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Sufficient component cause
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Simulation studies are a powerful and important tool in epidemiologic teaching,
especially for understanding causal inference. Simulations using the sufficient
component cause framework can provide students key insights about causal
mechanisms and sources of bias, but are not commonly used. To make them
more accessible, we aim to provide an introduction and tutorial on developing
and using these simulations, including an overview of translation from directed
acyclic graphs and potential outcomes to sufficient component causal models,
and a summary of the simulation approach. Using the applied question of the
impact of educational attainment on dementia, we offer simple simulation
examples and accompanying code to illustrate sufficient component cause-
based simulations for four common causal structures (causation, confounding,
selection bias, and effect modification) often introduced early in epidemiologic
training. We show how sufficient component cause-based simulations illuminate
both the causal processes and the mechanisms through which bias occurs,
which can help enhance student understanding of these causal structures and
the distinctions between them. We conclude with a discussion of considerations
for using sufficient component cause-based simulations as a teaching tool.
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Introduction

Simulation is an important tool in epidemiologic teaching, especially for helping

students understand causal inference (1). Although it is often used as a heuristic for

causation, the sufficient component cause (SCC) framework has only rarely been used for

simulation work [e.g., (2, 3)]. However, simulations based in the SCC framework have

substantial potential for helping students understand causal mechanisms and sources of

bias. In this article, we aim to make SCC-based simulations more accessible to

epidemiology students and educators.

We assume some prior introduction to the SCC and potential outcomes (counterfactual)

frameworks for causation, but briefly summarize these frameworks and the connection

between them [for more detailed expositions see: (4–11)]. Next, we provide an overview

of SCC-based simulations, including simple examples with sample R code, illustrating

their utility for understanding and distinguishing between causation, confounding,

selection bias, and effect modification. We conclude with discussion of considerations

regarding sufficient component cause-based simulations as a teaching tool.
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Summary of SCC framework

In the SCC framework (4, 12, 13), a “cause of a specific disease

occurrence is an antecedent event, condition, or characteristic that

was necessary for the occurrence of the disease at the moment it

occurred, given that other conditions are fixed.” (4). The

assumptions of this framework include that no single cause is

sufficient to yield the outcome on its own; rather, every cause

works with and indeed requires other causes (“causal

complements”), in causing the outcome. A set of causes

(“components”) that are sufficient to cause the outcome are non-

redundant (i.e., all components are needed). In addition, there

are many possible sets of causal components that are sufficient to

cause the outcome, making any specific set unnecessary (4). The

first set of causal components to be completed is responsible for

the outcome occurring, but individuals may complete multiple

(redundant) sufficient sets by the time they are observed; this

leads to discrepancy between the etiologic and excess fractions

[see (2, 14, 15) for more details].

To illustrate this, consider the directed acyclic graph (DAG) in

Figure 1A showing an exposure causing an outcome. The

corresponding SCC model is shown in Figure 1B; each circle

represents a sufficient set of causes (hereafter, a sufficient cause).

The circle containing exposure and U1 indicates that the

exposure alone is insufficient to cause the outcome (it requires

the presence of other causal complements, some likely unknown,

the totality of which are represented by “U1”). The circle

containing U2 indicates that the outcome can additionally arise

from causes unrelated to the exposure, all represented by “U2”.

Finally, the exposure could also prevent the outcome, indicated

by the sufficient cause including the absence of the exposure (i.e.,

no exposure) and its causal complements “U3”.
Connection between the SCC framework
and potential outcomes

The SCC and potential outcomes (PO) frameworks can be

connected via response types. Let “E” and “Y” represent an
FIGURE 1

DAG and SCC model correspondence.
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exposure and outcome, respectively. Response types are labels

defined for an individual by their set of potential outcomes

under two or more exposure conditions (e.g., Ye = 1 and Ye = 0 are

an individual’s set of potential outcomes under exposure values

of 1 and 0). Response types are specific to a set of exposures,

outcome, and timeframe (i.e., observation period) (16). As shown

in Table 1, for a dichotomous exposure, individuals who will

experience the outcome in the specified timeframe regardless of

exposure (i.e., Ye = 1 = 1 and Ye = 0= 1) are said to be “doomed”,

while individuals who experience the outcome only if exposed

(i.e., Ye = 1 = 1 and Ye = 0 = 0) are said to be “causal.” “Preventive”

response types are individuals who experience the outcome only

if unexposed (exposure prevents the outcome, i.e., Ye = 1 = 0 and

Ye = 0 = 1), and individuals who never experience the outcome,

regardless of exposure. (i.e., Ye = 1 = 0 and Ye = 0= 0), are said to

be “immune.”

An individual’s response type is determined by their

distribution of component causes other than the exposure of

interest [i.e., their “risk set type” (14)]. Table 1 shows the

correspondence between response types and risk set types for the

example in Figure 1. Any individuals with U2 (or both U1 and

U3), are “doomed” response types because they complete a

sufficient cause of the outcome regardless of their exposure

status. Individuals with the causal complement of exposure, U1,

who are not doomed (i.e., lack components to complete any

other sufficient causes; i.e., U2 and U3) are “causal” types.

Conversely, individuals with the causal complement of absence of

exposure, i.e., U3, who are not doomed are “preventive” types.

Finally, individuals who possess neither U1 nor U2 nor U3, and

therefore cannot complete any sufficient causes of the outcome

regardless of exposure status, are “immune” types. Theory that

the exposure can only affect the outcome in one direction is

called monotonicity; in these cases, either causal or more

commonly, preventive types, are assumed to not exist. Such

monotonicity may occur due to the lack of a preventive sufficient

cause mechanism (e.g., the No exposure/U3 sufficient cause in

Figure 1 would not exist), or a weaker assumption that there are

no individuals in the sample who would complete only the

sufficient cause including No exposure/U3 (11, 17).
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TABLE 1 Correspondence between potential outcomes and SCC models
for example in Figure 1.

Individual’s
response type

Ye = 1 Ye = 0 Individual’s characteristics
(risk set type)a

Doomed 1 1 U1(1)U2(1)U3(1)
U1(1)U2(1)U3(0)
U1(0)U2(1)U3(1)
U1(0)U2(1)U3(0)
U1(1)U2(0)U3(1)

Causal 1 0 U1(1)U2(0)U3(0)

Preventive 0 1 U1(0)U2(0)U3(1)

Immune 0 0 U1(0)U2(0)U3(0)

Ye = 1, potential outcome under exposure = 1; Ye = 0, potential outcome under

exposure = 0.
aRisk set notation: U1(1) indicates the individual has causal component U1, while

U1(0) indicates they do not have U1.
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The distribution of response types in the population

determines the size of the effect of an exposure or intervention

in that population. Because response types are determined by the

risk set type, the SCC framework makes clear that the true size

(i.e., magnitude) of a causal effect is driven by the prevalence of

the component causes other than the exposure of interest in the

population (4).

