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Pitfalls in time-to-event analysis
of registry data: a tutorial based
on simulated and real cases
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Malades University Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France,
2Immuno-Haematology and Rheumatology Unit, Necker Enfants Malades University
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Survival analysis (also referred to as time-to-event analysis) is the study of the time
elapsed from a starting date to some event of interest. In practice, these analyses
can be challenging and, if methodological errors are to be avoided, require the
application of appropriate techniques. By using simulations and real-life data
based on the French national registry of patients with primary
immunodeficiencies (CEREDIH), we sought to highlight the basic elements that
need to be handled correctly when performing the initial steps in a survival
analysis. We focused on non-parametric methods to deal with right censoring,
left truncation, competing risks, and recurrent events. Our simulations show that
ignoring these aspects induces a bias in the results; we then explain how to
analyze the data correctly in these situations using non-parametric methods.
Rare disease registries are extremely valuable in medical research. We discuss the
application of appropriate methods for the analysis of time-to-event from the
CEREDIH registry. The objective of this tutorial article is to provide clinicians and
healthcare professionals with better knowledge of the issues facing them when
analyzing time-to-event data.

KEYWORDS

registries, rare diseases, primary immunodeficiencies, left truncation and right censoring,

survival analysis, competing risk analysis, recurrent event analysis, time-to-event analysis

Key messages box

When comparing naïve approaches and the proper methodology, we show that:

• Not considering right censoring leads to underestimation of survival

• Not considering left truncation leads to overestimation of survival

• Treating competing risks as right-censoring leads to overestimation of survival

• Appropriate recurrent event methods allow to study all events for each patient and not

only account for the first event.
Abbreviations

CID, combined immunodeficiency; CIF, cumulative incidence function; CVID, common variable
immunodeficiency; HSCT, hematopoietic stem cell transplantation; MSM, multistate model; PID, primary
immunodeficiency; SCID, severe combined immunodeficiency.
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1 Introduction

The collection of patient data in academic- and/or industry-led

registries is one of the key elements of medical and translational

research. The advent of many disease registries (including

registries for rare diseases) in the early 2000s helped to improve

our knowledge of disease occurrence (incidence and prevalence

being the key epidemiological factors most frequently assessed),

the natural history of those diseases, and the effectiveness and

safety of various procedures and therapies (such as stem cell

therapy) at the national and international levels (1, 2).

Furthermore, registry data are of value in (i) designing national

or international orphan drug trials, (ii) standardizing patient

management, and thus (iii) improving the patients’ health-related

outcomes and quality of life (3).

In France, the creation of a series of five-year national rare

disease plans and national reference centers for rare diseases in

2004 prompted the creation of registries for single diseases or

groups of diseases. The CEREDIH French national reference

center for children and adult patients with primary

immunodeficiencies (PIDs) created France’s first national registry

for these conditions. The registry complied with the official criteria:

the continuous, exhaustive registration of cases [defined as a

condition, disease, health issue or healthcare procedure such as

surgery, hematopoietic stem cell transplantation (HSCT), etc.] in a

defined geographical area by a team of trained professionals (4, 5).

PIDs constitute a large, heterogeneous group of more than 500

mostly inherited diseases that expose patients to a greater risk of

infections, severe allergies, autoimmune/inflammatory

manifestations, and/or malignancies (6, 7). Furthermore, PIDs

can be classified as deficiencies of the adaptive immune system

(subdivided into T-cell deficiencies and B-cell deficiencies) and

deficiencies of the innate immune system. The T-cell deficiency

group includes severe combined immunodeficiencies (SCIDs, also

known as “boy-in-a-bubble diseases”) and other combined

immunodeficiencies (CID). The B-cell deficiency group can be

subdivided into common variable immunodeficiencies (CVIDs)

and hypogammaglobulinemias (also referred to as “non-CVIDs”,

which also include agammaglobulinemia).

Since the CEREDIH registry’s inception in 2005, we have

sought to include all patients diagnosed with a PID in France

(8, 9). As of June 2nd, 2022, more than 8,500 patients had been

registered. 1,563 of these patients are now deceased.

CEREDIH uses the European Society for ImmunoDeficiencies

platform to enter data. All European Society for

ImmunoDeficiencies registry documenting centers share a

common dataset, and CEREDIH has a complementary, specific

dataset. Overall, the collected data encompass several medical

variables recorded at one or more timepoints in the patient’s life:

the symptoms that led to the diagnosis of PID, the main PID-

related clinical manifestations (malignancies, autoimmune/

inflammatory manifestations, allergies, and infections), the main

PID-related therapies (mainstay therapies like immunoglobulin

replacement therapy and curative therapies like HSCT, thymus

transplant, and gene therapy), and the cause of death. After

inclusion, all the patient files are updated every two years or
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more frequently. Since the dates of these main events are

recorded, it is possible to construct time-to-event variables for a

given event.

Alongside data completeness, data quality is essential at all

stages: at registration and through follow-up documentations as

well as through the implementation of relevant and efficient

quality control and data management procedures. Furthermore,

the entry of multiple time points per patient ensures that

(i) information is as up to date as possible and (ii) the quality of

the indicators produced by the statistical analyses (especially

survival data indicators) is as high.

Underfunding is a concern because it leads to issues of registry

sustainability, which include (but are not limited to) understaffing,

impairing collaboration with statisticians who have relevant

expertise in this field. As a result, some studies may include a

suboptimal or even biased statistical methodology, which in turn

can lead to incorrect results. One of the primary roles of a

registry is to highlight overall trends and relationships in data

(10). Research groups can then use specific methods to validate

or reject medical hypotheses (e.g., with regard to disease

mechanisms, survival, covariates leading to one or more

comorbidities of interest, etc.). Therefore, the use of incorrect

statistical methods that do not consider potential bias in the data

might lead to unreliable estimations and harmful medical decisions.

