into the four different

possible vaccination states at the time of carrying this modeling

out: from unvaccinated (V0) to triple vaccinated (V3). Note that

at the time of the work being carried out, no more than three

doses were available to West Australians. However, the model

can be easily modified to add more doses. Having separate

vaccination compartments allowed us to gage the effectiveness
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of vaccines in slowing the spread of the disease. The

compartmental disease model used in the paper are elaborated

on in the Supplementary Material.

To determine the parameters that govern these equations, we

first fit the model to the outbreak that happened in South

Australia, which started a few weeks earlier than the one in

Western Australia. As this work was done in the midst of these

outbreaks occurring, we had to use the most recently available

data, which initially was the South Australia outbreak. The

rationale was that these states are similar in their population

distribution and density. However, the parameters resulting from

the South Australian outbreak did not do a good job of

approximating the Western Australian one. This showed us that

Western Australia and South Australia, as similar as they are in

population density and distribution,5 are still different case

studies. This shows the danger in using results from one

outbreak to be generalized to another.

The parameters were instead fit to the Western Australian

outbreak, which started a few weeks after the South Australian

outbreak, and still whilst this work was carried out. The
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FIGURE 7

Results from 500 discrete model simulations with the derived parameters for the model. The gray shows the minimum and maximum of the 500
simulations, and the red line shows the average of all 500 simulations. (A) Total cases. (B) Logarithm of total cases.

FIGURE 8

Pipeline of the process taken to create a model to simulate the spread of COVID-19 in a sparsely located population such as Western Australia. The blue
represents input or output variables, while the orange represents manipulation in order to make the model be a better representation of reality.
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infectivity rate, d, was a time sensitive parameter based on

determined inflection points in the outbreak. The full parameter

table and an explanation of the fitting methods is provided in

the Supplementary Material.
6Note that since town vaccination data is not readily available, we

generalised the numbers from the state numbers.
2.6.1. Making the compartment of an individual
which moves between towns probabilistic

A deterministic compartmental model deals with continuous

variables. However, the number of people and the population is

discrete, not continuous. Hence, we need to make the number of

people that move between each town, in each compartment of

the model, discrete. Further, we want to add some probabilistic

effects to the model to better reflect real movement—we want

there to be some uncertainty in the number of people that move

between towns in each compartment. To do this, we create a

function that calculates the probability of an individual being in

each compartment for town A. We iterate over the number of

travelers between town A and town B, randomly assigning each

traveler to a compartment based on the probability that an

individual is in that compartment. This means there is some

uncertainty in the way the model behaves, and adds a

probabilistic nature that better reflects real world movement.
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As an example, for town i in our 44 town model, the model

equation for the unvaccinated (V0) compartment, without taking

mobility into account, is:

dV0,i

dt
¼ � dV0,i(t)Ii(t)

Ni
� m1,i(t): (2)

Here, Ni is the population of town i, and m1,i(t) is the number of

people getting first dose vaccination6 at day t.

When we add the aspect of mobility between towns, Equation 2

becomes:

dV0,i

dt ¼ � dV0,i(t)Ii(t)
Ni

� m1,i(t)þ
X
j

�
Xji � Xij

�
,

where Xji � Bin
�
Aji,

V0,j

Nj

�
:

(3)
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The adjacency matrix of the mobility network is given by A, with

entry Aji being the number of travelers that came into town i

from town j. The probability of being in compartment V0 in

town j is the number of people there on the given day divided by

the population of the town, i.e. V0,j

Nj
. All equations for our

compartmental model for every town are similarly modified. See

Supplementary Material for details.

The results of simulating the outbreak on a compartmental

model in Western Australia with the transport network as

described above can be seen in Figures 7A,B. Note that due to

the probabilistic nature of our model, not all simulations result

in exactly the same case numbers. However, we can see that the

average does a good job of simulating the case numbers as they

were reported.

To summarize, Figure 8 shows the entire process as a pipeline,

from combining the GAMRD and a compartmental COVID-19

model in order to be able to simulate the spread of COVID-19

around Western Australia.