In addition to clarifying magnitude of causal effects, response

types also help clarify when to expect bias in an unadjusted

effect estimate. We define bias as a difference in an estimated

causal effect and the true causal effect that arises due to non-

exchangeability (different distribution) of response types between

exposed and unexposed individuals.
Methods

Overview of SCC-based simulations

Simulations based in the SCC framework were developed to

understand the causal structures and mechanisms in which bias

occurs (15, 18), by generating a sample for which all causal

components, and therefore distribution of response types and

magnitude of true causal effects, are known. In this section and

Figure 2, we provide an overview of the simulation steps;

illustrative examples are provided in a later section. In this

approach, we begin with a DAG, typically of dichotomous

variables, and translate it to an SCC model by including

additional variables, such as causal complements and other

sufficient causes as needed to meet the SCC framework

assumptions outlined above (Figure 2, step 1) (5, 15, 18). For

example, for the DAG in Figure 1, translation to the SCC model

involves: (i) a sufficient set including the Exposure, with the

additional variable U1 representing causal complements of

Exposure required for SCC conditions; (ii) a sufficient set with

No exposure and the additional variable U3 representing causal

complements of No exposure; and (iii) an additional variable U2,

representing other sufficient causes of the outcome not related to

exposure. Next, the prevalences of all exogenous variables

(variables without a parent) in the SCC model are specified,
Frontiers in Epidemiology 03
which determines the true magnitude of the causal effect of

interest as discussed above. These prevalences also define the

effect sizes for other relationships between variables in the DAG

(e.g., strength of effect of a confounder on the exposure and

outcome). Importantly, in contrast to regression-based

simulations where effect sizes are input directly as coefficients in

data-generating models, in SCC simulations the prevalences of

exogenous causal components are set to produce the desired

prevalence of the outcome and effect sizes (additional details and

example calculation in Supplementary Appendix 1).

Next (Figure 2, step 2), individual-level data are generated,

with values for variables assigned in a hierarchical fashion,

starting with exogenous variables and working toward the

outcome, the endogenous variable with the most parents in the

figure. Individual values for exogenous variables are drawn from

binomial probability distributions for the specified sample

prevalences. For each individual, values for endogenous variables

(e.g., outcome and any other variables with a parent in the

original DAG) emerge from the values of the components that

cause them. This results in a dataset in which the values of all

causal components (variables) for each individual are known.

This dataset can then be analyzed in accordance with the study

question as one would analyze any real-world dataset (Figure 2

step 3). The data generation process is then repeated many times,

with results summarized across iterations (Figure 2, step 4).

Observed results can be compared to the known true magnitude

of the causal effect.
Illustrative examples

We illustrate SCC-based simulations showing causation,

confounding, selection (collider) bias, and effect modification

using the example that low educational attainment (e.g., less than

high school degree) is positively associated with dementia risk

(19–21). For each causal structure, we include translation from

the DAG to SCC model, comparison of true and observed

results, and discussion of response types to illuminate bias

mechanisms. To illustrate how different causal structures can

lead to similar observed associations in data, in all simulations

we set values for causal components to produce crude risk ratios

of approximately 1.55, which falls in the range of associations

reported in the empirical literature on education and dementia

(19–21). A key benefit of simulations, especially in the context of

teaching epidemiologic concepts, is that they allow the analyst to

specify the truth, and do not need to perfectly replicate the real

world; the causal structures we show are intentionally simplified,

allowing us to isolate each one and demonstrate how it gives rise

to associations and patterns in data. We note that simulations

may be used for other purposes, such as answering applied

research questions, where specification of accurate DAGs and

effect sizes is more important, but this is beyond the scope of

this paper.

For all scenarios, we simulate 1,000 samples of 10,000

individuals, and in each scenario, our estimand is the average

treatment effect (ATE) in the analytic sample. All code is
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FIGURE 2

Overview of SCC simulation approach.

Kezios and Hayes-Larson 10.3389/fepid.2023.1282809
available in the Supplementary Material (Supplementary

Appendix 5) and on GitHub (https://github.com/ehayeslarson/

SCCsims), and is intended to accompany the text.

For these examples, we make several simplifying assumptions.

First, unless noted otherwise by the DAG, causal components (e.g.,

causal complements of the exposure) are independent from one

another. In all example simulations, we invoke monotonicity,

positing that low education cannot prevent dementia in our

sample (i.e., here we assume the No Exposure/U3 cause in

Figure 1B does not exist, although one could instead invoke the

weaker monotonicity assumption described above without

changing results). These assumptions can be relaxed, but add

complexity to the simulations that is beyond the scope of this paper.
FIGURE 3

DAG and SCC model for causation.
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Results

Causation

As discussed above, one possible reason for the association

between low education and dementia is that low education is a

cause of dementia (DAG and SCC model shown in Figures 3A,

B, respectively) (19). For this causal model, response types

corresponding to causal components are shown in Table 2.

In Section 1 of the accompanying simulation code, we simulate

this scenario, setting the prevalences of Z1 and Z2 to values that

produce a true risk ratio (RR) of 1.54 and a true risk difference

(RD) of 0.054 (5.4%) (0.06 and 0.10, respectively; code Section
frontiersin.org
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TABLE 2 Distribution of response types in simulations demonstrating causation.

Individual’s
response type

Individual’s characteristics (risk
set type)a

Prevalence of RT in those with low
education (E+)

Prevalence of RT in those with high
education (E-)

Doomed Z1(1)Z2(1)
Z1(0)Z2(1)

10.0% (9.3%–10.6%) 10.0% (9.0%–11.1%)

Causal Z1(1)Z2(0) 5.4% (4.9%–6.0%) 5.4% (4.6%–6.2%)

Preventive N/A N/A N/A

Immune Z1(0)Z2(0) 84.6% (83.8%–85.4%) 84.5% (83.2%–85.8%)

RT, response type; E+, exposed; E-, unexposed; N/A, not applicable.
aRisk set notation: Z1(1) indicates the individual has causal component Z1, while Z1(0) indicates they do not have Z1.
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1A). As a reminder, in SCC simulations, true effect sizes for all

relationships in the DAG result from probabilities corresponding

to the specified distributions of the exogenous causal

components, and the components can be set to result in an a

priori effect size of interest (here, for example, RR of 1.54).