Improving patient management is one of the main goals of patient

registries and involves the analysis of time-related data. In the field

of health, survival analyses are among those that suffer the most

from statistical bias; this is primarily due to the use of

inappropriate approaches that do not consider censoring.

Famous examples of incorrect statistical analysis often involve

immortal bias. One study (11) found that Academy-Award–

winning actors and actresses lived almost 4 years longer than

their less successful peers. However, a subsequent reanalysis of

the study data failed to find a significant difference in survival

between the winners and non-winners and showed that the first

analysis suffered from immortality bias: the “winners had to

survive long enough to win”, while “performers who did not win

had no minimum survival requirement, and some died before

some winners had won, that is, before some “longevity contests”

could begin.” Queen Elisabeth II even joked about immortality

bias during her 80th birthday celebration in 2006: “As Groucho

Marx once said, “Getting older is no problem. You just have to

live long enough.””. However, the issue can be more serious when

it affects medical research. Using skin cancer as a marker of sun

exposure, researchers had concluded that “having a diagnosis of

skin cancer was associated with less myocardial infarction, less hip

fracture in those below age 90 years and less death from any

cause.” (12) Following this study, two other researchers – both

specialists in the analysis of time-to-event data – pointed out the

presence of immortality bias in the first analysis: “in order to get

a skin cancer diagnosis, and thus become a member of the skin

cancer group, it is at least necessary to survive until age of

diagnosis. For those in the skin cancer group it is impossible to die

until the age of diagnosis of the cancer, the so-called immortal

person-time.” Another pitfall pertaining to the study of time-to-

event data involves competing risks: if the event of interest is
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non-lethal (such as disease relapse, an infection, or the occurrence

of cancer) and death can also occur, the latter must be treated as a

competing event (i.e., an event that precludes the occurrence of the

event of interest). A common mistake then consists in treating

death as censoring, which amounts to assuming that deceased

patients are still at risk of experiencing the event of interest. For

example, researchers have compared the risk of relapse among

HSCT recipients, using the European Group for Blood and

Marrow Transplantation (EBMT) dataset (13). They reported

that treating death as a censoring variable resulted in a

significant overestimation of the probability of relapse: the

estimated 5-year probability of relapse was 0.515 in the flawed

analysis and 0.316 when death was correctly taken into account

as a competing risk.

Here, we describe the classical methods used to deal with right-

censoring, left truncation, competing events, and recurrent events.

We first apply a simulation-based approach and then refer to

CEREDIH registry data. Our objective is to make clinicians and

healthcare professionals more aware of the issues facing them in

analyses of time-to-event data.

All analyses were conducted with R software and its {survival}

library. All the codes and a randomized version of the CEREDIH

dataset are available on GitHub (https://github.com/Malligon/

Pitfalls-in-Time-to-Event-Analysis-for-Registry-Data).
BOX 1 How to plan your survival analysis carefully.

• Focus on data completeness during a chosen time period,

rather than focusing on its length.

• Always start by defining the event of interest, the time

scale, study entry, and the risk set.

• Assess right-censoring, left truncation, and competing risks

in advance and use dedicated methods to analyze those

data.

• Consider a recurrent event analysis if patients can encounter

the event of interest more than once during the study.

• In general: always consider what might occur, rather than

what has been observed.
2 How to plan your survival analysis
carefully

Survival analysis (also called time-to-event analysis) is the

study of the time elapsed from a starting date to an event

of interest.

Firstly, it is important to precisely define the event of interest,

the time scale, the study entry point, and the risk set. The event of

interest can be death, recovery, occurrence of a disease, relapse or

any medically relevant event. The time scale refers to the time unit

used (usually years or months). Study entry is the starting point of

the study (birth, treatment initiation, enrolment, etc.). If, for

example, a study is designed to analyze survival (in days) after

treatment, study entry will be the time at which the patient took

his/her treatment, and the time scale will be days. If a study is

designed to analyze the age of death (in years), study entry will

be birth, and the time scale will be years. Lastly, the risk set is

defined as the pool of patients at risk of experiencing the event

of interest. A patient is included in the risk set at a specific time

if he/she can experience the event of interest at that time; this

means particularly that a patient can enter and leave the risk set

at any time.

A classical phenomenon in time-to-event analysis is the

presence of incomplete data. This can be caused by right-

censoring, left truncation, or both. These data might also include

recurrent and/or competing events. Failure to take these concepts

into account may lead to incorrect estimations and misleading

conclusions. Below, we present these four statistical concepts, and

we explain how they can be handled by properly adjusting the

risk set in each case. In the rest of the paper, we will denote by
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overestimation the fact that an estimator is upward biased, that is

the estimation tends to be larger than the true value. Similarly,

we will denote by underestimation the fact that an estimator is

downward biased, that is the estimation tends to be smaller than

the true value.

For some individuals, the exact time of occurrence of the event

of interest is not known; instead, an earlier time is observed, and it

is only known that the event of interest will occur after this

observed time. This is right-censoring, which is classically taken

into account with the Kaplan-Meier estimator.

Left truncation is a phenomenon that often occurs in time-to-

event analysis in which individuals are followed up only from a

time after study entry (called the truncation time) and not from

study entry onwards. In such a case, individuals are observed

conditionally on having not experienced the event of interest

before the truncation time. In order to avoid biased estimates,

those data need to be appropriately taken into account by

modifying the risk set in the Kaplan-Meier estimator.

Competing risks methods are involved in a situation that occurs

when another event may preclude the observation of the event of

interest. This is typically the case when the competing risk is

death and the event of interest is the occurrence of a disease,

remission, the onset of cancer, etc. While censored data indicates

that the true event of interest will occur after the censoring time,

the true event of interest can no longer occur after a competing

risk. A common error consists in treating competing events as

censored data in the calculation of the survival function of the

event of interest. This leads to overestimation of the distribution

of the event time. The correct approach consists in estimating

the cumulative incidence function (CIF), using specific methods.

