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Non-linear regression modeling is common in epidemiology for prediction
purposes or estimating relationships between predictor and response variables.
Restricted cubic spline (RCS) regression is one such method, for example, highly
relevant to Cox proportional hazard regression model analysis. RCS regression
uses third-order polynomials joined at knot points to model non-linear
relationships. The standard approach is to place knots by a regular sequence of
quantiles between the outer boundaries. A regression curve can easily be fitted
to the sample using a relatively high number of knots. The problem is then
overfitting, where a regression model has a good fit to the given sample but
does not generalize well to other samples. A low knot count is thus preferred.
However, the standard knot selection process can lead to underperformance in
the sparser regions of the predictor variable, especially when using a low
number of knots. It can also lead to overfitting in the denser regions. We
present a simple greedy search algorithm using a backward method for knot
selection that shows reduced prediction error and Bayesian information criterion
scores compared to the standard knot selection process in simulation
experiments. We have implemented the algorithm as part of an open-source
R-package, knutar.
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1. Introduction

Regression modeling is used in epidemiology and other fields for prediction purposes or

for estimating relationships between predictor and response variables. For example, we may

be interested in studying the relationship between explanatory variables and outcomes in

fields such as epidemiology, biostatistics, clinical research, economics, and psychology.

As a starting point, such relationships can be assumed to be linear, but when the

assumption does not hold, non-linear methods can be employed. It has often been

questioned if a single correct model even exists for a non-linear prediction problem (1, 2).

Instead, multiple alternatives may be useful (3).

Restricted cubic spline (RCS) regression (4, pp. 23–26) involves partitioning the

observations of a predictor variable into subintervals and piecewise fitting a third-order

polynomial to each subinterval. The splines connect at join points called knots, and the

RCS regression method ensures the overall function’s smoothness by forcing the first and

second derivatives of the connected polynomials to agree at the knots. It additionally

restricts splines to be linear in the tails of the boundary knots because unrestricted splines
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tend to behave poorly at the boundaries of the data (5, p. 6). RCS

regression models comprise simple polynomial functions that are

well-suited for interpretation by the researcher and can be

combined with widely used analysis models. As Buis (6) states,

“restricted cubic splines are an easy way of including an

explanatory variable in a smooth non-linear way in a wide

variety of models.” In epidemiology, one important use of RCS is

to allow a regression coefficient, and thus the hazard ratio, in a

Cox model to vary as a flexible function of time (7).

The standard process for placing knots for RCS regression is by

a regular sequence of quantiles for the observed values of the

predictor variable between two boundary knots. These boundary

knots are often placed at the fifth and 95th percentiles.

Recommendations for knot counts, quantiles, and boundaries are

found in the study by Harrell (4, pp. 27–28). In this paper, we

use the fifth and 95th percentiles as the outer boundaries for the

predictor variable observations. Figure 1 shows the curve

approximated by an RCS regression model fitted to a sample

where the relationship between the predictor and response

variable is non-linear.

Placing knots based on quantiles is an accepted convention,

but there are, for example, rarely any biological or other

reasons dictating that the relationship between predictor and

response variables must align with equal-sized quantiles

between the boundary knots. Nevertheless, there are several
FIGURE 1

The figure shows the curve approximated by a five-knot RCS regression mode
variables have a non-linear relationship. The inner knot locations are marked
percentile boundary knots are marked with solid vertical lines. The knots have
knots are placed by a regular sequence of quantiles between the boundary kn
partition the observations in the sample into intervals of 56 observations, exc
predictor variable is uniformly distributed, X � U(0, 3:5), and the response
X(X � 1)(X � 2)(X � 3)(X � 4), representing the true curve, and a stochastic erro
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reasons for using a regular sequence of quantiles. For example,

such quantiles are separated by the same number of

observations, ensuring that observations exist between each pair

of knots. In contrast, the same is not true for equidistant knots,

which can lead to empty subintervals or non-convergence of

the model’s fitting procedure. Further, if certain subintervals

have too few observations, it can result in instability of

estimates where the estimates become very sensitive to the

specific values in these regions.

Using many quantiles results in knots being close to each other,

especially in the denser regions of the predictor variable’s

distribution. If the knots are sufficiently close, spline regressions

can readily fit a model to the sample data. As the number of

knots increases, the degrees of freedom and the complexity of

the model increase. The problem is then the risk of overfitting,

which means that with increasing model complexity, the models

will often match the given sample better but not the other

samples from the data-generating process or population in

general. Therefore, keeping the number of knots and the

respective model complexity low is desirable, yielding models

that fit a given sample less exactly but generalize better. A knot

count of five or less is usually considered sufficient in practice

(3, 4, 8). Using five knots is a good choice when the sample size

is large, n � 100, for continuous uncensored response variables,

according to Harrell (4, p. 28).
l fitted to a sample of 250 observations. The predictor, X, and response, Y,
with dashed vertical lines along the horizontal axis, and the fifth and 95th
been placed using the standard knot selection process, where the inner

ots. The observations are shown as gray circles. In this example, the knots
ept for the lowest and highest intervals, which have 13 observations. The
variable values are the sum of a fifth-degree polynomial function,

r term, E � N (0, 0:5), representing the (homoscedastic) variance.
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Several measures for estimating the goodness of fit of a model

exist that penalize higher knot counts, such as Akaike’s information

criterion (AIC) and the Bayesian information criterion (BIC)

(9, 10). Unfortunately, when we are limited to placing knots by a

regular sequence of quantiles, having a low number of knots may

miss locations essential for a good model fit. Furthermore, we

risk placing knots in locations that do not substantially improve

the fit or can contribute to overfitting in denser subintervals.