We have now created a successful model that can

realistically simulate the spread of COVID-19 around a

sparsely populated state such as that of Western Australia,

based on the GAMRD and combined with a compartmental

model of the Omicron strain of COVID-19. We can hence

use this model to observe how the disease spreads around

the state, which towns may be more vulnerable, and the

effectiveness of different levels of restrictions on the spread

of the disease.
3. Results

We run 10,000 simulations of an outbreak starting in

Perth, with each level of movement around Western

Australia (free movement, regional restrictions, full

lockdown). We record the first occurrence of an infected

individual reaching the town, simulating the outbreak for

180 days. The results of the simulations are shown in

Table 1, with how often the outbreak reached the town

within 180 days, and the average day this occurred. It also

includes color coding by region (recall Figure 5), and is

sorted by the average day for an infection to reach the

town based on free movement.

Figure 9 represents the probability that the outbreak reached a

few select towns on a given day for the different levels of

movement.

Analyzing Table 1 and Figure 9, we highlight a few key

takeaways. Firstly, Mandurah is consistently the first town

the outbreak reaches. This is hardly surprising, considering

its proximity to Perth (the two are connected by a train line

that consists of daily commuters). However, the next group

of towns from Newman down to Paraburdoo are all mining

towns, most of them in the Pilbara region. This is a key

finding in the context of Western Australia—these towns

have large nearby mines, which often operate on a FIFO

(Fly-In-Fly-Out) roster. This means that large numbers of

workers are flying between Perth and these mines, and were
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still flying in and out with regional restrictions in place.

This finding highlights the role mining companies in

Western Australia must play to keep the towns next to the

mines they occupy safe. The towns near these mines are

small (populations are in the thousands—see Supplementary

Material) and often consist of communities vulnerable to

the spread of COVID-19.

The total number of cases is in fact very well controlled by a full

lockdown—total infections in the simulations do not break past the

300 mark even after six months. However, regional restrictions do

not significantly lower case numbers—they simply protect rural

towns for a bit longer.

We can see in Figure 9 how the different restriction levels

impact the time taken for the outbreak to reach the towns in

question. More stringent restrictions do slow the virus spread

even for a town in close proximity to Perth such as Mandurah.

However, the restrictions do not cause a major change in

whether the outbreak will reach Mandurah, but rather it is a

question of when. For the majority of other towns, regional

restrictions increase the time taken, but the shape of the

distribution remains largely the same. However, the complete

lockdown does prove very effective, as we saw in Table 1, with

all towns other than Mandurah very rarely experiencing an

outbreak— this is due to the fact that a full lockdown was

an effective method to suppress the spread in the simulation

even in Perth.
4. Discussion

This work investigated utilizing the GAMRD to form a

mobility network, which was used to draw meaningful

conclusions about the spread of COVID-19 in Western

Australia. The purpose of this work was to outline how many

of the seemingly problematic features that are tied up with

aggregated datasets such as the GAMRD can be overcome to

derive a mobility model for discrete movement that is

representative of a population, but still does not pose a threat

to privacy of individuals. To build this network cells had to

be assigned to towns, zero movement between town had to be

considered and noisy data had to be smoothed,

probabilistic effects had to be included and absolute flows had

to be estimated. As an incredibly remote place, Western

Australia exemplifies the issues with using this data in a

sparse population and was hence used as a case study for the

data.

The resulting network was successfully combined with a

compartmental model for the Omicron variant of COVID-19,

in order to simulate the spread of the disease around Western

Australia. We have shown that this model is an effective and

useful tool of modeling the spread of a disease geographically

in a sparse population. We were able to derive insights about

the vulnerability of towns to an outbreak starting in Perth,

and therefore can use models such as this one to inform

public health policy making. We showed regional restrictions

had limited ability to slow the spread of the virus, however
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TABLE 1 The percentage of simulations where an outbreak reached a town for the various restriction levels, and the average day the outbreak reached
the town. Towns are colored by their region (refer to Figure 5 for a geographical view of the regions). The average day is calculated from the
infections which did reach the town within 180 days, and is “NA” if no infections reached the town.