Under monotonicity, the causal effect is determined by the

prevalence of the causal complements of the exposure and the

prevalence of doomed response types. For example, in this

simulation, where we specify no bias (here, full exchangeability is

met) and Z1 and Z2 are independent, the true ATE of low

education on dementia is given by:

True risk ratio (RR)¼ P(Y low ed¼1)
P(Y low ed¼0)

¼ P(Z1)þP(Z2)�P(Z1& Z2)
P(Z2)

True risk difference (RD)¼ P(Y low ed¼1) � P(Y low ed¼0)

¼ (P(Z1)þP(Z2)�P(Z1& Z2))�P(Z2)

Inserting prevalences of 0.06 and 0.10 for components Z1 and Z2,

respectively, into these equations produces a true RR of 1.54 and a

true RD of 0.054, as desired. A value of 0.10 was chosen for Z2

(which represents the marginal prevalence of the outcome in the

unexposed), because 10% is a plausible level of dementia in older

adults without low education. Prevalence of Z1 was back-

calculated from the prevalence of Z2 and the desired risk ratio of

1.55. Supplementary Appendix 1 includes a detailed derivation

of the RR and RD and shows how back calculations can be

performed to obtain alternative specifications of Z1 or Z2 given a

different desired effect size.

Across simulated samples (code Section 1B), as expected, the

observed effect estimates in the sample closely matched the

specified truth (Section 1C): the observed mean RR (with 95%

confidence interval [CI]) was RRcrude = 1.54 (1.36–1.73), and the

RDcrude was 0.054 (95% CI 0.039–0.067). Section 1D of the

accompanying code looks “under the hood” of the simulation to

obtain the prevalence of individuals of different response types in

the sample. The average distribution of these response types

across the 1,000 simulated samples stratified by exposure is

shown in Table 2. The mean prevalence of “causal” types is

5.4%, matching the RD, as the proportion of causal types

represent the proportion of the sample in whom the exposure

has an effect under our assumption of monotonocity.

Importantly, the simulation shows that the distribution of
Frontiers in Epidemiology 05
response types is balanced between those simulated to have low

and high education, implying exchangeability (no bias). We note

that in this example, full exchangeability is met (doomed, causal,

and immune all comparable between exposed and unexposed),

but partial exchangeability is sufficient for some measures (22).
Confounding

Another explanation for the low education and dementia

association could be confounding by low childhood

socioeconomic status (SES) (23). This is shown by the DAG in

Figure 4A; low education is no longer exogenous, as it is caused

by low childhood SES, and there is no true effect of low

education on dementia. As a result, the corresponding SCC

model, shown in Figure 4B, has an additional level of sufficient

causes. Both low childhood SES/Q1 and Q2 are sufficient causes

for low education, representing the arrow in the DAG from low

childhood SES to low education. The circles with Z3 and low

childhood SES/Z4 make up the sufficient causes for dementia not

including low education; the latter represents the arrow in the

DAG from low childhood SES to dementia. To illustrate how

confounding can create an association between exposure and

outcome even if, in truth, no causal relationship exists between

them, we perform simulations under the sharp null (illustrated

by the absence of an arrow between low education and dementia

in Figure 4A).

Section 2 of the accompanying code shows simulations

illustrating confounding. To simulate the sharp null as noted

above, we set the prevalence of Z1 to be 0, such that no

individuals could complete the sufficient cause for dementia

involving low education and Z1; this results in a true RR = 1 and

true RD = 0 (no true effect of low education on dementia). We

then specified prevalences of other causal components (code

Section 2A) to generate confounding and the desired crude RR

of 1.55 (within each simulated sample, individuals’ exposure and

outcome values were determined by their values of the

exogenous components, see code Section 2B). Correspondingly,

the crude RR and RD observed across the simulated samples

were 1.55 (1.42–1.71) and 0.079 (0.064–0.094), respectively (code

Section 2C).

The mechanism by which confounding causes bias is clearly

shown by the distribution of the response types between the

exposed and unexposed in Table 3 (code Section 2D). Recall
frontiersin.org
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FIGURE 4

DAG and SCC model for confounding.
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that because we set Z1 = 0 there are no causal response types in

our sample (as expected from the simulation under the

sharp null). Thus, any cases of dementia in the sample are due

to doomed response types, and any association between the

exposure and dementia is due to imbalance of doomed types

across the exposed and unexposed. Table 3 shows there are

more “doomed” response types among the exposed than

unexposed (22.2% vs. 14.3%), increasing the prevalence of the

outcome in that group, resulting in a crude association between

low education and dementia that is greater than 1. The

imbalance in the doomed response types occurs because low

childhood SES causes both low education and dementia; as a

result, among those with low education, more individuals have

low childhood SES and complete the doomed sufficient cause
TABLE 3 Distribution of response types in simulations demonstrating confou

Individual’s response type (effect of
low education on dementia)

Individual’s characteristics
(risk set type)

Doomed Z1(1)Z3(1)Z4(1)LowSES(1)
Z1(0)Z3(1)Z4(1)LowSES(1)
Z1(1)Z3(1)Z4(1)LowSES(0)
Z1(0)Z3(1)Z4(1)LowSES(0)
Z1(1)Z3(1)Z4(0)LowSES(1)
Z1(0)Z3(1)Z4(0)LowSES(1)
Z1(1)Z3(1)Z4(0)LowSES(0)
Z1(0)Z3(1)Z4(0)LowSES(0)
Z1(1)Z3(0)Z4(1)LowSES(1)
Z1(0)Z3(0)Z4(1)LowSES(1)

Causalb Z1(1)Z3(0)Z4(0)LowSES(0)
Z1(1)Z3(0)Z4(1)LowSES(0)
Z1(1)Z3(0)Z4(0)LowSES(1)

Preventive N/A

Immune Z1(0)Z3(0)Z4(0)LowSES(0)
Z1(0)Z3(0)Z4(1)LowSES(0)
Z1(0)Z3(0)Z4(0)LowSES(1)

RT, response type; E+, exposed; E-, unexposed; N/A, not applicable.
aRisk set notation: Z1(1) indicates the individual has causal component Z1, while Z1(0) i
bIn the simulation, Z1 was set to zero to simulate under the sharp null.
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involving low childhood SES and Z4. Our crude estimates

reflect this bias; to obtain the causal effect of low education on

dementia we have to adjust for this confounding, which can be

done via standardization (among other methods). After

standardizing to the distribution of the confounder, low SES

(code Section 2C), the adjusted RR and RD match the true

null effects [RRadj = 1.00 (0.90–1.11)] and RDadj = 0.000

[−0.022–0.019]). As a companion to simulation results,

Supplementary Appendix 2 includes detailed mathematical

derivation of the crude and adjusted RR and RD values. In

addition, an illustrative simulation of confounding not under

the sharp null (i.e., when there is a non-zero exposure effect) is

available in Supplementary Appendix 2 and the accompanying

code.
nding.