For spline regression models, in general, the number of knots

and locations are hyperparameters that must be chosen.

Perperoglou et al. (5) describe the role of spline regression

models in modern biostatistics and review software packages for

spline functions in R (11). The paper was written on behalf of

the STRengthening Analytical Thinking for Observational Studies

(STRATOS) initiative (12). The authors conclude that an

experienced analyst can achieve reasonable outcomes, regardless

of the spline type or tool. Most differences can be attributed to

the choice of hyperparameters. However, analysts may not

possess sufficient knowledge, and the availability of user-friendly,

well-documented software packages for spline modeling is

identified as important.

Against this background, we present a knot selection process

for RCS regression models of low complexity. The process

empirically shows improved results compared to placing knots

separated by equal-sized quantiles for comparable knot counts.

The algorithm is implemented as part of a software package for

R, knutar. In addition to RCS, the function choose_model

uses fractional polynomial (FP) regression (13). It selects a model

based on the best goodness of fit from either FP regression, RCS

with equal-sized quantiles, or RCS using the knot selection

process presented in this paper.

The rest of the paper is organized as follows: Section 2 provides

a brief example using real-world data, before Section 3 presents the

novel knot selection process and algorithm. Section 4 describes the

data generator designed for generating artificial datasets for

simulation experiments. The software package with the

implementation of the knot selection process and the source

code repository for experiments are covered in Section 5.

Section 6 describes the method for the experiments, followed by

experiments and results in Section 7. The discussion is found in

Section 8. Notable related work is briefly described in Section 9

before concluding in Section 10.
2. A brief, real-world example

Before delving into the details of the proposed knot selection

process and experiments, we provide a brief example utilizing

data from the Human Penguin Project (14). The purpose is to

illustrate the difference between the standard knot selection

process and the approach presented in the paper.

The Human Penguin Project investigates the idea of social

thermoregulation in humans. It is a crowdsourced cross-national

study involving 1,755 participants from various countries, and

the dataset includes body temperature measurements,

demographic variables, widely used psychological scales, social
Frontiers in Epidemiology 03
network indices, newly developed questionnaires, and

environmental factors.

For the example, we use the age of the participants as an

independent variable and the network size as a dependent

variable. We then fit two models by applying RCS regression

with five knots, i.e., two boundary knots and three inner knots.

The inner knots for the first model are placed according to the

standard knot selection process, and the inner knots for the

second model are placed according to our approach.

The result is that the BIC scores for the fitted models are 4,368

for the standard procedure and 4,360 for ours. A lower BIC score is

considered better. The splines for the models are shown in

Figure 2.
3. Knot selection process

This section presents a process for placing knots for RCS

regression. The process is an algorithm that finds a model with a

good fit but an inflated number of knots and uses its knot

locations to search for a less complex model. We first provide a

justification of the process before describing the algorithm in

more detail in Sections 3.1 and 3.2.

For the rest of the paper, we distinguish between inner and

boundary knots. The inner knots are all knots except the two

boundary knots.

The standard process for placing inner knots is by a regular

sequence of quantiles between the boundaries, which leaves only a

single way of placing k inner knots for a given sample.

Alternatively, we could allow the inner knots to be placed freely.

For freely placed knots, the number of possible ways to place k

inner knots for a sample theoretically becomes infinite for a real

predictor variable, x [ R. In practice, it is unnecessary to place

knots indefinitely close. Beyond a certain level of precision in

placing knots, the improvement in the goodness of fit obtained by

further increasing the precision diminishes and becomes too small

to be of practical value. Also, the precision and accuracy of the

observations in the sample are generally limited, i.e., an infinite

precision in placing knots is not meaningful. Consequently, there is

a finite set of q locations where inner knots can be placed in the

interval for the predictor variable observations. The total number

of combinations that r ¼ k inner knots can be placed for q

locations is equal to the binomial coefficient:

C(q, r) ¼ q
r

� �
¼ q!

r!(q� r)!
: (1)

The model found by the standard knot selection process is only one

in a more extensive set of possible models in the same model family.

Therefore, it seems likely that other models in the same family having

a better fit exist.

By increasing the distance between the candidate knot

locations, the q number of locations available for knot placement

becomes lower. Simultaneously, the number of possible ways to

arrange the r inner knots drops substantially, as understood from

the binomial coefficient. The set of locations available for knot
frontiersin.org
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FIGURE 2

The figure shows two plots. The upper plot shows the spline for the model fitted by applying the standard knot selection process, whereas the lower plot
shows the spline for our process. The observations are shown as circles, the boundary knot locations as solid vertical lines, and the inner knot locations as
dashed lines. Notice that the inner knot locations and splines differ between the two plots.
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placement can also be interpreted as a partitioning of the predictor

variable interval. The knot selection process in this paper finds a

reasonable partitioning of the interval where r inner knots are to

be placed. It defines a manageable number of locations, q � r,

where inner knots may freely be placed and places knots so that

the resulting model yields a low BIC score. In this paper, the

partitioning is taken from the knot locations of a model with

q � r inner knots, often having tens of knots, fitted to the

sample by applying the standard knot selection process.