Region Town Free movement Regional restrictions Full lockdown

Infects town Ave. day Infects town Ave. day Infects town Ave. day
Perth Perth 100% 0 100% 0 100% 0

Peel Mandurah 100% 7.8 100% 13.1 98% 25.2

Pilbara Newman 100% 25.6 100% 33.5 49.9% 59.8

Pilbara Karratha 100% 30.9 100% 43.4 25.5% 64.9

Pilbara Tom Price 100% 34.5 100% 39.7 34.8% 64.2

Pilbara Port Hedland 100% 35.6 100% 44.1 23.8% 67

Goldfields-Esperance Kalgoorlie-Boulder 100% 36.1 100% 54.7 9.6% 70.8

Pilbara Paraburdoo 100% 39.2 100% 50.5 14.9% 68.4

South West Bunbury 100% 40.4 100% 66.1 3.8% 83.8

Kimberley Broome 100% 41.3 100% 74.4 0.8% 78.5

Wheatbelt Northam 100% 42 100% 63.9 4% 74.9

South West Busselton 100% 45.8 100% 70.8 1.7% 85.4

Pilbara Wickham 100% 46.5 100% 56.2 9.1% 71.4

Wheatbelt York 100% 49.2 100% 65 3.8% 75.5

South West Dunsborough 100% 51.7 100% 75.8 1.3% 87.4

South West Donnybrook 100% 55.2 100% 78.6 0.8% 94

South West Capel 100% 55.7 100% 106.7 0.2% 98.5

Goldfields-Esperance Kambalda West 100% 56.8 100% 63.9 4.2% 74.5

South West Collie 100% 57.9 100% 79 0.8% 86.9

South West Cowaramup 100% 60.3 99.5% 119.4 0.2% 115.6

Wheatbelt Merredin 100% 60.7 74.3% 110.5 0.1% 108.3

South West Harvey 100% 61.1 100% 83.9 0.4% 101.1

Mid West Geraldton 100% 64.7 100% 74.5 0.8% 70.2

South West Manjimup 100% 65 84.2% 135 0% 158.3

Wheatbelt Moora 100% 67.1 100% 84.4 0.4% 70.7

South West Margaret River 100% 68.5 35.9% 145.8 0% NA

Mid West Port Denison-Dongara 100% 70.4 100% 84.2 0.4% 76.5

Wheatbelt Jurien Bay 100% 76 95.9% 102.2 0.1% 29.8

South West Augusta 100% 78 25.5% 147.3 0% NA

Peel Waroona 100% 78.9 100% 86.6 0.2% 58.3

Goldfields-Esperance Esperance 100% 81.2 0% NA 0% NA

Great Southern Albany 100% 82.2 0.4% 158.4 0% NA

Wheatbelt Narrogin 100% 84.6 0.2% 148.7 0% NA

Great Southern Denmark 100% 86.2 21.8% 143.8 0% 161

Gascoyne Exmouth 100% 88.3 97.3% 108.6 0.2% 93.7

Great Southern Kojonup 100% 90.2 2.4% 142.6 0% NA

Great Southern Little Grove 100% 90.9 0.2% 153.9 0% NA

Great Southern Katanning 100% 91.2 0% 127.2 0% NA

Great Southern Mount Barker 100% 97.5 0% NA 0% NA

Mid West Kalbarri 99.9% 103.6 74.4% 110.9 0% 47.5

Gascoyne Carnarvon 99.6% 116.1 99.8% 89.8 0.2% 71.2

Wheatbelt Wagin 87.9% 130.3 0.1% 143.8 0% NA

Kimberley Halls Creek 0% NA 0% NA 0% NA

Kimberley Fitzroy Crossing 0% NA 0% NA 0% NA
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full lockdowns could still suppress the spread of the Omicron

variant.

With the increase of mobile phone usage and consent-

based data sharing, there is an increase in mobile phone

data collection by private companies. This data will

continue to exist and grow in size and detail. With the

appropriate safeguards to preserve privacy in place the data

may provide near real-time information and feedback about
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movement patterns. This is particularly relevant to the

ongoing COVID-19 pandemic and helping to inform policy

surrounding public health (4). Converting aggregated data

to characterize individual-level movement need not de-

anonymize the data or violate data protection goals in

order to be informative. As we have shown, if properly

handled, this data can be invaluable in developing effective

controls to deal with disease outbreaks.
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FIGURE 9

Time taken for an infectious case to reach the listed towns for the varying levels of restrictions. The x-axis represents days after the first infection is seeded
in Perth, with the y-axis representing the probability of an infectious individual traveling to the town (or an exposed individual becoming infectious) on the
given day after 10,000 simulations.
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