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Background: Short-term exposure particulate matter with a diameter of 10 µm or
less (PM10) and fine particulate matter (PM2.5) has been associated with heart rate
variability (HRV), but exposure to ultrafine particles (UFP) has been less well
examined. We investigated the associations between the HRV outcomes and short-
term exposure to UFP, PM10 and PM2.5 among school-aged children and seniors.
Methods: CorPuScula (Coronary, Pulmonary and Sanguis) is a longitudinal,
repeated-measure panel study conducted in 2000–2002 in Munich, Germany
including 52 seniors (58–94 years old) with 899 observations and 50 children
(6–10 years old) with 925 observations. A 10-min resting electrocardiogram was
performed to assess resting HRV outcomes [Standard Deviation of Normal to
Normal Intervals (SDNN), Root Mean Square of Successive Differences between
Normal Heartbeats (RMSSD), Low Frequency power (LF), High Frequency power
(HF), ration between low and high frequency (LF/HF)]. UFP and PM exposures
were measured near the care home and school yard for seniors and children,
respectively. Mean exposures during the day of examination (9–21 h) as well as
3-h, 12-h, 24-h, one-day, and two-day lags were assessed. Linear mixed-effect
models were used to investigate the associations between short-term air
pollution and HRV outcomes separately in children and seniors. The models
were adjusted for sex, age, weather conditions (temperature, precipitation, and
water vapor pressure), BMI, lifestyle and medical information. Two and
multipollutant models adjusted for NO2 and O3 were performed.
Results: Among seniors, we observed increases in SDNN, LF, HF and LF/HF ratio
after short-term exposure to UFP (hourly and daily lags) in contrast to decreases
in SDNN and RMSSD after exposure to PM10. Associations were generally robust
Abbreviations

ANS, autonomic nervous system; CO, carbon monoxide; CVD, cardiovascular disease; HF, high frequency
power; HRV, heart rate variability; LF, low frequency power; MIM, Meteorological Institute of the LMU in
Munich; NO2, nitrogen dioxide; O3, ozone; PM, particulate matter; PNS, parasympathetic nervous system;
RMSSD, root mean square of successive differences between normal heartbeats; SDNN, standard deviation
of normal to normal intervals; SNS, sympathetic nervous system; UFP, ultrafine particles.
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to two- and multipollutant adjustment. Among children, we observed increases of
the LF/HF ratio after short-term exposures to UFP at lags 12 and 24 h. In contrast,
we observed decreases of the ratio after exposure to PM2.5 and PM10. Results were
largely unchanged for multipollutant modelling, however we found a more
pronounced increase in SDNN and LF/HF (UFP lag 12 and 24 h) after adjusting
for NO2.
Conclusions: Overall, among seniors, we observed associations of UFP and PM10

exposure with sympathetic responses of the ANS, which play an important role in
sudden heart attacks or arrhythmia. Among children we found more inconsistent
associations between UFP and a delayed increase in HRV. Adjusting for co-
pollutants including NO2 and O3 yielded robust results.

KEYWORDS

ultrafine particles, heart rate variability, co-pollutants, children, seniors, sympathetic and

para-sympathetic nervous systems
1. Introduction

Heart rate (HR) is the number of heart beats per given time

period, conventionally given per minute. Heart rate variability

(HRV) is the fluctuation in the time intervals between successive

heart beats (1). HRV is a non-invasive dynamic metric and

assesses the activity of the autonomic nervous system (ANS),

including both the sympathetic and parasympathetic nervous

systems (SNS and PNS, respectively). Importantly, the ANS has a

well-established role as an indicator of cardiovascular disease

(CVD) risk among adults (2–5). The ANS controls involuntary

actions like HR, body temperature, digestion, perspiration, and the

widening or narrowing of blood vessels (1). In the past decades,

several studies have attributed imbalance in the ANS to some

CVD clinical conditions such as sudden death, coronary artery

disease, or heart failure (6). The ANS regulates the HR and blood

pressure in the short-term to cope with everyday situations (7). A

higher HRV indicates better general health (8), whereas a reduced

HRV has been reported among children with Attention Deficit/

Hyperactivity Disorder (9) or overweight and obesity (10).

Moreover, among adults, a reduced HRV is associated with the

development of cardio-metabolic diseases such as diabetes (11).