Recurrent event data occur when an individual can experience

the event of interest several times during his/her lifetime. This can

happen for the study of recurrent infections, hospital admissions,

cancer relapses, etc… Furthermore, recurrent event data often

include a competing event (referred to as the terminal event),

which is typically death. For these data, a different quantity may

be of interest, such as the expected cumulative number of

recurrent events experienced by a patient up to a given time

point (Please, refer to Box 1).
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BOX 2 Right censoring.

• Right censoring is extremely common in time-to-event

analyses.

• The Kaplan-Meier method is the standard approach for

estimating the survival function for right censored data.

• Ignoring right censoring leads to underestimation of the

survival function.

• When observations are censored, the event of interest will

happen at a later, non-observed time.

Alligon et al. 10.3389/fepid.2024.1386922
3 A simulation-based approach

3.1 Right-censoring

As mentioned above, a time-to-event analysis will usually

include right-censored data. Right-censoring can mainly occur

for two reasons: (i) the patient has not yet experienced the event

of interest by the time the study ends, or (ii) the patient is lost

to follow-up during the study period (i.e., drop-out). Because

such censored times are smaller than the true event times,

treating the censored observations as completely observed data

will underestimate the distribution of the true event times. In

contrast, larger and smaller times of interests will respectively

tend to be more or less subject to right-censoring. As a result,

keeping only the uncensored observations will result in

underestimation of the true event time distribution. These two

naïve approaches (treating censored data as completely observed,

or removing censored data) show that dedicated methods

(namely the Kaplan-Meier estimator, in the case of right-

censoring) are needed in this context.

When dealing with time-to-event data with right-censoring,

the observations for an individual consist of two variables: the

observed time and the censoring status (or censoring indicator).

The latter variable is binary and indicates whether the observed

time is the time of interest or the censored time - a time that is

known to be smaller than the time of interest. In order to

simulate these types of data for each individual, one needs to:

(i) simulate the time of interest; (ii) simulate a censoring time;

(iii) measure the minimum between the two times, which is the

observed time; and (iv) determine whether the time of interest is

smaller than the censoring; if so, the censoring status is equal to

1; if not, the censoring status is equal to 0.

In the Appendix, we present a simple code that simulates these

data as described above. We chose a Weibull distribution for the

true event time (with a shape of 2 and a scale of 30) and a

uniform distribution over the interval [0;85] for the censoring

variable. On average, this choice of parameters will result in

31.24% of censored data. A sample of size 1,000 is simulated. It

should be noted that a seed was arbitrarily chosen, so that the

data can be reproduced easily (see the Appendix for more

details). Table 1 shows the first 10 individuals simulated using

this code.
TABLE 1 The first 10 individuals simulated.

Id T C Tobs Status
1 23.20864 40.058249 23.208645 1

2 47.81562 32.885624 32.885624 0

3 19.73251 6.162220 6.162220 0

4 25.09012 61.071086 25.090124 1

5 17.23864 79.453411 17.238643 1

6 12.54956 20.671471 12.549556 1

7 29.33067 78.726083 29.330674 1

8 30.65042 5.784648 5.784648 0

9 37.83960 31.833046 31.833046 0

10 41.52067 77.230945 41.520666 1
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In the absence of covariates, the standard quantity of interest in

survival analysis is the survival function which represents the

probability that the event of interest has not yet occurred at any

given time point. The survival function is classically estimated

using the Kaplan-Meier estimator (14). More details about the

calculation of this estimator can be found in Supplementary

Data 1. By using the survfit function in the R package {survival},

one can compute the Kaplan-Meier estimator for the previously

generated dataset. This estimator can be compared with the naïve

approach described in the second section, which consists in

removing the censored observations and computing 1 minus the

empirical distribution function for this subsample (Figure 1; see

the Appendix for more details). Clearly, the Kaplan-Meier

estimator produces a very accurate estimation, whereas the naïve

approach gives a biased estimation. As expected, the survival

function is underestimated when censoring is ignored. For

example, the true quantiles (Q1, Q2 and Q3) for the variable of

interest are 16.14, 25 and 35.37, respectively. The three quantiles

estimated from the Kaplan-Meier estimator are 16.12, 25.09 and

35.95, respectively, while those given by the naïve estimator are

13.95, 22.06 and 30.42, respectively (Please, refer to Box 2).
3.2 Left truncation

Another frequent phenomenon in time-to-event analysis is left

truncation (delayed entry), when individuals are followed from a

later time (the truncation time) and not from the starting point. In

such a case, individuals are observed conditionally on having not

yet experienced the event of interest before the truncation time.

Again, in order to avoid biased estimates, those data need to be

taken into account appropriately by modifying the risk set in the

Kaplan-Meier estimator. While right-censoring is often correctly

taken into account in the analysis of time-to-event data, left

truncation is more difficult to apprehend and is therefore

sometimes overlooked. Not taking into account left truncation

results in an immortality bias because individuals are considered to

be at risk before the truncation time but cannot die – if death is the

event of interest – before the truncation time. This is typically the

case when the study entry is birth and the time-to-event variable of

interest is age since, very often, patients cannot be followed up from

birth. In that case, it is important to take into account the data

observation scheme: depending on the study, an individual will start
frontiersin.org
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FIGURE 1

Comparison of the estimated survival function using the naïve approach (in which censored observations are removed) and the Kaplan-
Meier estimator.
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to be followed up at the time of diagnosis, at the date when the

treatment started, or at some other time. Individuals having

experienced the event before they started to be followed up will

never be observed. If the time-to-event variable of interest is age

and the patient enters the study at a specific time, then he/she

should not be part of the risk calculation for earlier times. It is

therefore crucial to appropriately define the starting point for the

follow-up of each patient. Ideally, the choice of the starting point is

guided by medical considerations, i.e., the time that makes the most

sense for the patient. But statistical considerations are also

important since, depending on the choice of the starting point, the

analysis may or may not suffer from left-truncation.