The following subsections present the process as an algorithm

with two main steps. The first step of the algorithm, described in

Section 3.1, is to find a suitable start model. The start model’s

inner knots define all the q locations where the r inner knots of

a final model may possibly be placed. The second step of the

algorithm starts from the full set of knot locations in the starting

model and removes knot locations one by one iteratively. The

aim is to find a model with r inner knots that is better than the

model obtained from the standard process directly.

The strategy behind the algorithm is comparable to backward

methods that start with complicated models, such as a high-

degree polynomial, and successively simplify them (15, p. 48). It
Frontiers in Epidemiology 04
is distinct from backward elimination strategies that remove

variables from a set of study variables (15, p. 172).
3.1. Finding a start model

The first step of the algorithm searches for a suitable start

model by comparing the fits of a series of models up to a

relatively high knot count, for example, k ¼ 0, . . . , 50, where k is

the number of inner knots. The knot count does not include the

outer boundaries. A quantitative criterion for estimating the

model’s goodness of fit, which additionally considers the knot

count, i.e., penalizes for model complexity, is used to compare

the models. AIC is one such criterion that can be used. BIC is

another (9, 10). We have chosen to use BIC because it penalizes

more strongly higher knot counts than AIC. Furthermore, the

BIC is an asymptotically consistent model selection criterion,

meaning that it almost surely, with a probability approaching one

with n ! 1, selects the correct model from a family containing

this model (16, p. 235), where n is the sample size. For both AIC

and BIC, lower scores indicate better goodness of fit, adjusted for
frontiersin.org
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model complexity. We select the model yielding the lowest BIC

score of the assessed models as our start model.

Figure 3 shows the BIC scores for a set of models with

different numbers of inner knots, k ¼ 0, ::, 50. Each model is

fitted to the same sample by RCS regression and the standard

procedure for knot selection. In the figure, the inner knot

counts are shown along the horizontal axis, and the BIC scores

along the vertical axis. The figure illustrates that increasing the

number of knots typically leads to progressively lower BICs,

possibly having local minima, before reaching a global

minimum. Beyond this number of knots, the BIC scores

increase. The curve shows how BIC reflects that overly simple

or complex models have the propensity to underperform. Well-

known reasons are that they may not be able to cover relations

well enough or may fit to the noise, respectively. Zucchini (10)

describes the former as discrepancy due to approximation, the

latter as discrepancy due to estimation, and the combination as

the expected (overall) discrepancy. The discrepancy due to

estimation increases as the number of knots increases. This may

be less severe for larger samples, e.g., having thousands of

observations. In that case, the increase in overall discrepancy

becomes less steep. In this paper, the focus is on hundreds of

observations per sample rather than thousands.

Given the low BIC, the start model has a relatively low

expected (overall) discrepancy. However, it has far more knots

than the maximum we want for the final model. It seems

probable that the start model is overfitted but that a subset of

the knot locations can be a good choice for building a less

complex model.
FIGURE 3

BIC scores for increasing number of knots. The lowest BIC score is at 18 inne
Lognormal(0:5, 0:35) distribution, and the true function is cos (pX). The models

Frontiers in Epidemiology 05
3.2. Lowering the model complexity

The start model has the lowest BIC score of all assessed models

found by applying the standard knot selection process for a range

of knot counts and, presumably, a low expected (overall)

discrepancy. Next, the second step of the algorithm uses this

model as a starting point for iteratively searching for a less

complex model while keeping the BIC low.

Let q be the number of inner knots in the start model, and r be

the target knot count of the less complex model. The value of q

depends on the first step of the algorithm, and r is decided up

front by the analyst and fixed. Let S be the set of locations of

the inner knots in the start model.

A possible approach for finding a less complex model is to

compare all possible models having inner knots at r locations

selected from S. We can then perform an exhaustive, brute-force

search and be guaranteed to find the best model in this

candidate set, B. Unfortunately, the size of B rapidly grows as q

increases. We observe that the number of models in the set

equals the binomial coefficient, jBj ¼ C(q, r) (Equation 1),

meaning that an exhaustive search does not scale well from a

computational standpoint. In Q-notation (17, pp. 48–49), it has a

factorial time complexity, Q(q!), holding r fixed.

Here, we present a greedy algorithm (17) that starts with the

complete set of knot locations from the start model, S, selected.

It then removes knot locations one by one. The algorithm is a

state space search (18, p. 67) using a simple heuristic: Identify

and remove the knot location with the least undesirable impact

on the BIC score when removed. This knot location is deemed
r knots in this example. The sample consists of n ¼ 250 observations with
have fifth and 95th percentile boundary knots for the predictor variable.
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the most redundant in the current set, which implies an

assumption that the individual knot locations in a model can be

ordered by their relative contribution to a good fit, from being

crucial to redundant. Note that it only matters which knot

location is the most redundant for each iteration step. Only the

most redundant knot location is removed. As long as none of the

r knot locations for the globally best model in B have been

ranked as the most redundant in an iteration step, the found

model will be identical to the globally best model in B. When

r ¼ q� 1, the state space search algorithm is equivalent to

assessing all models in B. Otherwise, the resulting final model

may differ from the best model in B. Thus, the algorithm does

not guarantee finding the best model in B. However, it is

relatively common for state space search, or machine learning

algorithms in general, not to guarantee a globally optimal solution.