The literature shows that ambient air pollution, and more

specifically the exposure to fine particulate matter (PM), is a major

threat to older people with a CVD history and causally contributes

to CVD morbidity and mortality in general (12–17). However,

fewer studies have assessed the effects of ultrafine particles (UFP)

with an aerodynamic diameter of ≤100 nm on CVD. UFPs are of

great interest since they have the ability—due to their small size—

to reach the pulmonary alveoli, from where they can pass into the

circulatory system and reach all organs (18). Specifically, the

potential systemic translocation of UFP can lead to endothelial

and vascular dysfunction, hypertension, thrombosis, atherosclerosis

and eventually might promote vasoconstriction in the coronary

arteries, increasing the risk of stroke, coronary heart disease, heart

failure and ultimately mortality (18–23). Moreover, UFPs are

thought to be more toxic than larger PM and to have independent

adverse health effects since their high reactivity surface area

enables them to adsorb a large amount of toxic metals and
02
organic compounds. These compounds generate oxidative stress

that leads to inflammation and eventually increases risk for

cardiovascular and respiratory diseases (24, 25).

It has been hypothesized that the inhaled UFP, PM10 and

PM2.5, can activate the pulmonary reflexes that modify the

autonomic control of cardiovascular function and potentially

mediate an immediate response (within a few hours) leading to

an autonomic imbalance that can be assessed by HRV outcomes

(26). The latest review and meta-analysis on short-term UFP

exposure, including 12 studies published up to June 2022, found

decreases in some HRV outcomes within hours and up to days

of exposure (22). Specific studies on short-term UFP exposure

(hours to days) have found consistent decreases in HRV among

adults but very little information is available for children (21,

27–29). Moreover, recent studies showed consistent decreases in

HRV outcomes with short-term exposures to fine PM (20, 21).

To our knowledge, only one study reported the same inverse

association between PM and HRV in children (30). Moreover,

the use of multipollutant modelling in this area is also scare.

Previous work has investigated the effects of PM2.5 and ozone

(31) on HRV, and some studies have looked at the adverse

effects of two-pollutant models (UFP and PM2.5) on HRV (32–

34). However, it is also important to look at the effect of NO2

since UFP and NO2 share traffic as their main source and might

be correlated. Without adjusting for co-pollutants, it is

challenging to attribute any association with HRV to UFP alone.

We therefore investigated the association of short-term

exposure to UFP, PM10 and PM2.5 with HRV among elementary

school children and seniors in a care-home in single, two and

multi-pollutant models taking into account other co-pollutants

(i.e., NO2, O3 and PM2.5).
2. Materials and methods

2.1. Study design and participants

CorPuScula (Cor for coronary, Pu for pulmonary and S for

sanguis or blood) is a longitudinal repeated-measures panel study
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conducted in 2000–2002 by the Institute and Outpatient Clinic for

Occupational, Social and Environmental Medicine, Ludwig-

Maximilians-University (LMU) in Munich, Germany. The study

included 52 seniors and 50 children.

2.1.1. Seniors
The seniors were recruited via letter and an informational event

at their care home in Munich (Wohnstift Augustinum Munich-

North). Participation was voluntary and all those who consented

to participate were invited to an initial one-hour long personal

interview in the measurement van located outside their care

home. Moreover, the participants filled in a standardized

questionnaire and individual characteristics were collected

including: age, height, weight, smoking habits, alcohol

consumption, chronic illnesses, medication intake, and physician-

diagnosed allergies. At the end of the initial interview, the

participants gave written informed consent. Inclusion criteria for

the seniors were as follows: (1) older than 55 years of age, (2)

resident of the care home Wohnstift Augustinum Munich-North,

and (3) time availability to complete the study over the

upcoming year. The exclusion criteria included: (1) poor physical

health that would prevent obtainment of clinical measurements,

(2) current tobacco use, (3) presence of a pacemaker, and (4)

intake of blood thinners (e.g., Marcumar). The participants were

followed between May 2000 and July 2001 except during acute

sickness. If possible, the appointments were scheduled at the

same time of the day and the same day of the week to eliminate

potential confounding from circadian rhythms or weekly effects.

Routine examinations included the following: (1) a standardized

questionnaire, (2) a bi-weekly 10-min electrocardiogram, (3) a

bi-weekly blood sample, (4) blood-pressure measurement, and

(5) lung-function measurements.