Left truncation can be easily taken into account by modifying

the risk set in the Kaplan-Meier estimator. At a given time point,

an individual should be in the risk set if he/she (i) has not yet

experienced the event, (ii) has not yet been censored, and

(iii) the truncation time occurred earlier than the time point.
Frontiers in Epidemiology 05
It is important to stress that ignoring left truncation would

result in overestimation of the survival function because the risk

set would be too large at time points where all patients have not

yet entered the study. Since the Kaplan-Meier estimator is

computed in a recursive way, this bias for initial time points will

have an impact on all later times, and this incorrect survival

function will be overestimated.

Using the same simulation scheme as before, we generated a

truncation variable with a uniform distribution over the interval

[0;50]. As a result, 42.4% of the observations are not observed

because the event of interest occurred before the truncation

time. We then estimated the survival function by applying two

approaches based on the Kaplan-Meier estimator: the correct

one that modifies the risk set according to the truncation

variable, and a naïve approach in which left truncation is

ignored. Modifying the risk set in the Kaplan-Meier method

is easily achieved in the {survival} library by using the start
frontiersin.org
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and stop variables instead of the usual observed time variable.

The start and stop variables correspond respectively to the

truncation time and the observed time (Figure 2; see the

Appendix for more details).

One can see clearly that the naïve approach overestimates the

survival function. For example, the true quantiles of order 0.25,

0.5, 0.75 for the variable of interest are equal to 16.14, 25, and

35.37, respectively. The estimated quantiles from the Kaplan-

Meier estimator when left truncation is taken into account are

equal to 15.14, 24.44, and 35.43, respectively, while the estimated

quantiles from the naive estimator are equal to 22.58, 31.25 and

42.14, respectively.

In summary, it is important to check that a survival analysis’ risk

set is well defined. In other words, the researcher should ask him/

herself “Is there a period of time during which the individuals

cannot experience the event of interest?”. If so, then the risk set
FIGURE 2

Comparison of the estimated survival function using the Kaplan-Meier estima
that ignores left truncation.
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needs to be modified accordingly by using the start and stop

variables. Similarly, it is important to choose an appropriate time

scale for use in practice. Most of the time, this choice will be

based on medical considerations. Does it make more sense to

study the risk of death on the age time scale? Or should the scale

be the time elapsed since treatment allocation? In the second

scenario, a wide age range might make it necessary to also adjust

for age. In the first scenario, it is very likely that the data will

suffer from left truncation. Lastly, it should be noted that left

truncation might deteriorate the performance of the Kaplan-Meier

estimator when the risk set is too small for short time periods. A

small risk set will result in a high hazard rate and a high variance

of the hazard rate. Given that errors at early times will have an

impact on all future time points, this issue can be problematic.

Some other options for managing this problem can be found in

the literature (15) (Please, refer to Box 3).
tor that takes left truncation into account and the Kaplan-Meier estimator
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BOX 3 Left truncation.

• Left truncation is very common in registry analyses -

especially when patients are followed up from birth.

• Left truncation is a specific type of immortal time bias.

• The Kaplan-Meier estimator accommodates with left

truncation by adjusting the risk set (adding patients or

removing them) at a given time point.

• Ignoring left truncation will lead to overestimation of the

survival function.

• Early events may impact and bias the survival function if

the risk set is too small at early time points.

Alligon et al. 10.3389/fepid.2024.1386922
3.3 Competing risks

As mentioned above, competing risks occur when another

event may preclude the observation of the event of interest.

This is typically the case when the event of interest is not

terminal, e.g., the occurrence of an infection or a diagnosis of

cancer. Death is then a competing event and if it occurs in the

dataset, it must be properly taken into account. A common

mistake is to use the Kaplan-Meier estimator with death treated

as a censoring variable. The major difference between a

competing event and censoring is that the event of interest may

occur after the censoring timepoint (even though it is not

observed) but will never occur after a competing event. If the

competing event is death and the event of interest is cancer,

then it is clear that a patient can no longer develop a cancer

after he/she had died. The Kaplan-Meier estimator treats

censoring as a variable that stops the observation of future

events for the patient but includes the information that the

event of interest will occur after the censoring variable.

Consequently, computing a survival curve using the Kaplan-

Meier estimator in a competing risk situation where death is

treated as a censoring variable will give a biased estimation.

Since dead individuals will remain “at risk” in the computation

of the survival function, the estimate will be biased upwards,

and the survival curve will be overestimated.

It should also be noted that the last example when cancer is the

event of interest and death is the competing event is more precisely

an illness-death situation. Strictly speaking, competing event

situations encompass data for which the events of interest are

mutually exclusive (16). A typical example is when different

causes of death are recorded and analyzed. Again, one cause of

death can only occur if the other cause of death has not yet

occurred, and this has to be properly taken into account in both

scenarios. In the cancer/death example, the death event might be

studied simply by computing the Kaplan-Meier estimator because

cancer does not preclude the occurrence of death. We

nevertheless chose to simplify the presentation by considering

this example with cancer and death, because the illness-death

model [a particular example of a multistate model (MSM)] is

beyond the scope of this article (16). Furthermore, situations in

which cancer is of interest and individuals are also at risk of
Frontiers in Epidemiology 07
death are frequently encountered in registry data. This will be

illustrated below on the CEREDIH dataset.

In the presence of competing risks, the quantity of interest is

usually the CIF. For the cancer example, the CIF is simply the

probability of experiencing a cancer before any time point. For a

given time t it is computed by cumulating for all time points tk
occurring before t, the product of the hazard risk for the event of

interest (computed as the ratio dk/Rk at tk, where the risk set Rk
includes individuals that have not yet experienced any of the

different types of events and have not yet been censored) and the

probability to have “survived” up until time tk. This last quantity is

basically the Kaplan-Meier estimator for the compound event

composed of all the types of events; in other words, it is the

Kaplan-Meier estimator where the event of interest is the first event

among all competing events). This estimator can be calculated from

the {survival} library by simply considering the status variable as a

factor with more than two levels: one level (always the first) for

censoring and the other levels for the competing events (17).