In the first iteration step, the algorithm assesses which one of

the start model’s q inner knot locations to remove first. For this,

it assesses q candidate models. In the next step, the algorithm

assesses which one of the q� 1 inner knot locations of the

model found in the previous step to remove next, which requires

the assessment of q� 1 candidates. The iteration continues until

r inner knot locations are left. For the last step, r þ 1 models are

assessed. Thus, the total number of models assessed by the

algorithm is the sum of natural numbers from r þ 1 to q

inclusive. Here, we assume that r , q. By applying Equation 2

for a ¼ r þ 1 and b ¼ q and expanding, we get Equation 3.

Xb
j¼a

j ;
(aþ b)(b� aþ 1)

2
, (2)

Xq
j¼rþ1

j ;
qþ (r þ 1)

2
q� rð Þ ; 1

2
(q2 þ q� r2 � r): (3)

From the right-hand side of Equation 3, we see that the time

complexity is quadradic, Q(q2), holding r fixed. From Equations

1 and 3, we see that for r � 2, the exhaustive search requires

fewer models to be assessed than the state space search

algorithm. The two approaches are equivalent when r ¼ q� 1.

Otherwise, the number of models assessed by the exhaustive

search grows far more rapidly with increasing q. For example, if

the start model has q ¼ 30 inner knots and the final model has

r ¼ 4 inner knots, the exhaustive search assesses 27,405 models.

The version that removes one knot at a time only assesses 455

models. This difference is monotonically and steeply increasing

as q increases. Further, instead of allowing only a specific

number of knots for the final model, we can accept a final model

having a knot count in a given range. When assessing a sequence

of allowed number of inner knots, k ¼ 0, . . . , kmax, removing

one knot at a time is computationally cheaper because the

exhaustive search requires the complete set of possible models

per target knot count, Bk, k ¼ 0, . . . , kmax, for each step. In

conclusion, the state space search scales better computationally.

A combination of the exhaustive and the state space search can

be used. For example, the exhaustive search can find the best

model with regard to BIC in B when r � 2. However, the
Frontiers in Epidemiology 06
experiments described in Sections 6 and 7 only use the state

space search because it is the paper’s primary focus.

We may be tempted to remove all but the r most crucial inner

knots in one step, but this approach can be suboptimal. When a

single knot is removed, the order of the remaining inner knots by

relative importance can change. A hypothetical example is when

two or more inner knots are clustered around a location crucial to

a good fit, e.g., an essential critical point. Individually removing any

of these inner knots may have a low negative impact because the

other inner knots still support the shape of the curve. On the other

hand, if we remove all these inner knots, no knots would

contribute to the shape of the curve around the crucial location.

The consequence would be a significant negative impact on the

goodness of fit. When we remove knots one by one, we allow the

order of the knots by relative importance to change per iteration

step. For example, if only one of the knots around a crucial

location is still present in the set, its importance will be ranked as

high, preventing it from being removed.

Finally, we could also imagine a different greedy algorithm that

starts with no inner knots and iteratively adds knots at locations

selected from S. Each iteration step adds a new knot by

selecting, from S, the knot location that yields the best model of

the alternatives. When the algorithm selects the first knot

location and fits a model with a single inner knot, the

discrepancy due to approximation can be expected to be high in

many cases. Thus, the selected knot location may not be essential

to recreate the start model’s basic regression curve shape.

Unfortunately, the algorithm will not replace knot locations in

subsequent iteration steps, meaning new knots can be placed

based on misselected locations from the early steps.
3.3. Accepting a range of knot counts

In the previous section (Section 3.2), we described the

algorithm as targeting one specific number of knots for the final

model. However, we do not target only one specific number of

knots in the software package (Section 5), experiment methods

(Section 6), and experiments (Section 7). Instead, the final knot

count is allowed to be within a range, and the model yielding the

best BIC score in that range is selected as the final model. We

also do the same for the standard knot selection process and

select the model having the best BIC score within the given

range of inner knot counts, k ¼ 0, . . . , kmax.

To find a final model having an inner knot count within a target

range k ¼ 0, . . . , kmax using the algorithm presented in this paper,

the iteration described in Section 3.2 continues until all inner knots

have been removed. The two boundary knots are never removed.

The algorithm selects the best of the models found during the last

iteration steps, where k � kmax, as the final model.
3.4. Knot removal example

Figure 4 shows the effect of the algorithm iteratively removing

knot locations from the start model in the search for a final model
frontiersin.org
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FIGURE 4

The figure shows the effect of iteratively removing knot locations one by one from the start model. In each of the four plots, the thin, black line is the
model’s fitted curve, whereas the thicker, light gray line is the true curve. The smaller circles are the observations. The inner knot locations are shown as
dashed vertical lines, whereas the fifth and 95th percentile boundary knot locations are shown as solid, black vertical lines.
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of lower complexity. The resulting regression curves at four

different steps are plotted. The predictor variable is lognormally

distributed, X � Lognormal (0:5, 0:35), and the true curve is a

cosine function, cos (pX). The algorithm finds a start model by

applying the standard knot selection process for a range of inner

knot counts, k ¼ 0, . . . , 50. The model at 18 inner knots yields

the best BIC for this sample. The algorithm then systematically

removes knot locations from this start model. At each iteration

step, the algorithm assesses all models with j of jþ 1 inner knot

locations from the previous step, i.e., jþ 1 models, and selects

the model yielding the lowest BIC score. The figure shows the

best models for 18, 13, 8, and 3 inner knots, having BIC scores

of �200, �227, �247, and �186, respectively. Each step does

not necessarily have a lower BIC score than the previous step

because the BIC score can increase as the number of knots
FIGURE 5

The left plot shows the curve for the final model in Figure 4. The right plot sho
process for three inner knots directly.