2.1.2. Children
In the same way, the children were recruited at the

Strehleranger elementary school in Munich-Neuperlach by

sending a letter describing the study along with a response form

to the parents/guardians. Participation was voluntary, and all

parents/guardians who gave their consent were invited alongside

their children to an initial one-hour long personal interview and

filled in the initial questionnaire. For all participants, at least one

parent/guardian was required to be present at the first interview.

The only inclusion criterion was attendance at the Strehleranger

elementary school. The only exclusion criterion was exposure to

tobacco at home or in private life. The children were followed

between September 2001 and July 2002 except during vacation,

school holidays, or acute sickness. Similarly to the seniors and

following the same strategy, the appointments were rescheduled

if possible. Routine examinations included the same

measurements as in the senior cohort except for the withdrawal

of a blood sample. In this paper and for both groups, we will

focus on the HRV outcomes only. A flow diagram reflecting all

the targeted number of observations vs. the ones available and

eventually used in the analyses can be found in Supplementary

Figures S1A,B. This study was approved by the Ethics

Committee of the Medical Faculty at LMU (No. 130/00).
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2.2. Exposure assessment: air pollutants and
meteorological parameters

UFPs (≤100 nm in diameter) were measured as particle

number concentration (PNC, particles/cm3). The measurements

for the seniors were carried out with a condensation particle

counter (TSI 3022A, lower particle size detection limit >7 nm)

which was located approximately 3 km away from the care home.

For children, a particle counter (TSI 3025A, lower particle size

detection limit >3 nm) was placed on the school grounds, which

is located on the Strehleranger road. The calendar daytime mean

concentrations and individual hourly and lagged exposures prior

to the examinations were calculated from hourly means.

Particulate matter PM10 and PM2.5 concentrations were

measured using a Low Volume Sampler (LVS3; Leckel brand)

located in the park of the Wohnstift Augustinum and the

courtyard of the Strehleranger elementary school for both the

seniors and the children’s cohorts, respectively. Measures of fine

PM were collected for 24 h but only the concentrations between

9:30 am until 9:30 pm were used as these were the main times in

which the participants were active outdoors. The daytime mean

concentrations were then calculated and used in the analyses as

lags 0, 1 and 2.

Exposure to other air pollutants and meteorological parameters

(i.e., temperature, water vapor pressure, precipitation and wind

speed) were collected at the measuring station Johanneskirchen

(L8.12). The station was located 9 km north and 7 km south of

the senior home and the school, respectively. We obtained air

pollution data from the station for nitrogen dioxide (NO2, μg/

m3) and ozone (O3, μg/m3). Meteorological variables for the

senior cohort were obtained from the measuring station of the

Meteorological Institute of the LMU in Munich (MIM), which is

approximately 8 km from the care home. For the children’s

cohort, we obtained the meteorological data from the MIM’s

measuring station Theresienstrasse (approximately 7 km away).

The meteorological data included hourly mean values for air

temperature (°C), water vapor pressure (hPa), precipitation (mm)

and wind speed (m/s). We calculated the corresponding daytime

mean values for the measured air pollution intervals (9:30 am to

9:30 pm).
2.3. Outcomes: HRV measures

Every other week, HRV was measured using a long-term ECG

monitoring system from the company Customed (Custo Flash

200). This monitor used 2 channels alongside 5 electrodes. Raw

ECG data was processed and cleaned prior to HRV analyses by

an experienced doctor. Quality control was performed for the

10-min measurement interval, and extra systoles were identified

and removed from the dataset.

For data collection, participants lay relaxed on the bed for at

least 5 min before and during the entire 10 min of the ECG

examinations. They were instructed not to speak or move and to

breathe calmly and evenly during the examination. We extracted

the time-domain measures standard deviation of normal-to-
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normal intervals (SDNN) representing both the SNS and PNS

activity, and the root mean square of successive differences

between normal heartbeats (RMSSD) that is more strongly

influenced by the PNS than SDNN. The frequency-domain

measures yielded information about the total power in the heart’s

rhythm explained by the variability of the normal-to-normal

intervals. These include the low-frequency power (LF, 0.04–

0.15 Hz) influenced by both SNS and the PNS, the high-

frequency power (HF, 0.15–0.4 Hz) reflecting the PNS, and the

frequency ratio of LF/HF to estimate the balance between SNS

and PNS activity.
2.4. Statistical analysis

We analyzed associations between UFP, PM2.5/PM10 and HRV

outcomes using linear mixed-effects regression models separately

in adults and children. The time variable in the models was the

date of measurement. The models also included the personal

identification number as random effect. The autocorrelation

structure included the time covariate and the personal

identification number as a grouping factor within the

observations that were assumed correlated. We used both

unweighted (homoscedastic) as well as weighted (heteroscedastic)