Prevalence of RT in those
with low education (E+)

Prevalence of RT in those with
high education (E-)

22.2% (21.2%–23.2%) 14.3% (13.3%–15.5%)

0% 0%

N/A N/A

77.8% (76.8%–78.8%) 85.7% (84.5%–86.7%)

ndicates they do not have Z1.

frontiersin.org

https://doi.org/10.3389/fepid.2023.1282809
https://www.frontiersin.org/journals/epidemiology
https://www.frontiersin.org/


Kezios and Hayes-Larson 10.3389/fepid.2023.1282809
Selection (collider) bias

Another reason that low education and dementia could be

associated is selection bias (i.e., collider bias), as individuals with

certain characteristics including high education and family

history of dementia are often overrepresented in dementia

cohorts (24–27). We will illustrate this in the DAG shown in

Figure 5A: low education prevents (i.e., high education causes),

and the APOE ϵ4 gene allele (as proxy for family history of

dementia) causes study participation (selection into the analytic

sample). These processes are shown by the SCC model in

Figure 5B, where sufficient causes with low education/Z1, Z5,

and APOE ϵ4/Z6 represent sufficient causes for dementia, and

X1/high education, X2, and X3/APOE ϵ4 represent sufficient

causes for study participation. Note that in the sufficient cause

for study participation, high education (i.e., the absence of low

education) with X1 causes study participation.

Both low education and APOE ϵ4 are exogenous in the DAG in

Figure 5A, and therefore independent from one another in the full

simulated sample. However, because low education is negatively

associated with study participation but APOE ϵ4 is positively
FIGURE 5

DAG and SCC model for collider bias.
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associated with study participation, among those in the analytic

sample, conditioning on the collider will induce a positive

association between low education and APOE ϵ4 (Figure 5A).

Because APOE ϵ4 is a cause of dementia, a positive association

is thus induced between low education and dementia in the

analytic sample, even though there is no causal relationship

between them in truth (Figure 5A) (24).

Again, for illustrative purposes, we simulated under the sharp

null, setting Z1 to 0, making the true RR and RD 1 and 0,

respectively (Section 3 of accompanying code). Other causal

component prevalences were set to produce collider bias that

yielded a crude association in the analytic sample of

approximately 1.55 (Section 3A-B). In this scenario, the

simulated sample of 10,000 individuals is not the same as

the analytic sample (target population for our estimand, See

Methods). Rather, the analytic sample comprises individuals who

participate in the study; study participation itself is modeled as

an endogenous variable in the simulation (i.e., determined by an

individual’s causal components, Figure 5B).

Across the simulations, the observed effects in the full

simulated sample of 10,000 were consistent with the true effects
frontiersin.org
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(RRcrude 1.00 [0.92–1.09] and RDcrude 0.000 [−0.016–0.016], code
Section 3C). However, conditioning on study participation

creates collider bias, such that the crude estimates in the analytic

sample (mean N = 3,309) were inconsistent with the truth

(RRcrude 1.55 [1.38–1.74] and RDcrude 0.117 [0.087–0.147]). If we

have a measure of the collider-inducing variable (APOE ϵ4), we

can employ standardization to correct for collider bias. After

standardizing to the prevalence of APOE ϵ4 in the study sample,

the sample RR and RD were consistent with the true effect

(RRadj 1.00 [0.90–1.12], RDadj 0.00 [−0.029–0.031]). Again, as a

companion to simulation results, Supplementary Appendix 3

includes detailed mathematical derivation of the crude and

adjusted RR and RD values.

The mechanism by which the crude effect in the sample was

biased is clearly shown by examination of response types in

Table 4 (code Section 3D). In the full simulated sample of

10,000, exchangeability is met, as there are a similar proportion

of “doomed” types in the exposed and unexposed. However, after

conditioning on study participation (inclusion in the analytic

sample), exchangeability fails: the “doomed” (those with APOE

ϵ4 and Z6) are overrepresented in the exposed (low education)

group, leading to the biased crude estimates. The reason for

greater prevalence of doomed among exposed in the study

sample is explained by how people enter the sample. In order to

be in the study sample, participants need to have either high

education and X1, or, if they have low education (our exposure

of interest), they must complete either the sufficient cause X2 or

APOE ϵ4/X3. As a result, although in the full simulated sample

low education and APOE ϵ4 are unassociated, in the analytic

sample a positive association between them is induced because

those with low education (which increases likelihood of non-

participation in the study) who end up in the study sample are
TABLE 4 SCC components and response types for simulations demonstrating

In full simula

Individual’s response
type (effect of low
education on
dementia)

Individual’s
characteristics
(risk set type)a

Prevalence of RT in
those with low
education (E+)

Doomed Z1(1)Z5(1)Z6(1)APOE4(1)
Z1(0)Z5(1)Z6(1)APOE4(1)
Z1(1)Z5(1)Z6(1)APOE4(0)
Z1(0)Z5(1)Z6(1)APOE4(0)
Z1(1)Z5(1)Z6(0)APOE4(1)
Z1(0)Z5(1)Z6(0)APOE4(1)
Z1(1)Z5(1)Z6(0)APOE4(0)
Z1(0)Z5(1)Z6(0)APOE4(0)
Z1(1)Z5(0)Z6(1)APOE4(1)
Z1(0)Z5(0)Z6(1)APOE4(1)

19.0% (18.1%–19.9%)

Causalb Z1(1)Z5(0)Z6(0)APOE4(0)
Z1(1)Z5(0)Z6(1)APOE4(0)
Z1(1)Z5(0)Z6(0)APOE4(1)

0%

Preventive N/A N/A

Immune Z1(0)Z5(0)Z6(0)APOE4(0)
Z1(0)Z5(0)Z6(1)APOE4(0)
Z1(0)Z5(0)Z6(0)APOE4(1)

81.0% (80.1%–81.9%)