Frontiers in Epidemiology 07
decreases because of discrepancy due to approximation

(underfitting).

Notice that the start model with 18 inner knots in Figure 4 has

many redundant knots. As the algorithm removes such knots, the

basic shape of the regression curve stays relatively stable for this

example. Also, the start model’s curve has some wiggliness

around the top turning point. It is an example of overfitting in a

region where the distribution of the observations for X is denser

and illustrates one problem of placing knots by a regular

sequence of quantiles.

Figure 5 shows the predicted curve for the final model in

Figure 4 and the corresponding model obtained by applying the

standard knot selection process for three inner knots directly,

yielding a BIC of 67. Notice that the observations are more

sparsely distributed for greater values of X, making the upper
ws the curve for the model obtained by using the standard knot selection
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quantile before the boundary in the right-side plot of Figure 5

wider and the model underfitted. This underfitting illustrates

another problem concerning the standard knot selection process.
4. Data generator

A data generator was designed and implemented for generating

the artificial datasets used in the experiments. It produces pseudo-

random samples by applying three user-defined functions:

1. The distribution X of the predictor variable

X ¼ {x1, . . . , xn} � Xn, where n is the sample size. For

example, the predictor variable distribution can be

X ¼ Lognormal(m, s).

2. The ground truth function, f, for generating the population

means, F, for the response variable Y given X. The term true

curve is used in the paper for these population means (Equation 4).

F ¼ mY jX ¼ f(X): (4)

3. The distribution for the error component, E, around mYjX . For
example, it can be a normal distribution (Equation 5).

E � N (mE , sE): (5)

First, the data generator draws a sample of n predictor variable

observations, X � Xn. For repeatability, the user can optionally

set the seed used internally by the pseudo-random number

generator. Next, the generator computes the true curve values,

F ¼ f(X). The generator then computes the response variable

values, Y ¼ F þ (E � En). The error component distribution E is

user-defined and can alternatively be heteroscedastic. For

example, we can scale the error distribution’s variance by a factor

of the given value of x [ X, which can be relevant for ratio-

valued variables. Finally, the sample values can be rounded to a

chosen accuracy, simulating the limits of the measurement

method. The resulting dataset includes both the rounded and

unrounded values. The simulation experiments in this paper only

use homoscedasticity and unrounded values to avoid unnecessary

complexity.

X and Y are the input predictor and response variable values

used for fitting the model, whereas F is the ground truth values

used to assess the performance of the model’s predictions in the

experiments. Together, they form the variable Z having the

distribution Zn (Equation 6).

Z ¼ (F, X, Y) � Zn: (6)
5. Software package implementation

The implementation of the knot selection algorithm presented

in this paper is included as part of our package, knutar, for use
Frontiers in Epidemiology 08
with R (11). The package is publicly available at https://github.com/

jo-inge-arnes/knutar and contains functions for suggesting models

and utility and plotting functions. It also includes the function

generate_data for generating artificial datasets.

The function choose_model in the package assesses

different regression models from a set of regression methods,

returning the one yielding the best results according to an

information criterion, where the default information criterion is

BIC.

The function’s strategy for choosing the appropriate regression

model follows a forward method going from simple to more

complicated methods. The knutar package uses the standard

generalized linear regression models (GLM) function in R,

stats::glm, for building models. It first applies regressions

with multivariable fractional polynomials, mfp (19), which

internally uses a forward selection process for fractional

polynomials (13) that includes simple linear regression. Next, the

function uses RCS regression, splines::ns, and finds the

number of knots, k � kmax, yielding the best score for equal-sized

quantiles. Lastly, the function applies the knot selection process

presented in the paper. The model with the best information

criterion score is returned along with extra information. If

models from different methods give the same best score, the

function chooses the model stemming from the earliest of the

applied methods. The function additionally returns a list with the

best candidate model from each of the three regression methods

and information about the chosen hyperparameters.

The main parameters of choose_model are the dataset for

the sample, the response variable, and the predictor variable(s).

The function uses the response and predictor variables as the

left- and right-hand sides of a formula so that the predictor

variable can be a formula composed of one or more of the

variables available in the dataset. In addition, choose_model

provides optional input parameters to replace the default

information criterion, maximum number of knots, and more.

The R-scripts for running the paper’s accompanying

experiments are in a separate repository at https://github.com/jo-

inge-arnes/knutar-experiments.
6. Methods

We conduct four simulation experiments as application

examples of different functions, f, for the true curve. The design

of the simulation experiments follows the theoretical framework

for inference problems in benchmark experiments presented in

the study by Hothorn et al. (20).
6.1. Simulation experiment

Using the data generator described in Section 4, artificial

observations are generated by drawing from known distributions.

The ground truth is known. Each z [ Z � Zn consists of the

value for the predictor variable, x, the response variable, y, and
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the ground truth that is to be predicted, f ¼ myjx (Equation 7).

z ¼ (f , x, y): (7)

For each simulation experiment, we generate artificial data with a

defined distribution, Z, and draw a set of M ¼ 1, 000 learning

samples consisting of n ¼ 250 observations (Equation 8).