models where we allowed variances to differ by person, with a

control for time trend (35). The weights were calculated as a

ratio of the stratum standard errors to the within-group standard

error. We assessed the adequacy of the heteroscedastic fit by re-

examining plots of the standardized residuals vs. the fitted values

by stratum to check if the standardized residuals had the same

variability in each stratum. Also, the fit was tested with the

ANOVA method. 95% confidence intervals (CIs) and p-values

were computed using a Wald t-distribution approximation.

For each pollutant (UFP, PM10 and PM2.5), we calculated

lagged exposures including both single-day lags (i.e., lag 0, lag 1

and lag 2) as well as individual lags for PM10 (3, 12 and 24 h)

and UFP (1, 3, 12 and 24 h).

The 5 outcomes (SDNN, RSMMD, LF, HF and LF/HF) were

analyzed separately. In regression analyses, we first estimated the

crude association between the lag periods for single pollutants

with each outcome. Second, we estimated the same associations

adjusting for possible confounders as found in previous studies

(21, 36). To identify potential confounding and minimal

sufficient adjustment sets, we constructed a directed acyclic graph

(DAG) using the DAGitty program (37) separately for seniors

and children. For seniors, the second model included age (years),

sex (male/female), alcohol [did they drink on the day of the

examination (yes/no), repeated measure], BMI (kg/m2), day of

the week, precipitation, temperature, and water vapor pressure

(see Supplementary Figure S2A). For children, the second

model included age (years), sex (male/female), BMI (kg/m2), day

of the week, precipitation, temperature, and water vapor pressure

(see Supplementary Figure S2B). We did not adjust for multiple

comparisons because the tests were highly correlated, thus

violating the assumption of independence (see Supplementary
Frontiers in Epidemiology 04
Table S1 for correlations of outcome variables and the results

section for correlations of exposure variables).

Meteorological variables (i.e., temperature, precipitation, and

water vapor) were assessed for linearity using models without

exposure variables, which resulted in modelling temperature and

water vapor pressure with natural splines using 4 knots and

precipitation with no splines. The best fitted lags for

meteorological variables, which varied by outcome and group,

were used (see Supplementary Table S1).

We then conducted two and multipollutant models by

simultaneously adding the best fitted concentration (lag 0–2) of

NO2 and O3 to the main models to examine the robustness of

the effects after further controlling for the exposure (see

Supplementary Table S2). Also, for models where the main

exposure was UFP, we further adjusted for PM2.5 and vice versa.

We also ran further sensitivity analyses to assess the robustness

of our results. For the seniors, we investigated the inclusion of the

intake of heart medication (yes/no if they were prescribed a heart

meds at the time) before every examination. We also repeated

analyses including season as an extra meteorological factor (4

seasons: winter, spring, summer, and autumn). For the children,

we investigated the inclusion of having hay fever symptoms (yes/

no) at the day of the examination as well as season.

For seniors and as examined in prior studies (38), we evaluated

potential effect modification by inflammation markers (i.e., C-

reactive protein as a continuous variable) and for blood pressure

(hypertensive vs. not hypertensive). We conducted effect

modification analyses through addition of a multiplicative

interaction term between the exposure and the covariate of

interest into the main model.

The models were estimated using restricted maximum

likelihood (REML) and “nlminb” optimizer [R-package “state”

(39)]. We employed the R functions varIdent() to define the

variance function structure and lme() to fit the models [R-

package “nlme” (35, 40)]. All statistical analyses were conducted

in R version 4.3 (R Core Team) (39).
3. Results

In total, 47 seniors (37 females, mean age = 76.7) and 47

children (27 females, mean age = 8.1) were included in the

analyses (Table 1). Six seniors were obese and a third were

former smokers. The majority were on heart medication (61.7%)

and half had hypertension. Among children, only one was obese,

none reported asthma problems, and none were on regular

medication.