RT, response type; E+, exposed; E-, unexposed; N/A, not applicable.
aRisk set notation: Z1(1) indicates the individual has causal component Z1, while Z1(0) i
bIn the simulation, Z1 was set to zero to simulate under the sharp null.
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more likely to have APOE ϵ4 (a cause of study participation)

(Figure 5A). Because APOE ϵ4 is also a cause of dementia (with

Z6), this results in overrepresentation of the doomed response

types in the low education group in the study sample.
Effect modification

Researchers are often interested in understanding whether the

effect of an exposure depends on the level of another variable (e.g.,

effect modification) (4, 28). The SCC model is exceptionally well-

suited for illustrating the causal mechanism for effect

modification. For our education and dementia example, APOE

ϵ4 status has also been proposed as a modifier of the effect of

low education on dementia (29, 30). Although a number of

approaches have been proposed to show effect modification in

DAGs (31–34), there is no consistent standard in the field; we

represent effect modification as shown in Figure 6A. Although

all causal complements of the exposure of interest are effect

modifiers in the SCC framework, when exploring effect

modification we explicitly name the causal complement that is

the effect modifier of interest, as shown in the SCC model in

Figure 6B (i.e., in the right-most sufficient cause, APOE ϵ4 is

the effect modifier of explicit interest and is expressed in the

sufficient cause in addition to Z1b, which represents all other

causal complements low education works with to cause

dementia). This model articulates two mechanisms by which low

education causes dementia, splitting the sufficient cause with low

education/Z1 (used in previous examples) into two sufficient

causes: in one, low education and Z1a are sufficient to produce

dementia (i.e., in some individuals, low education does not have

to work with APOE ϵ4 to cause dementia) and in the other, low
collider bias.

ted sample In analytic sample

Prevalence of RT in
those with high
education (E-)

Prevalence of RT in
those with low
education (E+)

Prevalence of RT in
those with high
education (E-)

19.0% (17.7%–20.4%) 33.3% (30.9%–35.6%) 21.6% (19.7%–23.4%)

0% 0% 0%

N/A N/A N/A

81.0% (79.6%–82.3%) 66.7% (64.4%–69.1%) 78.4% (76.6%–80.3%)

ndicates they do not have Z1.
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FIGURE 6

DAG and SCC model for effect modification.
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education along with the modifier of interest APOE ϵ4 and Z1b are

sufficient to produce dementia. The inclusion of Z1b indicates that

low education and APOE ϵ4 are insufficient on their own to cause

dementia.

In Section 4 of the companion code, we set the prevalences of

Z1a, Z2, and Z1b to yield true causal effects of RR = 1.58 and RD =

0.058 (code Section 4A-B); we specified larger true effects (RR =

2.22, RD = 0.122) among those who carry the APOE ϵ4 allele,

and smaller true effects (RR = 1.36, RD = 0.036) among those

who do not. Because no bias was simulated in this scenario,

crude effects across the simulated samples closely mirrored these

true effects (code Section 4C). The overall RR was 1.58 (95% CI

1.41–1.78), and RD was 0.058 (0.044–0.071); stratified results

were RR = 2.26 (1.79–2.86), RD = 0.122 (0.094–0.153) among

those with APOE ϵ4, and RR = 1.36 (1.19–1.56), RD = 0.036

(0.021–0.051) among those without it. Supplementary Appendix

4 includes mathematical derivations of the crude RR and RD

values in the total sample and within strata of APOE ϵ4, as a

companion to the simulation code.

There are two important concepts illustrated by the simulation

results shown in Table 5 (code Section 4D). First, across the

simulated samples, there is exchangeability (balanced

distributions of response types between exposed and unexposed)

in the sample overall, and within strata of APOE ϵ4. This is

helpful in clarifying for students that effect modification is a

causal process, rather than a source of bias. Second, the

proportion of causal response types is larger in the stratum with

APOE ϵ4 (12.2% vs. 3.6%). This occurs because in this

simulation, we specifically articulated two mechanisms

underlying the causal effect of low education on dementia. In the

stratum without APOE ϵ4, nobody can complete the sufficient

cause with low education, APOE ϵ4, and Z1b, limiting the

proportion of causal response types in this stratum. In the APOE

ϵ4+ stratum, this sufficient cause can be completed by

individuals with Z1b, increasing the proportion of causal

response types in this stratum. Thus, the SCC simulations help

students “see” the causal mechanism driving different effect sizes

between strata of the modifier.
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We note that researchers could additionally be interested in the

causal effects of APOE ϵ4 in strata of education (4, 28). For this

research question, the number of response types expands to

include all combinations of exposure levels for both low

education and APOE ϵ4, beyond the scope of this introductory

paper, but work examining the correspondence between SCC

components and interaction response types has been published

elsewhere (4, 7, 35).
Discussion and conclusions

Simulation is a useful tool for teaching causal inference in

epidemiologic training. In this paper, we have summarized

simulations based in the SCC framework, and provided simple

examples and code to illustrate how these simulations may help

students better understand four common causal structures,

including both causal mechanisms and sources of bias.

Specifically, these examples may help students better understand

how different sources of bias arise, their consequences for effect

estimation, and how to correct for them.

Most didactic papers on simulations or simulation tutorials use

regression-based methods for generating data that simulate directly

from DAGs (1, 36, 37). A key benefit to SCC simulations is that, in

addition to being consistent with the heuristic used to teach

students about causation, they enable students to “see” each

individual’s response type, thereby revealing the mechanisms by

which bias (i.e., non-exchangeability) occurred. As noted

previously, an individual’s response type is determined by their

distribution of component causes other than the exposure of

interest (i.e., their “risk set type”). By simulating all component

causes for each simulated individual, that person’s risk set type,

and therefore response type, is known, regardless of their actual

exposure and outcome. In contrast, in regression-based

simulations, only a simulated individual’s actual exposure and

actual outcome are known (similar to in empirical data).

Although the truth, observed estimate, and bias are known in

both types of simulations, only SCC simulations can show
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TABLE 5 SCC components and response types for simulations demonstrating effect modification.