Lastly, given that the competing event precludes the occurrence

of the other event, it is good practice to always display the CIFs of all

the competing events as well as the CIF of the quantity of interest

(18). This is important because otherwise, the CIF of the quantity

of interest might be misleading. A low risk of experiencing an

event might simply be due to the fact that the patients are at high

risk of experiencing the competing event. Taking again the cancer/

death example, individuals might be at a low risk of cancer only

because they are at high risk of dying. Another illustrative example

(from the CEREDIH dataset) will be given later.

We generated two competing events, along with a censoring

variable (Figure 3; see the Appendix for more details). The CIF was

calculated in two different ways: the correct way, by considering

the other event as a competing risk (as described above), and the

naïve approach based on a Kaplan-Meier estimator where the

other event is treated as a censoring variable (in the latter case, the

curve is obtained by computing one minus the Kaplan-Meier

estimator). One can see clearly how important it is to analyze

competing risks correctly: the naïve approach clearly overestimates

the CIFs. Again, this is because the naïve approach considers

individuals to be at risk after they have died, as illustrated by the

fact that both curves tend to 1 as time goes to infinity. In contrast,

with the correct method, the sum of the two probabilities tends to

1 as time goes to infinity; each individual will experience one (and

only one) of the two events with probability one in the future.

In the Appendix, we present some simple code that simulates a

competing risk situation. We chose a Weibull distribution for the

true event time of interest (shape: 2; scale: 30) and for the competing

event (shape: 2; scale: 40). This choice of parameters will result in

24.98% of censoring, 48% of observed events of interest and 27.01%

of observed competing events on average. The true curve was

implemented based on calculations from the Supplementary Data S2.

The true quantiles of order 0.1, 0.2, 0.3 for the competing

event are equal to 13.69, 21.61 and 32.12 respectively. The

estimated quantiles from the competing risk method estimator

are equal to 14.19, 22.28 and 35.15, respectively, while the

estimated quantiles from the naive estimator are equal to 13.57,

19.88 and 25.10, respectively (Please, refer to Box 4).
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FIGURE 3

Comparison of the estimated cumulative incidence function using the competing risk method and the Kaplan-Meier estimator, which treats the
competing risk as censoring.

BOX 4 Competing risks.

• Competing risks are often present in analyses of a non-

terminal event.

• The quantity of interest is usually the cumulative incidence

function (CIF).

• Competing risks and right censoring are different: the event of

interest cannot occur after the competing event has occurred.

• Treating competing events as right-censored observations in

the Kaplan-Meier estimator leads to overestimation of the CIF.

• Always give the CIF for the competing risks as well as the

CIF for the event of interest.

• If the competing events are not of interest, they can be

grouped together as a single competing event.

Alligon et al. 10.3389/fepid.2024.1386922
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3.4 Recurrent events

Recurrent events arise when the event of interest can be

experienced several times for each individual. In this case, a

classical quantity of interest is the average number of recurrent

events that a patient will experience up to a given time point,

which is usually referred to as the cumulative mean number of

recurrent events. Recurrent events occur when the event of

interest is (for example) cancer recurrence, an infection, or

hospital admission and when the objective is to estimate the

average number of such events that a patient will experience up

to any time point. Since censoring often occurs in this type of

study, dedicated methods again have to be used to estimate such

quantity of interest – typically, by appropriately estimating the

hazard rate. In particular, ignoring censoring will clearly result in

underestimation of the true number of recurrent events since
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TABLE 3 Incidence rates of the simulated counting process database.

Global 0–10 10–20 20–30 30–40 40–50 50–60
0.139 0.015 0.075 0.18 0.269 0.438 0.471

TABLE 2 The first five rows of the simulated counting process database.

Id Start Stop Status Terminal
1 0.00000 13.437412 1 0

1 13.43741 23.040031 1 0

1 23.04003 24.159902 1 0

1 24.15990 26.020856 0 1

2 0.00000 6.701158 0 0
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censored patients will be followed-up on a shorter time period as

compared to the situation where censoring did not occur.

Furthermore, death is often observed as a competing event in

medical studies (also called a terminal event in recurrent event

studies) and must be accounted for; patients will not experience

a recurrent event after death.

A popular and intuitive approach to deal with recurrent

events is to compute the incidence rate by the ratio O/R of the

total number of observed recurrent events from all patients (O)

to the total time spent at risk (R). The term R, also termed

person time, represents the time at risk (in years, months or

days) that all patients contributed to the study, and is obtained

by computing the sum of the followed-up times of all

individuals. It naturally takes into account right-censoring by

increasing (respectively, decreasing) the time at risk for

individuals that were censored at a late (respectively, early)

time. This estimator assumes that the incidence rate is constant

over time and represents the risk, at any time point, of

experiencing a new recurrent event. The method can be further

refined by constructing a partition of the time at pre-specified

points, and then by estimating the (constant) incidence rates

between each interval. This approach, called the piecewise

constant hazard rate model, replaces the constant risk of

recurrent event occurrence by assuming a constant risk on each

interval but with different risks between intervals. This is a

parametric approach with a number of parameters to estimate

equal to the number of intervals. The parameter estimators are

again very simple to derive with this model: the ratios Ok/Rk

are computed for each interval where Ok represents the total

number of observed recurrent events that fall in the kth interval

and Rk represents the total time spent in the kth interval.

Again, censoring is taken into account by the denominator Rk.

Individuals that are censored before the left-hand side of the

kth interval do not contribute to this ratio. Individuals whose

censored time falls inside the kth interval contribute to the

time spent in the interval. Individuals whose censored times

fall after the right-hand side of the kth interval contribute for

the whole range of the interval time. The method is also often

used in a regression context, where the aim is to assess the

impact of covariates on the risk of experiencing a recurrent

event. It is then often termed the Poisson regression method

because the computation of the model likelihood is

proportional to the likelihood of a Poisson model. This offers

the advantage that the regression method can be simply

implemented using existing library for Poisson regression. For

example, in R, the {glm} package can be used by specifying the

time at risk for each individual as an offset (19, 20).