Seniors were followed up between May 2000 and June 2001

with a total of 899 available observations on HRV and an

average of 19.1 observations per senior. Of the 899 observations,

603 and 578 had complete UFP and fine PM measures,

respectively, with no missing values (Supplementary

Figure S1A). The mean values for SDNN and RMSSD were

30.7 ms (SD = 14.3) and 22.7 ms (SD = 12.2) respectively

(Table 2). For the seniors, the mean UFP exposure was 27,471

(SD = 15,100) n/ml. Very high positive correlations were found
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TABLE 2 HRV outcome characteristics averaged over examination days.

HRV
characteristics

Seniors Children

Mean
(SD)

Median
(IQR)

Mean
(SD)

Median
(IQR)

SDNN (ms) 30.7 (14.3) 28.4 (17.9) 49.3 (16.3) 46.7 (20.9)

RMSSD (ms) 22.7 (12.2) 19.4 (16.6) 46.3 (18.8) 42.8 (25.6)

LF power (ms2) 274 (338) 151 (257) 807 (560) 657 (630)

HF power (ms2) 144 (190) 77.8 (144) 664 (452) 588 (624)

LF/HF (%, higher is
worse)

2.5 (1.9) 2.1 (2.2) 1.6 (1.3) 1.3 (1.2)

SDNN, standard deviation of normal to normal intervals; RMSSD, root mean square

of successive differences between normal heartbeats; LF, low frequency power;

HF, high frequency power; LF/HF, ratio of low to high frequency power and

HRV, heart rate variability.

TABLE 1 Characteristics of the study population at the initial examination.

Characteristics Seniors mean (SD) or
n (%)

Children mean (SD) or
n (%)

Number of subjects 47 47

Sex (females) 37 (78.7) 27 (57.4)

Age (year) 76.7 (9.6) 8.1 (1.2)

Height (cm) 164 (6.85) 133 (9.4)

Weight (kg) 69.1 (12.3) 28.5 (5.7)

BMI (kg/m2) 25.6 (4.1) 16.1 (1.9)

Obesity status
Underweight 1 (2.1) 4 (8.5)

Normal 24 (51.1) 37 (78.7)

overweight 16 (34.0) 5 (10.6)

Obese 6 (12.8) 1 (2.1)

Former smokers 15 (31.9) –

On heart
medication

29 (61.7) –

Hypertension (yes) 23 (48.9) 0

Haddad et al. 10.3389/fepid.2023.1278506
between PM2.5 and PM10 with medium to high positive

correlations between PM2.5, PM10, NO2 and UFP and medium to

high negative correlations between UFP and O3 (Table 3).

Children were followed up between September 2001 and July

2002 with a total of 925 available observations on HRV and an

average of 19.7 observations per child. Of the 925 observations,

only 325 had complete UFP measures but 710 had complete fine

PM measures (Supplementary Figure S1B). The mean values for

SDNN and RMSSD were 49.3 ms (SD = 16.3) and 46.3 ms (SD =

18.8) respectively (Table 2). The mean UFP exposure was 19,872

(SD = 5,482) n/ml. Similar to the seniors, a very high positive

correlation was observed between PM2.5 and PM10. However very

low negative correlations were present between PM2.5, PM10,

NO2 and UFP (Table 3).
3.1. Seniors

In UFP single pollutant models among seniors (Figure 1 and

Supplementary Table S3), we observed an increase in SDNN at

lags 0 and 1 day. In contrast, at short term exposures to PM10,
Frontiers in Epidemiology 05
we observed decreases in SDNN (lags 12 and 24 h, and lag 1

day). No associations were found between UFP exposure and

RMSSD. PM10 (12 h lag) was associated with a clear decrease in

RMSSD. In relation to the frequency-domain outcomes, UFP

exposure was associated with consistent increases in both LF and

HF powers at all lags, whereas for PM10, only very acute

exposure was associated with a transient increase in LF and HF.

UFP exposures (lags 12 and 24 h and lags 1 and 2 days) were

positively associated with the LF/HF ratio, but not PM10 was not.

No associations were observed between exposure to PM2.5 and

any outcomes.

In UFP models, we observed robust results after adjusting for

NO2 and O3 throughout the 5 different outcomes. Results were

also robust to adjustment for PM2.5 with the exception of a more

pronounced increase in SDNN and LF at lag 0 and lag 1,

thus also affecting the estimates at lag 0 and 1 in

multipollutant modelling (Figure 2 and Supplementary

Table S4). In PM10 models, results were robust to adjustment

for NO2 and O3 in two and multipollutant modelling

(Supplementary Figure S3).
3.2. Children

Among children no clear associations were found between

UFP and fine PM and the time-domain outcomes (Figure 3

and Supplementary Table S5). While point estimates for UFP

were consistently below 0 for LF, all CIs were large and

overlapped the null. In contrast, no patterns could be observed

for UFP and HF. Similarly for PM10, consistent but weak

decreases were seen for LF but no pattern for HF. Short-term

exposures to UFP (12 and 24 h) were positively associated with

the LF/HF ratio. PM2.5 and PM10 were both negatively

associated with the ratio at lag 2.