Overall
Individual’s response type (effect of low
education on dementia)

Individual’s characteristics (risk set
type)a

Prevalence of RT in those with low
education (E+)

Prevalence of RT in those with high
education (E-)

Doomed Z1a(1)Z2(1)Z1b(1)APOE4(1)
Z1a(0)Z2(1)Z1b(1)APOE4(1)
Z1a(1)Z2(1)Z1b(0)APOE4(1)
Z1a(0)Z2(1)Z1b(0)APOE4(1)
Z1a(1)Z2(1)Z1b(1)APOE4(0)
Z1a(0)Z2(1)Z1b(1)APOE4(0)
Z1a(1)Z2(1)Z1b(0)APOE4(0)
Z1a(0)Z2(1)Z1b(0)APOE4(0)

10.0% (9.3%–10.7%) 10.0% (9.0%–11.0%)

Causal Z1a(1)Z2(0)Z1b(0)APOE4(1)
Z1a(1)Z2(0)Z1b(1)APOE4(1)
Z1a(0)Z2(0)Z1b(1)APOE4(1)
Z1a(1)Z2(0)Z1b(0)APOE4(0)
Z1a(1)Z2(0)Z1b(1)APOE4(0)

5.8% (5.3%–6.3%) 5.8% (5.0%–6.6%)

Preventive N/A N/A N/A

Immune Z1a(0)Z2(0)Z1b(0)APOE4(1)
Z1a(0)Z2(0)Z1b(0)APOE4(0)
Z1a(0)Z2(0)Z1b(1)APOE4(0)

84.2.% (83.3%–85.1%) 84.2% (82.9%–85.5%)

Among those with APOE ϵ4
Individual’s response type (effect of low
education on dementia)

Individual’s characteristics Prevalence of RT in those with low
education (E+)

Prevalence of RT in those with high
education (E-)

Doomed Z1a(1)Z2(1)Z1b(1)APOE4(1)
Z1a(0)Z2(1)Z1b(1)APOE4(1)
Z1a(1)Z2(1)Z1b(0)APOE4(1)
Z1a(0)Z2(1)Z1b(0)APOE4(1)

10.0% (8.6%–11.5%) 10.0% (7.8%–12.2%)

Causal Z1a(1)Z2(0)Z1b(0)APOE4(1)
Z1a(1)Z2(0)Z1b(1)APOE4(1)
Z1a(0)Z2(0)Z1b(1)APOE4(1)

12.2% (10.7%–12.7%) 12.3% (10.2%–14.5%)

Preventive N/A NA NA

Immune Z1a(0)Z2(0)Z1b(0)APOE4(1) 77.7% (76.0%–79.6%) 77.7% (74.7%–80.5%)

Among those without APOE ϵ4
Individual’s response type (effect of low
education on dementia)

Individual’s characteristics Prevalence of RT in those with low
education (E+)

Prevalence of RT in those with high
education (E-)

Doomed Z1a(1)Z2(1)Z1b(1)APOE4(0)
Z1a(0)Z2(1)Z1b(1)APOE4(0)
Z1a(1)Z2(1)Z1b(0)APOE4(0)
Z1a(0)Z2(1)Z1b(0)APOE4(0)

10.0% (9.3%–10.8%) 10.0% (8.8%–11.2%)

Causal Z1a(1)Z2(0)Z1b(0)APOE4(0)
Z1a(1)Z2(0)Z1b(1)APOE4(0)

3.6% (3.1%–4.1%) 3.6% (2.9%–4.4%)

Preventive N/A NA NA

Immune Z1a(0)Z2(0)Z1b(0)APOE4(0)
Z1a(0)Z2(0)Z1b(1)APOE4(0)

86.4% (85.5%–87.3%) 86.4% (85.0%–87.7%)

RT, response type; E+, exposed; E-, unexposed; N/A, not applicable.
aRisk set notation: Z1a(1) indicates the individual has causal component Z1a, while Z1a(0) indicates they do not have Z1.a.
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underlying response types and non-exchangeability that lead to the

observed estimate, helping students to gain deeper understanding

of how a particular causal structure leads to a corresponding

pattern of observed data.

Although one could design a data generating mechanism and

simulation exclusively using the SCC model, we include

translation from DAGs to SCC models as a first step to our

approach. DAGs are a familiar and predominant tool in

epidemiologic teaching that introduce students to the idea of bias

resulting from backdoor paths. However, while DAGs help

visualize the existence of biasing pathways, they do not

necessarily help show why bias arises. Used in tandem, we believe

DAGs and SCC-based simulations reinforce each other and

enhance students’ understanding of how different biases arise and
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their consequences; for example, while a DAG can illustrate

confounding, alerting students to the existence of a backdoor

path, the SCC simulation shows the consequences of confounding

as the imbalance of other causes of disease (i.e., doomed response

types) among the exposed and unexposed groups in the sample.

There are some important considerations for using SCC

simulations in the teaching setting. To function as useful

pedagogic examples, our simulations made some simplifying

assumptions (e.g., monotonicity, binary variables, and in some

cases, simulating under the sharp null). While our examples do

not reflect the complexity of real-world data generating

mechanisms, their simplicity makes for straightforward

illustration of key concepts from each scenario and the

differences between scenarios, a common tradeoff made in
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teaching settings and methodological simulation work. It should be

noted that relaxing these assumptions presents no conceptual

barrier to our approach. For example, we also provide results

(Supplementary Appendix 2) and example code (last section of

Supplementary Appendix 5) for a confounding simulation not

under the sharp null. In addition, although the SCC framework

requires binary variables (6), the simulations we present can be

adapted to accommodate non-binary variables using indicator

variables to represent levels of categorical variables or ranges of

continuous variables in sufficient causes. However, practically,

more complex SCC models increases the number of sets of

sufficient causes and the relationships between them. As a result,

because specification of the true effects in an SCC simulation is

based on the distribution of component causes rather than a

single beta coefficient, increasing complexity of the SCC model

complicates tasks like choosing prevalences of component causes

to achieve a desired effect size (as shown in Supplementary

Appendix 1) or computing expected values for RRs and RDs to

compare with simulation results (as done in Supplementary

Appendix 1–4). We believe such complications are often

unnecessary, and in fact may hinder the goal of using SCC

simulations to help students gain deeper understanding and an

intuition regarding how common causal structures produce

statistical associations, and mechanisms through which bias arises.