While this approach is extremely simple to implement and

provides a direct quantification of the risk of recurrent events

occurrence in each interval, it also suffers from several

drawbacks. First, a compromise must be made between

flexibility and complexity. Flexibility of the modeling approach

is reached with a large number of intervals but in order to

reduce the complexity it is appealing to choose a small number

of intervals. Second, the locations of the intervals must be

chosen, which is usually arbitrary done. Finally, as for all
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parametric models, the model might not provide a good fit for

the data. The same limitations as for the standard Poisson

regression applies here: typically, a poor fit would be exhibited

if for a given interval the number of observed events has a

large overdispersion or an excess of zeros (21). In the

following, we present the standard non-parametric approach for

analyzing recurrent events, which does not suffer from

modeling assumptions and which directly estimates the

cumulative mean of recurrent events over time.

An estimator for the cumulative mean number of recurrent

events was first developed simultaneously by Nelson and Aalen

in the context of right-censoring; it is therefore referred to as the

Nelson-Aalen estimator (22). The estimator was subsequently

extended by Ghosh et al. to the case in which a terminal event is

also present (23). Ghosh et al. also developed formulas for

confidence intervals. It is important to stress that those formulas

are very general and do not make any assumptions about the

dependence structure of the recurrent event increments. In

particular, they do not assume that recurrent events have

independent increments, which is very often not the case in

practice. More precisely, the recurrent events that may occur

between any two time points are not assumed to be independent.

In practice, this means that having already experienced one or

more recurrent events may or may not influence the risk of

further occurrences. This is a remarkable feature of the

confidence interval formula because in practice, patients that

have already experienced an event are often more likely to

experience future occurrences (24).

We have developed a code to generate recurrent events and

we have estimated the incidence rate from simulated data in

Table 3. On average, we estimate that approximately 139 new

recurrent events occur for 1,000 person years for the constant

incidence rate model. With the piecewise-constant model, we

observe that the incidence is increasing over time which

means that as time increases, the patients are more at risk of

experiencing new events. We have also implemented Ghosh

et al.’s formulas for the estimator of the cumulative number of

recurrent events in the presence of a terminal event (23). For

the code, we refer the reader to the Appendix. In order

to implement the estimator, the dataset needs to be arranged

in a start, stop structure (also called a counting process data

structure). Each patient needs to have one line per recurrent
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event and one line for the censoring or terminal event time. On

each line, the start time is the occurrence of the previous

recurrent event and the stop time is the occurrence of the next

recurrent event. On the first line, the start time will be equal to

the time when the patient enters the risk set (generally 0) and

the stop time will be the censoring or terminal event time.

This structure can also take into account left truncation: in

such a case, the truncation time will be the start time of the

first line. An example of data generated using this structure is

given in Table 2. Patient #1 developed an event three times (at

the age of 13.4, 23 and 24.2 years) and died at the age of 26.

Patient #2 did not experience any events and was censored

at the age of 6.7 years. Of note, the survSplit function from

the survival library can also be used to create the counting

process database.
FIGURE 4

Comparison of the estimated mean number of recurrent events using cens
take into account censoring and the competing event. Left panel: the me
terminal event).
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The expected number of recurrent events is calculated using

Ghosh et al.’s formula (23). We compared it with the naïve

approach, which ignores censoring and the terminal event

(Figure 4). The naïve estimator was implemented by simply

counting the number of recurrent events that had occurred

before a given time point, divided by the sample size. While

the correct estimator only includes patients at risk of

experiencing a recurrent event in the risk set, the naïve

approach uses a fixed risk set that includes all the patients in

the study. Since the risk set is too large in the naïve approach,

the estimator underestimates the expected number of recurrent

events. As recommended in the previous section, we advocate

to also display the survival function of the terminal event

because individuals at high risk of death will tend to experience

fewer recurrent events. We computed it as one minus the
ored data with competing events, and the naïve estimator that does not
an number of recurrent events. Right panel: the competing event (the
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BOX 5 Recurrent events.

• Recurrent events occur when patients may experience the

same event repeatedly over time.

• The cumulative mean number of recurrent events is an

interesting summary measure of the frequency evolution

of recurrent events over time.

• Competing risks often occur in recurrent event analyses.

• Ignoring right censoring will result in underestimation of

the mean number of recurrent events.

• Treating competing risks as right-censored observations

will lead to overestimation of recurrent events.
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Kaplan-Meier estimator (Figure 4, right-hand panel). As time

goes on, the survival function moves closer to 0. This explains

why the frequency of recurrent events appears to decrease

slightly (on the left-hand panel); at late time points, the

competing event is more likely to have occurred.

Recurrent events often occur in medical registry dataset with

often long follow-up periods and many repeated measurements

of medical outcomes. Researchers are often not aware of the

right method for handling recurrent events, and it is customary

to analyze only the first event. This can lead to an important loss

of information even though a recurrent analysis can be

straightforwardly implemented using standard libraries for

survival data. In order to compute the confidence intervals under

the general dependence structure of the recurrent event

increments, we implemented Ghosh et al.’s formula (23). Our

code is available in the Appendix and can be applied to any

recurrent event situation. At the time of writing, no packages

were publicly available, and so we decided to implement the

formula ourselves. Very recently, Klaus Holst and Thomas
FIGURE 5

Distribution of PID categories in the CEREDIH registry (n= 7,753 patients) a
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Scheike implemented a new function in the {mets} R package,

which computes Ghosh et al.’s estimator. Both approaches give

the same estimations (Please, refer to Box 5).
s of June 22nd, 2022.
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4 Use of the CEREDIH registry:
a real case

PIDs are a very heterogeneous group of rare immune system

diseases cause by defects in 485 genes [according to the latest

international classification (6)]. From a medical point of view, it

is not usually relevant to analyze all the patients’ data together;

usually, appropriate statistical analyses are conducted on

subgroups of PID patients. Indeed, the data include patients

suffering from very different diseases, such as T-cell deficiencies

(mainly SCIDs and CIDs), B-cell deficiencies, and innate

immunodeficiencies (Figure 5).