In UFP models, results were robust to adjustment for PM2.5

and O3 throughout the 5 different outcomes. Models were also

robust to adjustment for NO2 with the exception of a more

pronounced increase in SDNN and LF/HF ratio at lag 12 and

24 h thus also affecting the estimates in multipollutant modelling

(Figure 4 and Supplementary Table S6). In PM10 models,

results were robust to adjustment for NO2 and O3 in two and

multipollutant modelling (Supplementary Figure S4).
3.3. Sensitivity and effect modification
analyses

Sensitivity analyses showed that UFP and PM10 results were

robust to adjustment for heart medication and season among

seniors (Supplementary Figures S5, S6). Among children, model

results for UFP and PM10 were largely unchanged after adjusting

for season and hay fever (Supplementary Figures S7, S8). There

were no clear differences in the effects when it came to analyses

by hypertension (Supplementary Figures S9, S10) or CRP

(results not shown) among seniors in any of the exposures.
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TABLE 3 Air pollution characteristics averaged over examination days.

Descriptive statistics Spearman correlation
coefficients

Mean (SD) Min P25 P50 P75 Max IQR PM2.5 PM10 NO2 O3

Seniors
UFP (n/ml) 27,471.4 (15,099.8) 5,981.3 16,609.4 23,271.8 32,345.1 96,343.7 15,735.7 0.610 0.563 0.698 −0.600
PM2.5 (µg/m

3) 14.9 (8.9) 1.8 9.4 13.0 18.1 63.0 8.7 0.937 0.506 −0.438
PM10 (µg/m

3) 19.9 (10.7) 4.0 13.0 18.5 23.6 71.4 10.6 0.500 −0.391
NO2 (µg/m

3) 28.3 (12.1) 7.4 19.3 24.8 36.3 70.5 17.0 −0.792
O3 (µg/m

3) 54.5 (31.8) 3.6 27.8 55.3 81.8 148.9 54.0

Temperature (°C) 12.1 (7.7) −6.7 5.4 12.1 18.5 28.2 13.1

Water vapor pressure (hPa) 10.5 (3.5) 4.9 7.5 10.3 13.3 20.1 5.8

Precipitation (mm) 1.1 (3) 0.0 0.0 0.0 0.8 35.7 0.8

Children
UFP (n/ml) 19,872.4 (5,481.7) 8,857.8 16,241.3 19,582.1 22,698.6 34,881.9 6,457.3 −0.087 −0.005 0.002 0.316

PM2.5 (µg/m
3) 16.4 (13.3) 0.4 7.8 12.0 20.9 94.2 13.1 0.950 0.363 −0.146

PM10 (µg/m
3) 21.5 (15.2) 1.8 11.2 17.0 27.5 102.9 16.3 0.435 −0.130

NO2 (µg/m
3) 27.8 (16) 6.5 17.4 23.9 35.4 148.3 18.0 −0.644

O3 (µg/m
3) 43.2 (27.9) 3.0 23.1 38.9 56.0 142.9 32.9

Temperature (°C) 10.1 (8.6) −11.3 4.2 10.3 16.5 28.6 12.3

Water vapor pressure (hPa) 10.2 (4.1) 4.0 6.8 9.2 12.7 22.7 5.9

Precipitation (mm) 1.1 (4.1) 0.0 0.0 0.0 0.2 58.9 0.2

UFP, ultrafine particles; PM, particulate matter.
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4. Discussion