We anticipate that the best way to incorporate SCC simulations

into epidemiologic teaching depends on the level of the students and

teaching goals. For all students, prior knowledge of potential

outcomes, DAGs, and some exposure to the SCC framework will

be a useful starting point. For students very early in epidemiologic

training or with little exposure to coding and data analysis, the

optimal use of SCC simulations may be for instructors to generate

teaching examples, and focus on walking through the figures and

tables for each causal structure. For more advanced students with

some coding and data analysis experience, instructors could

provide code to generate data, and ask students to generate

summaries of response types and effect estimates. Instructors may

tailor the applied examples, code, and causal structures of interest

(e.g., a DAG with both confounding and collider bias to show

additional complexity that may be present in empirical data)

according to their substantive expertise, course level, and learning

objectives. Broadly, we anticipate that incorporation of SCC

simulations into epidemiologic coursework will help students build

deeper understanding about how certain causal structures lead to

observed associations, which will in turn help them build intuition

about what they can expect to see and forms of bias they will

likely encounter when conducting analyses in empirical data.

Overall, we believe SCC-based simulations are an underutilized

resource in epidemiologic teaching, and a useful tool for building

intuition about causal mechanisms and bias. SCC simulations

enable students to understand and visualize the mechanisms

through which causation and bias occur on an individual level.

In this article, we have outlined the process and key

considerations for simulating from the SCC framework, and

hope that our illustrative examples and sample R code facilitate

their greater use as teaching tools.
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The supplementary file Supplementary Appendix 5

“SCC sims companion code.R” contains the code to
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generate each set of simulation results in the paper. It is

also available on the authors’ github: (https://github.com/

ehayeslarson/SCCsims). Appendix 1 through Appendix 4

provide mathematical computation of crude and

standardized effect measures for all simulation scenarios, to

accompany the simulation code/results and suit different

learning styles.
References
1. Rudolph JE, Fox MP, Naimi AI. Simulation as a tool for teaching and learning
epidemiologic methods. Am J Epidemiol. (2021) 190(5):900–7. doi: 10.1093/aje/
kwaa232

2. Gatto NM, Campbell UB. Redundant causation from a sufficient cause
perspective. Epidemiol Perspect Innov. (2010) 7:5. doi: 10.1186/1742-5573-7-5

3. Hafeman DM. Confounding of indirect effects: a sensitivity analysis exploring the
range of bias due to a cause common to both the mediator and the outcome. Am
J Epidemiol. (2011) 174(6):710–7. doi: 10.1093/aje/kwr173

4. Rothman KJ, Greenland S, Lash TL. Modern epidemiology. 3rd edn USA:
Lippincott Williams & Wilkins (2008).

5. Hafeman DM. A sufficient cause based approach to the assessment of mediation.
Eur J Epidemiol. (2008) 23(11):711–21. doi: 10.1007/s10654-008-9286-7

6. VanderWeele TJ, Robins JM. The identification of synergism in the sufficient-
component-cause framework. Epidemiology. (2007) 18(3):329–39. doi: 10.1097/01.
ede.0000260218.66432.88

7. Flanders WD. On the relationship of sufficient component cause models with
potential outcome (counterfactual) models. Eur J Epidemiol. (2006) 21(12):847–53.
doi: 10.1007/s10654-006-9048-3

8. Greenland S, Brumback B. An overview of relations among causal modelling
methods. Int J Epidemiol. (2002) 31(5):1030–7. doi: 10.1093/ije/31.5.1030

9. Greenland S, Poole C. Invariants and noninvariants in the concept of
interdependent effects. Scand J Work Environ Health. (1988) 14(2):125–9. doi: 10.
5271/sjweh.1945

10. VanderWeele TJ, Hernan MA. From counterfactuals to sufficient component
causes and vice versa. Eur J Epidemiol. (2006) 21(12):855–8. doi: 10.1007/s10654-
006-9075-0

11. Suzuki E, Yamamoto E, Tsuda T. On the link between sufficient-cause model
and potential-outcome model. Epidemiology. (2011) 22(1):131–2. doi: 10.1097/EDE.
0b013e3181febc5c

12. Rothman KJ. Causes. Am J Epidemiol. (1976) 104(6):587–92. doi: 10.1093/
oxfordjournals.aje.a112335

13. Lash TL, VanderWeele TJ, Hanueuse S, Rothman KJ. Modern epidemiology. 4th
edn USA: Lippincott Williams & Wilkins (2020).

14. Suzuki E, Yamamoto E, Tsuda T. On the relations between excess fraction,
attributable fraction, and etiologic fraction. Am J Epidemiol. (2012) 175(6):567–75.
doi: 10.1093/aje/kwr333

15. Gatto NM. Redundancy: a discrepancy between what we want and what we get
from our effect estimates: Columbia. (2005).

16. Greenland S, Robins JM. Identifiability, exchangeability, and epidemiological
confounding. Int J Epidemiol. (1986) 15(3):413–9. doi: 10.1093/ije/15.3.413

17. VanderWeele TJ. Attributable fractions for sufficient cause interactions. Int
J Biostat. (2010) 6(2):Article 5. doi: 10.2202/1557-4679.1202

18. Campbell UB. It looks like a confounder and acts like a confounder…but does it
confound?: an analysis of bias from confounders and control for colliders: Columbia.
(2005).

19. Meng X, D’Arcy C. Education and dementia in the context of the cognitive
reserve hypothesis: a systematic review with meta-analyses and qualitative analyses.
PLoS One. (2012) 7(6):e38268. doi: 10.1371/journal.pone.0038268

20. Beydoun MA, Beydoun HA, Gamaldo AA, Teel A, Zonderman AB, Wang Y.
Epidemiologic studies of modifiable factors associated with cognition and dementia:
systematic review and meta-analysis. BMC Public Health. (2014) 14:643. doi: 10.
1186/1471-2458-14-643
21. Maccora J, Peters R, Anstey KJ. What does (low) education mean in terms of
dementia risk? A systematic review and meta-analysis highlighting inconsistency in
measuring and operationalising education. SSM Popul Health. (2020) 12:100654.
doi: 10.1016/j.ssmph.2020.100654

22. Vander Weele TJ. Confounding and effect modification: distribution and
measure. Epidemiol Methods. (2012) 1(1):55–82. doi: 10.1515/2161-962X.1004

23. Nguyen TT, Tchetgen Tchetgen EJ, Kawachi I, Gilman SE, Walter S, Liu SY,
et al. Instrumental variable approaches to identifying the causal effect of
educational attainment on dementia risk. Ann Epidemiol. (2016) 26(1):71–6.e1–3.
doi: 10.1016/j.annepidem.2015.10.006

24. Hernán MA, Hernández-Díaz S, Robins JM. A structural approach to selection
bias. Epidemiology. (2004) 15(5):615–25. doi: 10.1097/01.ede.0000135174.63482.43