L1, . . . , LM � Zn: (8)

Two algorithms, a1 and a2, are compared in the experiments, each

yielding a single fitted model per learning sample with a maximum

of three inner knots, kmax ¼ 3:

• a1 fits models having k ¼ 0, . . . , kmax inner knots to the given

learning sample by using the standard equal-sized quantiles

approach and selects the model yielding the lowest BIC score.

• a2 uses the knot selection process presented in this paper and

selects the model with an inner knot count in the range

k ¼ 0, . . . , kmax that yields the lowest BIC score.

By pairwise applying a1 and a2 to each of the m learning samples,

we get the fitted models (Equation 9).

aim ¼ ai( � jLm), i ¼ 1, 2: (9)

The fitting procedures for the algorithms are deterministic,

meaning they do not depend on random starting values or

hyperparameters outside the learning samples. Also, the finished

models, aim, no longer depend on hyperparameters. Further, the

models are themselves random variables depending on Lm and

have a distribution dependent on the data-generating process

(Equation 10).

aim � Ai(Zn): (10)

The model performances are measured with a scalar function,

p, which can also be interpreted as a random variable with

a distribution dependent on the data-generating process

(Equation 11).

pim ¼ p(ai, Lm) ¼ p(aim) � Pi ¼ P(Zn): (11)

For each model-pair, a1m and a2m, fitted per learning sample, Lm,

we draw t ¼ 2, 000 observations from the same data-generating

process as the learning samples, z ¼ (f , x, y) [ T, where

T � Zt. However, because predictions for RCS models are most

reliable between the boundary knots, we ensure that the x-values

are within this range.

The performance per model, p̂im, is computed by

approximating the expected loss between the ground truth,

f ¼ f(x), and the predicted value, ŷ ¼ aim(x) (Equation 12).

p̂im ¼ p̂(ai, Lm) ¼ 1
t

X
z¼(f ,x,y)[T

L(f , ŷ), (12)
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where L is the following quadratic loss function (Equation 13).

L(f , ŷ) ¼ (f � ŷ)2: (13)

This gives us two random samples consisting of M approximated

performance measure values from the distributions P1(Zn) and

P2(Zn), one set for each algorithm. We now formulate the null

hypothesis, where P̂i is the approximation of Pi. The null

hypothesis is rejected at a significance level of a ¼ 0:05

(Equation 14).

H0 : E(P̂1(Zn)) ¼ E(P̂2(Zn)): (14)

Because the models for a1 and a2 are fitted to the same learning

sets, the natural experimental design is a paired K samples

design, as described in Section 4 of Hothorn et al. (20). The

paired difference test t-statistic is used under the null hypothesis

of equality of the performance measure distributions.
6.2. Comparing BIC scores

In addition to hypothesis testing the distributions of the

estimated performance measure, we also report the differences in

BIC scores between a1 and a2, as well as the sample mean

difference in knot counts. These are meant as descriptive,

whereas the main hypothesis is on the performance measure as

described in the previous subsection.
7. Experiments and results

For the application example experiments, we followed the

method described in Section 6. Four different non-linear

functions representing true curves were defined, F ¼ f(X). A

lognormal distribution was used as X (Equation 15) for the

experiments in Sections 7.2–7.4. For the experiment in Section

7.5, the distribution was uniform (Equation 16). The error

component distribution, E, was homoscedastic and normal

(Equation 17) for all experiments. The values for the true curve,

F, and error component, E, were added to obtain the values for

Y (Equation 18). The fifth and 95th percentiles were used as

lower and upper boundaries for the X observations for the

samples. For the t ¼ 2, 000 observations, z ¼ (f , x, y) [ T, used

to estimate the performance measure, p̂im, all values were

between these boundaries. The reason is that RCS models are not

reliable outside the interval of the predictor variable observations

used to fit a model.

X � Lognormal(0:5, 0:35), (15)

X � U(0, 3:5), (16)

E � N(0, 0:1), (17)

Y ¼ F þ E: (18)
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FIGURE 7

The figure shows the distributions for p̂(a1 , Lm) and p̂(a2 , Lm) for the
logistic function as box plots within violin plots.
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7.1. Result report structure

The results from the two-tailed paired sample t-tests for the

differences in estimated performance measures and BIC scores

for the four experiments are reported together in Table 1.

Section 7.6 describes the table columns. The functions

representing the true curves and figures illustrating the results are

described in four subsections following the same structure (see

Sections 7.2–7.5):

1. The experiment’s ground truth curve function, fi, is briefly

described and the formula defined see Equations 19–22.

2. The function description is followed by a plot showing an

example of the resulting true and fitted curves for a single

sample. The BIC scores for the fitted curves are included in

the plot’s legend see Figures 6, 8, 10, and 12.

3. A figure showing the distributions of the estimated

performance measure, p̂im, for a1 and a2 as boxplots within

violin plots see Figures 7, 9, 11, and 13.

7.2. Logistic

The first curve function, Equation 19, is a logistic function.

Such functions are seen in many fields, including sigmoid

activation functions for artificial neural networks (16, p. 392) and

logistic regression (15, p. 682). However, logistic functions are

also encountered in the context of non-linear relationships

between predictor and response variables, where population

growth is one example (21, p. 390).