4.1. Our findings

Among seniors, we observed positive associations between

SDNN, LF, HF and LF/HF ratio and short-term exposure to UFP

(hourly and daily lags) in contrast to decreases in SDNN and

RMSSD after exposure to PM10. Generally, the association

between fine PM and all 5 HRV outcomes was less clear. For

two and multipollutant modelling, we generally found UFP

associations were robust to adjustment. Among children, we

observed inconsistent associations between UFP and all HRV

outcomes and mostly null associations between PM2.5 and PM10

and HRV outcomes. Results were robust for multipollutant

modelling in general, however, adjustment for NO2 enhanced

some patterns for the association of UFP with SDNN and LF/HF

(UFP lag 12 and 24 h).
4.2. Comparing with the literature

In terms of short-term exposure to UFP, and in contrast to

our findings, a recent meta-analysis by Zhang et al. (22)

showed decreases in SDNN, RMSSD, LF and LF/HF within 6 h

after exposure. Moreover, they found that daily lags on the

same day or preceding days were not associated with HRV

which is in contrast with our results of a positive association

with SDNN, LF, HF and LF/HF. In terms of short-term

exposure to fine PM, previous studies on the general population

show inconsistent associations with HRV outcomes. Some

observed decreases in time-domains (21, 41) and frequency-
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domain outcomes (20, 27, 42, 43), but also others observed

increases in both domains (43–45) or no associations at all

(46–48) as seen in our study.

Further, a very limited number of studies have looked at the

exposure of ambient short-term UFP and fine PM on HRV

outcomes among children. A study in California demonstrated

that adolescents residing in neighborhoods characterized by

higher concentrations of PM2.5 had a decrease in HRV

specifically in HF band in response to social stress (49). Saenen

et al. (30), examined the association between fine PM exposure at

home and school on SDNN, RMSSD, HF and LF among school

children aged between 9 and 12 years old and found a decrease

in LF with an increase in outdoor PM10 exposure as well as

decreases in RMSSD, HF and LF with an increase in indoor

PM10 exposure. In contrast, we observed no consistent and clear

associations between fine PM exposure and HRV. Chen et al.

(29) investigated the short-term effects of indoor UFP on

children aged between 11 and 14 years old in schools in Beijing

and found decreases in SDNN at lag 1 and decreases in SDNN,

LF and HF at lag 2. Similarly, we found decreases in LF at most

hourly and daily lags.
4.3. Multipollutant modelling and sensitivity
analyses

Our results for two and multipollutant models showed mostly

robust results. A review on ambient air pollution and HRV

conducted by Buteau and Goldberg (50) observed some decreases

in HRV after the exposure to NO2 ranging between 5 min to 5

days prior measurements. In our study and among seniors, the
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FIGURE 1

Changes in outcomes per IQR exposure increase to UFP, PM10 and PM2.5 among seniors. The circular estimates represent the hours (1, 3, 12 or 24 hours)
after exposure and the triangular estimates represent the daily lags (0, 1, 2).
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correlations between pollutants were high. Even though UFP was

correlated with the co-pollutants, including NO2, the robustness

in our results indicates that there was no major collinearity

influencing the reliability of the two and multi-pollutant models

and that the associations seen between UFP and HRV were

independent of fine PM, NO2 and O3. Moreover, among

children, we observed a weaker correlation between UFP and the

co-pollutants compared to the seniors. We adjusted our analyses

for NO2 as surrogate for traffic related air pollution (TRAP),

thus reducing confounding of the air pollutant and HRV

associations by sources of traffic. However, the potential for

residual confounding by traffic remains due to the imperfect

correlation between NO2 and TRAP.. In terms of adjusting for

O3 and as observed by a recent systematic review, it is important
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to consider adjustment for O3 since an association has been

observed between short-term exposure to O3 and a decrease in

HRV (51). Moreover, in a study conducted on HRV in a two-

pollutant model including PM2.5 and O3, it was concluded that

PM2.5 influenced HRV rather than O3 (31). We obtained

comparable conclusions where, after the adjustment of O3 in two

and multipollutant modelling, the results were robust leading to

the affirmation of the effects of UFP and fine PM.

It is important to note that half of the seniors were on heart

medication and the previous literature observed a decrease in

HRV activity among people with heart disease (31, 52). This

might explain the low SDNN in comparison to other studies in

the general population. Upon adjusting for heart medication, the

estimates were robust.
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FIGURE 2

Changes in outcomes per IQR exposure increase to UFP, PM10 and PM2.5 among seniors - two and multi-pollutant models. The circular estimates
represent the hours (1, 3, 12 or 24 hours) after exposure and the triangular estimates represent the daily lags (0, 1, 2).
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4.4. Risk of exposure misclassification