The data in the CEREDIH registry are typically right-censored

because they are collected in real time; as a result, most patients are

alive at the time of registration. The data are also retrospective in

the sense that deceased patients can also be registered if they

were diagnosed with a PID before death. In fact, the diagnosis of

PID is a requirement for registration. This means that PID

patients who die before being diagnosed are not included in the

registry. This is a typical example of left truncation when

studying the patient’s age at death and must be taken into

account appropriately in the statistical analysis.

As emphasized in Section 3B, the choice of the starting point is

crucial both in terms of medical interpretation and for the

statistical analysis, since it might induce left-truncation. For the

CEREDIH registry, one possibility is to set the “start of follow-

up” at the date of the clinical diagnosis. In that case, the time-to-

event variable will be the time elapsed since diagnosis. Another

possibility is to set the “start of follow-up” at the date of birth, in

which case the time-to-event variable of interest will be age (i.e.,

age when the event of interest occurred). The latter option makes
FIGURE 6

Survival probabilities with different starting points. (A) Post-diagnosis survival
by PID category.
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more sense from a medical point of view because PIDs are

genetic diseases; even though a patient might be diagnosed at a

later age, the disease might have affected him/her since birth or

at least for some time before the diagnosis. As mentioned above,

however, the date of diagnosis will be a truncation variable in

that case. In contrast, setting the start date to the date of

diagnosis avoids the left truncation issue.

For the sake of clarity, we first show the Kaplan-Meier analysis of

the time to death of patients with CVID when the starting point is the

date of diagnosis. Patients with CVID are diagnosed at different ages,

ranging from early childhood to late adulthood. Our analyses were

further stratified with respect to five age classes. When patients are

diagnosed at a later age (40+), the risk of death differs significantly

(Figure 6A). Twenty years after diagnosis, 45% of the patients

diagnosed after the age of 40 were dead. For patients diagnosed

between 0 and 4, 5–9, 10–19, and 20–39 years of age, the death rate

was 8%, 4%, 15%, and 9%, respectively. However, the patients

diagnosed earlier in life are more prone to die for a reason

unrelated to their PID; this highlights the limitations of this method

and its interpretation. The same analysis was conducted for six

different PIDs but with birth as the start date (Figure 6B). This

time, the left truncation induced by the date of diagnosis was taken

into account by applying the above-described methodology. We can

see that CVID and non-CVID B-cell deficiency patients have

similar survival curves and have a better prognosis than patients

with the other diseases. At 40 years of age, for example, 12% of the

CVID patients and 13% of the non-CVID patients are estimated to

have died. Patients with an innate immunodeficiency tend to have a

higher survival that patients with a CID: the probabilities of dying

before 20 years of age are estimated to 25% for patients with an

innate immunodeficiency and to 45% for patients with a CID. A

high proportion of patients with SCID are estimated to die at a
for patients with CVID, by age at diagnosis. (B) Overall survival from birth,
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FIGURE 7

Comparison of the estimation of the survival function on the CVID population using the Kaplan-Meier estimator that takes left truncation into account
and the Kaplan-Meier estimator that ignores left truncation. The groups KM/trunc+ and KM/trunc- respectively refers to Kaplan-Meier method with
risk set adjusted for truncation and Kaplan-Meier method without delayed entries in the risk set.
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young age: the probability of dying in the first two years is estimated

44%. For patients who have survived, the probability of death is low. In

the following examples, we will always use birth as the start date.

Not taking left-truncation into account in registered patients

with CVID leads to significant overestimation of the probability

of survival (Figure 7). By using the correct methodology, we

estimate that 30% of patients will die before the age of 62.3

years. When the naïve estimator is used, the equivalent age is

75.0. This comparison highlights the potential consequences for

public health at the population level.

We next studied the first occurrence of cancer in patients with

PID. Here, the event of interest is cancer, and so death is an

obvious competing risk that needs to be handled properly. Since

we are interested in the occurrence of cancers associated with

PIDs, we also considered all curative therapies (HSCT, gene

therapy, and thymus transplantation) as competing risks. These
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curative therapies can be treated as a single composite event

recorded at the age when the patient first encounters a

competing risk. We computed the CIF for cancer in the six

subgroups of PID patients and the CIF for the composite

competing risk (Figure 8).

CID patients are more likely to have experienced a first cancer

before the age of 55 (Figure 8A). For the patients that are still alive

at that age and have not yet experienced cancer or a curative

therapy, the CVID and non-CVID patients are the most at risk

of developing cancer. Clearly, these findings are strongly linked

to those shown in Figure 8B. Patients with SCID can undergo

curative therapy or die very soon after they are born and so are

no longer at risk of developing cancer. In contrast, the patients

with a CVID or non-CVID B-cell deficiency have a much lower

risk of death or curative therapy than the other patient groups;

this is because of their greater risk of cancer at older ages.
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FIGURE 8

The probabilities of developing a first cancer and its competing event, according to the main PID categories. (A) The probability of developing a first
cancer, according to the main PID categories. (B) the probability of death or receiving curative therapy (the competing risk), whichever comes first and
according to the main PID categories.
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Lastly, we analyzed the recurrences of cancer, autoimmune

disease episodes, and inflammatory events on the CID patient

group (Figure 9). Any of these three types of events is defined as

a recurrent event. We sought to estimate the mean number of

such events having occurred before any time point. As in the

previous analysis, curative therapy and death are considered to

be a composite competing event. The mean number of

recurrences is low and increased slightly over time to a value of

0.74 before the age of 80. Again, this value must be compared

with the risk of experiencing death or a curative therapy over

time, which is high for these patients (0.98 before the age of 80).