Figure 6 shows the function’s curve and the curves

approximated by a1 and a2 for an example sample of 250

observations. Figure 7 shows the distributions of the
FIGURE 6

The figure shows the logistic function’s curve together with the curves
approximated by a1 and a2 for an example sample of 250 observations.
The vertical lines are the outer fifth and 95th percentile boundaries. The
downward-pointing triangles along the top horizontal axis mark the
inner knot locations for a1, and the upward-pointing triangles along
the bottom axis are the knot locations for a2.
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estimated performance measure for a1 and a2 as box plots

within violin plots.

f1(X) ¼ (1þ e�12Xþ27)�1: (19)
7.3. Runge

The second function, Equation 20, is a Runge function. Such

functions are commonly used to demonstrate Runge’s

phenomenon where fitting high-order polynomials by equidistant

interpolation points results in oscillation at the endpoints and

failure to converge (22, p. 101). Here, the curve is translated so

that the central peak is at X ¼ 8
3. We do not use high-order
FIGURE 8

The figure shows the Runge function’s curve together with the curves
approximated by a1 and a2 for an example sample of 250
observations. The vertical lines are the outer fifth and 95th percentile
boundaries. The downward-pointing triangles along the top
horizontal axis mark the inner knot locations for a1, and the upward-
pointing triangles along the bottom axis are the knot locations for a2.
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FIGURE 9

The figure shows the distributions for p̂(a1 , Lm) and p̂(a2 , Lm) for the
Runge function as box plots within violin plots.

FIGURE 11

The figure shows the distributions for p̂(a1 , Lm) and p̂(a2 , Lm) for the
trigonometric function as box plots within violin plots.
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polynomials, but lower-order fractional polynomials also perform

worse than splines for this function.

Figure 8 shows the function’s curve and the curves

approximated by a1 and a2 for an example sample of 250

observations. Figure 9 shows the distributions of the estimated

performance measure for a1 and a2 as box plots within violin plots.

f2(X) ¼
1

1þ (
3
2
X � 4)2

: (20)
7.4. Trigonometric

The third function, Equation 21, is a cosine function. The

function’s turning points require an economic placement of the

three available inner knots.
FIGURE 10

The figure shows the trigonometric function’s curve together with the
curves approximated by a1 and a2 for an example sample of 250
observations. The vertical lines are the outer fifth and 95th percentile
boundaries. The downward-pointing triangles along the top
horizontal axis mark the inner knot locations for a1, and the upward-
pointing triangles along the bottom axis are the knot locations for a2.
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Figure 10 shows the function’s curve and the curves

approximated by a1 and a2 for an example sample of 250

observations. Figure 11 shows the distributions of the estimated

performance measure for a1 and a2 as box plots within violin plots.

f3(X) ¼ cos
3p
2
X

� �
: (21)
7.5. Gaussians

The last curve function, Equation 22, is the sum of two

Gaussian functions (Equation 23) reminiscent of a bimodal

distribution with two normal distributions, 3
2N (1, 0:5) and

N (2:75, 0:5). As the only experiment, X has a uniform

distribution, X � U(0, 3:5), in contrast to the other three

experiments that use a lognormal distribution.
FIGURE 12

The figure shows the Gaussians function’s curve together with the
curves approximated by a1 and a2 for an example sample of 250
observations. The vertical lines are the outer fifth and 95th percentile
boundaries. The downward-pointing triangles along the top
horizontal axis mark the inner knot locations for a1, and the upward-
pointing triangles along the bottom axis are the knot locations for a2.
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FIGURE 13

The figure shows the distributions for p̂(a1 , Lm) and p̂(a2 , Lm) for the
Gaussians function as box plots within violin plots.
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Figure 12 shows the function’s curve and the curves

approximated by a1 and a2 for an example sample of 250

observations. Figure 13 shows the distributions of the estimated

performance measure for a1 and a2 as box plots within violin plots.

f4(X) ¼
3
2
g X, 1,

1
2

� �
þ g X,

11
4
,
1
2

� �
, (22)

where g(X, a, b) is the following Gaussian function,

g(X, m, s) ¼ 1

s
ffiffiffiffiffiffi
2p

p exp � 1
2
(X � m)2

s2

� �
: (23)
7.6. Results table

Table 1 shows the results for the four experiments described in

Sections 7.2–7.5. The columns are

1. The function representing the true curve in the experiment,

2. The 95% confidence interval for the expected difference in

estimated performance measure for a1 and a2,

3. The performance measure sample mean for a1,

4. The performance measure sample mean for a2,

5. The 95% confidence interval for the expected difference in BIC

scores for a1 and a2,

6. The sample mean for the number of knots for a1 minus the

number of knots for a2.
TABLE 1 Experiment results.

Curve E(P̂1)� E(P̂2) CI �P1

Logistic [1:295� 10�02, 1:326� 10�02] 1:401� 10�02

Runge [3:721� 10�03, 3:848� 10�03] 4:724� 10�03

Trigonometric [1:144� 10�01, 1:186� 10�01] 1:401� 10�01

Gaussians [5:187� 10�03, 6:105� 10�03] 1:175� 10�02
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8. Discussion

The implementation of the knot selection algorithm presented

in this paper is part of an R-package, knutar. The package-

function choose_model uses the algorithm but only selects

the model produced if it scores better than the models from

fractional polynomial regression and the standard knot selection

process for RCS. Thus, we do not intend the presented process

to replace the standard knot selection process but as an option in

addition to it. The results can often be similar, so the processes

agree. However, as the experiments show, there are cases where

the models produced by our knot selection process perform

significantly better.