It is important to note that the placement of the pollutant

measurement stations may lead to pollutant-specific exposure

misclassification. In particular, among seniors, the fine PM

measurement sampler was located in the park of the care home

whereas for UFP, the counter was placed 3 km. away from the

care home. For NO2 and O3, the measuring station was located

9 km north of the care home. We therefore expect a higher

degree of exposure misclassification for UFP and NO2. However,

simultaneous measurements of UFP at the care home showed

that the temporal concentration changes at both locations were

very similar. Among children, the exposure measurement does

not account for exposures of children at home but only at
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school, potentially contributing to the inconsistent results in

children.
4.5. Biological mechanisms

Previous studies have demonstrated that exposure to UFP and

fine PM causes both inflammation and oxidative stress that can

contribute to cardiovascular disease and eventually cardiovascular

mortality (53). A number of experiments have shown the

biological mechanisms behind the association of UFP and fine

PM with cardiovascular diseases at the molecular level. The very

first contact of the particles is with the nasal and pulmonary

receptors in the respiratory epithelium that will lead to a
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FIGURE 3

Changes in outcomes per IQR exposure increase to UFP, PM10 and PM2.5 among children. The circular estimates represent the hours (1, 3, 12 or 24
hours) after exposure and the triangular estimates represent the daily lags (0, 1, 2).
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disturbance of the autonomic dysfunction and perturbations in the

heart rate. Secondly, oxidative stress initiates an inflammatory

response by the release of biologically active intermediates. This

localized imbalance might also lead to an oxidative stress

response and eventually lung inflammation. HRV is an indicator

of the ANS that depends on the SNS and PNS for transferring

information and where both systems interplay to regulate HRV

(53). An imbalance in the function of the SNS and PNS could

have opposite effects on HRV leading either to an increase or a

decrease in HRV. More specifically, the effects of an exposure to

UFP and fine PM could be mediated either through the SNS

leading to decreases in HRV or through the PNS leading to

increases in HRV (33). The SDNN and LF band reflect both SNS
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and PNS activities while the RMSSD and the HF band reflect

PNS activity. We therefore consider the LF/HF as a ratio between

SNS/PNS.

Among seniors we observed a general decrease in SDNN,

RMSSD and HF after the exposure to PM10 which would suggest

a sympathetic response. In line with this, we also observed

increases in the LF/HF ratio upon the exposure to UFP. This

suggests greater SNS than PNS responses, which coincides with

previous studies where greater SNS responses played an

important role in sudden heart attacks or arrhythmia (22). The

same response was observed among children with increase in the

LF/HF ratio upon the exposure to UFP leading to the risks of

arrythmia and heart disease (22).
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FIGURE 4

Changes in outcomes per IQR exposure increase to UFP, PM10 and PM2.5 among children - two and multi-pollutant models. The circular estimates
represent the hours (1, 3, 12 or 24 hours) after exposure and the triangular estimates represent the daily lags (0, 1, 2).
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4.6. Strengths and limitations

This study has several strengths, firstly the ability to consider a

range of exposure windows for all air pollutants and thus the

assessment of temporal exposure patterns, both hourly and daily

lags. Second the availability of data on co-pollutants allowed us

to adjust for those in two and multipollutant modelling. Thirdly,

the design of Corpuscula allowed for repeated-measures. While

the number of participants was small, we were able to analyze a

large number of observations per participant, which was enough

to detect some associations among the seniors.

One main limitation is the small number of observations we

had among children in terms of UFP measures and when

adjusting for multi-pollutants. Because of the large number of
Frontiers in Epidemiology 10
missing values, the weighted models did not converge, and we

had to report unweighted results, thus the confidence intervals

were very wide and we were not able to detect clear associations.

Another limitation was that we did not have personal exposure

measures for NO2 and O3, since these co-pollutants were not

measured at the school or the care-home but instead 7–8 km

away from the actual research area. Thus, our ability to detect

accurate associations for these pollutants in multipollutant

modelling might have been reduced. A further limitation is that

the study was carried among seniors and children, and the

results may not be transferable to other age groups or to the

general population. Nevertheless, these are populations

traditionally thought to be particularly vulnerable to the effects

of air pollution.
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5. Conclusions

Overall, among seniors, we observed associations of UFP and

PM10 exposure with sympathetic responses of the ANS, which

play an important role in sudden heart attacks or arrhythmia.

Among children we found more inconsistent associations

between UFP and a delayed increase in HRV. Adjusting for co-

pollutants including NO2 and O3 yielded robust results.
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