For all the figures in this section, the confidence intervals of the

curves were also computed. For ease of readability, only

pointwise estimates of the curves are displayed in Figures 6A,B

and Figures 8A,B but those curves along with their confidence

intervals can also be found in Supplementary Material, in

Figures 1A,B, 2A,B. For the cumulative incidence curves in

Figures 8A,B the confidence intervals were computed using a

bootstrap approach.
5 Discussion

In the present article, we discussed dedicated statistical

methods for analyzing time-to-event data in registries. Those

types of data have the particularity that they are not completely

observed, and various approaches must be used to avoid biased

estimations. In particular, we discussed how to take into account

right-censoring, left truncation, and competing events. We also

considered recurrent event situations, in which individuals can

experience the event of interest several times. If those particular
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mechanisms in the collection of the data are not properly taken

into account, the application of standard methods for completely

observed data will give rise to systematic biases. This fact was

highlighted in a simulation study in which the true mechanism

that generated the data was known in advance; and it was

therefore possible to compare various methods with the truth.

Lastly, we used the methods presented here to analyze data from

the CEREDIH registry.

In order to avoid bias in the analysis of time-to-event data, we refer

to the three pillars stated by Andersen and Keiding (25). “First, do not

condition on future”. In other words, no estimation should be carried

out that uses events that will occur in the future. For example, when

one wants to compute an estimation on the age scale, one should

check whether all the patients have been followed up from birth.

This is typically not the case when age is the time scale, and the data

will probably suffer from delayed entry (i.e., left truncation). In the

CEREDIH data, for instance, left truncation means that patients are

included in the study because it is known that they will be

diagnosed at some time in the future. Nevertheless, we have seen in

this paper how left truncation can be taken into account by

modifying the risk set using the age at diagnosis. The second

principle is “do not regard individuals at risk after they have died”,

and the third is “stick to this world.” In the present article, these last

two points apply to competing risks. Censoring a patient at the time

of his/her death implies that he/she will experience the event of

interest postmortem, which is impossible in the real world.

Left truncation is a specific example of immortal time bias.

Immortal time bias occurs when an individual is incorrectly

considered to be at risk, i.e., during a period of time when they

cannot experience the event of interest (26). As an illustration of

immortal time bias, let us consider a cancer study in which the
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FIGURE 9

(A) The mean number of recurrent malignant, autoimmune, and inflammatory events, taking death and curative therapies as competing risks. (B) The
competing event survival function, where the competing event is defined as death or curative therapy (whichever comes first).
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objective is to compare the risk of death for a group of patients with

cancer and a group of patients without cancer. If the time scale is

age, then cancer status will be a truncation variable. Furthermore, the

cancer and non-cancer groups are not well defined because it is not

possible to know in advance (i.e., at birth) whether the individual

will remain cancer-free or will develop cancer at a later time. If one

performs a survival analysis by defining the two groups (cancer and

non-cancer) in advance using the Kaplan-Meier estimator, then the

survival curve of the non-cancer group will be strongly biased

downwards; the risk set will not include any of the patients in the

cancer group, even though many of these patients will not have yet

developed a cancer at some specific times and should therefore be

included in the risk set. Since the non-cancer risk set will be much

smaller than it should be at early time points, the corresponding

survival curve will indicate that the prognosis for the non-cancer

group is worse than it truly is. In contrast, the fact that the cancer

group is defined prior to the onset of cancer introduces selection
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bias. As a result, the comparison of the two curves will largely

attenuate the effect of cancer on death. It is important to note that

with age as the time scale, the cancer group does not correspond to a

real situation. Individuals are not born with a cancer status, and

cancer may or may not occur during the lifetime of a patient.

When cancer does occur, the individual is no longer at risk of

developing cancer but might have an elevated risk of death. In fact,

this is a multi-state situation in which different events with different

risks must be taken into account in the survival analysis.

It was not possible for us to cover all the types of incomplete

observation that can arise in analyses of time-to-event data.

Furthermore, we did not discuss how to analyze the effect of

covariates on a time-to-event response variable through regression

modeling. Confounding or other systematic group differences often

have to be accounted for, typically in epidemiology. In the context

of right-censoring and/or left truncation, this is usually performed

with the Cox model (27). The Cox model can also be applied to
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competing events and recurrent events, notably via the {survival}

package in R. Lastly, multi-state models (MSM) constitute a major

topic of interest but are not covered here (16). This situation arises

when (i) an individual can experience different events (referred to

as states) during his/her lifetime and (ii) the risk of experiencing

any of these events varies. This is a natural extension of the

competing risk situation; instead of studying only two possible

events (one of which is terminal), one looks at multiple events

between which transitions may or may not be allowed in the

model. In the CEREDIH registry data, for instance, patients may

experience various events: severe infections, cancer, autoimmune

disease episodes, death, etc. By using MSMs, one can describe all

the different states associated with the disease and the changes

from one state to another. This approach can also be incorporated

into a regression model in which covariates affect some states and

not others. These regression models can be implemented using the

{msm} or {mstate} packages in R.

In this article, we presented various methods and highlighted a

number of pitfalls in the analysis of time-to-event data. As a

consequence, we strongly encourage medical researchers who study

time-to-event data to collaborate closely with statisticians. Firstly,

registry data (especially rare disease registries) are essential for

understanding a disease (10). Secondly, funds for rare disease research

are often limited, and it is therefore crucial to use appropriate

statistical methods and derive correct conclusions. Robust, high-

quality health data are critical for (i) enhancing healthcare delivery,

medical R&D, and our knowledge of disease, (ii) supporting policy

and regulatory decisions, and (iii) ultimately benefiting patients in

particular and society more widely. Data can change lives by speeding

up diagnosis, improving patient care, and fostering the development

of new treatments. In rare diseases like PIDs, health data is even more

vital for the provision of more effective, high-quality, safe and

personalized care. Worldwide, efforts are growing to strengthen the

collection and use of data through patient registries and the shaping of

collaborative health data ecosystems.
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https://github.com/Malligon/Pitfalls-in-Time-to-Event-Analysis-
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