25. Gilmore-Bykovskyi AL, Jin Y, Gleason C, Flowers-Benton S, Block LM,
Dilworth-Anderson P, et al. Recruitment and retention of underrepresented
populations in Alzheimer’s disease research: a systematic review. Alzheimers Dement
(NY). (2019) 5:751–70. doi: 10.1016/j.trci.2019.09.018

26. Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Cedarbaum J, et al.
2014 update of the Alzheimer’s disease neuroimaging initiative: a review of papers
published since its inception. Alzheimers Dement. (2015) 11(6):e1–120. doi: 10.
1016/j.jalz.2014.11.001

27. Brewster P, Barnes L, Haan M, Johnson JK, Manly JJ, Napoles AM, et al.
Progress and future challenges in aging and diversity research in the United States.
Alzheimers Dement. (2019) 15(7):995–1003. doi: 10.1016/j.jalz.2018.07.221

28. Hernán MA, Robins JM. Causal inference: What if? Boca Raton: Chapman &
Hall/CRC (2020).

29. Seeman TE, Huang MH, Bretsky P, Crimmins E, Launer L, Guralnik JM.
Education and APOE-e4 in longitudinal cognitive decline: MacArthur studies of
successful aging. J Gerontol B Psychol Sci Soc Sci. (2005) 60(2):P74–83. doi: 10.1093/
geronb/60.2.P74

30. Wang HX, Gustafson DR, Kivipelto M, Pedersen NL, Skoog I, Windblad B, et al.
Education halves the risk of dementia due to apolipoprotein epsilon4 allele: a
collaborative study from the Swedish brain power initiative. Neurobiol Aging. (2012)
33(5):1007.e1–e7. doi: 10.1016/j.neurobiolaging.2011.10.003

31. Weinberg CR. Can DAGs clarify effect modification? Epidemiology. (2007) 18
(5):569–72. doi: 10.1097/EDE.0b013e318126c11d

32. Flanders WD, Johnson CY, Howards PP, Greenland S. Dependence of
confounding on the target population: a modification of causal graphs to account
for co-action. Ann Epidemiol. (2011) 21(9):698–705. doi: 10.1016/j.annepidem.2011.
05.002

33. Nilsson A, Bonander C, Stromberg U, Bjork J. A directed acyclic graph for
interactions. Int J Epidemiol. (2021) 50(2):613–9. doi: 10.1093/ije/dyaa211

34. Attia J, Holliday E, Oldmeadow C. A proposal for capturing interaction and
effect modification using DAGs. Int J Epidemiol. (2022) 51(4):1047–53. doi: 10.
1093/ije/dyac126

35. Madsen AM, Ottman R, Hodge SE. Causal models for investigating complex
genetic disease: II. What causal models can tell US about penetrance for additive,
heterogeneity, and multiplicative two-locus models. Hum Hered. (2011) 72
(1):63–72. doi: 10.1159/000330780

36. Fox MP, Nianogo R, Rudolph JE, Howe CJ. Illustrating how to simulate data
from directed acyclic graphs to understand epidemiologic concepts. Am J Epidemiol.
(2022) 191(7):1300–6. doi: 10.1093/aje/kwac041

37. Banack HR, Hayes-Larson E, Mayeda ER. Monte carlo simulation approaches
for quantitative bias analysis: a tutorial. Epidemiol Rev. (2022) 43(1):106–17. doi: 10.
1093/epirev/mxab012
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fepid.2023.1282809/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fepid.2023.1282809/full#supplementary-material
https://github.com/ehayeslarson/SCCsims
https://github.com/ehayeslarson/SCCsims
https://doi.org/10.1093/aje/kwaa232
https://doi.org/10.1093/aje/kwaa232
https://doi.org/10.1186/1742-5573-7-5
https://doi.org/10.1093/aje/kwr173
https://doi.org/10.1007/s10654-008-9286-7
https://doi.org/10.1097/01.ede.0000260218.66432.88
https://doi.org/10.1097/01.ede.0000260218.66432.88
https://doi.org/10.1007/s10654-006-9048-3
https://doi.org/10.1093/ije/31.5.1030
https://doi.org/10.5271/sjweh.1945
https://doi.org/10.5271/sjweh.1945
https://doi.org/10.1007/s10654-006-9075-0
https://doi.org/10.1007/s10654-006-9075-0
https://doi.org/10.1097/EDE.0b013e3181febc5c
https://doi.org/10.1097/EDE.0b013e3181febc5c
https://doi.org/10.1093/oxfordjournals.aje.a112335
https://doi.org/10.1093/oxfordjournals.aje.a112335
https://doi.org/10.1093/aje/kwr333
https://doi.org/10.1093/ije/15.3.413
https://doi.org/10.2202/1557-4679.1202
https://doi.org/10.1371/journal.pone.0038268
https://doi.org/10.1186/1471-2458-14-643
https://doi.org/10.1186/1471-2458-14-643
https://doi.org/10.1016/j.ssmph.2020.100654
https://doi.org/10.1515/2161-962X.1004
https://doi.org/10.1016/j.annepidem.2015.10.006
https://doi.org/10.1097/01.ede.0000135174.63482.43
https://doi.org/10.1016/j.trci.2019.09.018
https://doi.org/10.1016/j.jalz.2014.11.001
https://doi.org/10.1016/j.jalz.2014.11.001
https://doi.org/10.1016/j.jalz.2018.07.221
https://doi.org/10.1093/geronb/60.2.P74
https://doi.org/10.1093/geronb/60.2.P74
https://doi.org/10.1016/j.neurobiolaging.2011.10.003
https://doi.org/10.1097/EDE.0b013e318126c11d
https://doi.org/10.1016/j.annepidem.2011.05.002
https://doi.org/10.1016/j.annepidem.2011.05.002
https://doi.org/10.1093/ije/dyaa211
https://doi.org/10.1093/ije/dyac126
https://doi.org/10.1093/ije/dyac126
https://doi.org/10.1159/000330780
https://doi.org/10.1093/aje/kwac041
https://doi.org/10.1093/epirev/mxab012
https://doi.org/10.1093/epirev/mxab012
https://doi.org/10.3389/fepid.2023.1282809
https://www.frontiersin.org/journals/epidemiology
https://www.frontiersin.org/

	Sufficient component cause simulations: an underutilized epidemiologic teaching tool
	Introduction
	Summary of SCC framework
	Connection between the SCC framework and potential outcomes

	Methods
	Overview of SCC-based simulations
	Illustrative examples

	Results
	Causation
	Confounding
	Selection (collider) bias
	Effect modification

	Discussion and conclusions
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