For all four experiments, Section 7.2–7.5, the null hypothesis,

Equation 14, was rejected. We do not report the exact p values in

the results table. The reason is that we can, in principle, generate

infinitely many artificial test observations, and the p value will

reach zero in the limiting case when the two distributions are

different. We can detect performance differences with high

power. However, as discussed by Hothorn et al. (20, p. 697),

“one should always keep in mind that statistical significance does

not imply a practically relevant discrepancy and therefore the

amount of the difference should be inspected by confidence

intervals and judged in the light of analytic expertise.” Instead,

we can turn to the presented confidence intervals to inspect the

amount of difference. The expected difference in BIC scores for

a1 and a2 reported in Table 1 suggests that our knot selection

process achieves a clear improvement compared to the standard

process for the example experiments.

Predictor variables usually have non-uniform distribution for

real data. When equal-sized quantiles separate knots, more knots

are located in dense regions than in sparser regions of the

predictor variable. Suppose the number of knots is relatively low

compared to the non-linear curve shape for the relationship

between the predictor and response variables. Placing inner knots

by a regular sequence of quantiles may lead to too few knots and

underperformance in the sparser regions, i.e., discrepancy due to

approximation, which is the case for the right-side regions of

Figures 6, 8, and 10. In these regions, our knot selection process

shows a better adaptation to the true curve. In Figure 10, we see

that there are more critical points than in Figures 6 and 8. In

such cases, the selected locations for the few available knots

become more crucial to the resulting goodness of fit.

Conversely, the standard knot selection process can lead to

overfitting in denser regions. For example, in Figure 6 and 8, we

see that the curve for a1 is wiggly compared to the true curve,

indicating an overfitted a1 curve.
�P2 E(BIC(a1m)� BIC(a2m)) CI �dk
9:086� 10�04 [198, 203] 0.0

9:391� 10�04 [78, 81] 0.2

2:354� 10�02 [244, 258] 0.0

6:102� 10�03 [59, 69] 0.0
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The experiment in Section 7.5 uses a uniform distribution for

X. Therefore, the density of the predictor variable observations

does not systematically differ in any particular region of the

sample for the M ¼ 1, 000 learning samples. However, the

ground truth curve for the experiment has a bimodal shape with

turning points that do not necessarily align well with a few knots

distanced by equal-sized quantiles. Here, the presented selection

process has greater flexibility in placing knots and can better fit a

regression spline using the same number of knots.

RCS models are often unreliable in the tails, i.e., before the first

boundary knot and after the last. For this reason, we have only

assessed the performance of predictions given predictor variable

values between the boundary knots of the fitted models, as

described in Section 6.1, which prevents outliers in the tails

from causing extreme squared prediction error values that distort

the performance measure. The same is not the case for BIC

scores. In our context, BIC scores are used for model selection,

including models not stemming from RCS regression. Thus, we

choose to compute BIC scores without customizing specifically

for RCS regression models.

Lastly, we briefly discuss model selection bias (10, pp. 58–60). The

knot selection process presented in this paper uses a backward method

that assesses many models. Nevertheless, in the end, only the best final

models from the knot selection processes are compared in the

experiments. It could be that the BIC score systematically is more

favorable for one selection process than another for unknown

reasons. However, in the simulation experiments, the primary

performance measure and hypothesis testing are not based on BIC

but on the ground truth and predictions for t ¼ 2, 000 previously

unseen observations for each m ¼ 1, 000 finished models per knot

selection process. Therefore, the estimated performance measures

should not be affected by selection bias.
9. Related work

Several advanced methods exist for spline regression. A

prominent example is penalized B-splines (P-spline) (23, 24),

where smoothing splines is a specialized case (16, pp. 151–153).

It is a flexible framework where splines are built from the sum of

basis curves scaled by coefficients, most commonly a high

number of equally distanced B-splines. The P-spline method

prefers an abundance of knots and control overfitting by a

roughness penalty (regularization) that smoothens or dampens

the wiggliness of the curve instead of reducing the complexity of

the model by removing knots. By setting coefficients to zero,

certain B-splines in the mixture can, in effect, be removed.

Although superficially similar to RCS regression, B-splines and

P-splines are different methods from RCS regression. The knot

selection presented in this paper concerns the latter.

Other techniques adaptively place knots or choose spline basis

functions. Typically, these advanced methods produce relatively

complex models or target slightly different problems, such as hybrid

adaptive splines (25) for when there is an underlying function that is

spatially inhomogeneous in its degree of complexity. In comparison,
Frontiers in Epidemiology 13
restricted cubic splines can easily be used to include non-linear

relationships in a wide variety of models (6).
10. Conclusion

We have presented a knot selection process and greedy state space

search algorithm for RCS regression and implemented it as part of an

open-source R-package, knutar. The example simulation

experiments show lower prediction errors and improved goodness

of fit compared to placing an equivalent number of inner knots by

a regular sequence of quantiles. The presented knot selection

process can be used as an alternative to the standard process when

the curve approximation is challenging due to several critical

points, regions where the predictor variable’s observations are

sparse, or both. It can also reduce overfitting in the more densely

distributed regions of the predictor variable observations.
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