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COVID-19 latent age-specific
mortality in US states: a
county-level spatio-temporal
analysis with counterfactuals
Andrew B. Lawson1,2* and Yao Xin1

1Department of Public Health Sciences, College of Medicine, Medical University of South Carolina,
Charleston, SC, United States, 2School of Medicine, Usher Institute, University of Edinburgh, Edinburgh,
United Kingdom
During the COVID-19 pandemic, which spanned much of 2020–2023 and
beyond, daily case and death counts were recorded globally. In this study, we
examined available mortality counts and associated case counts, with a focus on
the estimation missing information related to age distributions. In this paper, we
explored a model-based paradigm for generating age distributions of mortality
counts in a spatio-temporal context. We pursued this aim by employing
Bayesian spatio-temporal lagged dependence models for weekly mortality at the
county level. We compared three US states at the county level: South Carolina
(SC), Ohio, and New Jersey (NJ). Models were developed for mortality counts
using Bayesian spatio-temporal constructs, incorporating both dependence on
current and cumulative case counts and lagged dependence on previous deaths.
Age dependence was predicted based on total deaths in proportion to
population estimates. This latent age field was generated as counterfactuals and
then compared to observed deaths within age groups. The optimal retrospective
space–time models for weekly mortality counts were those with lagged
dependence and a function of caseload. Added random effects were found to
vary across states: Ohio favored a spatially correlated model, while SC and NJ
favored a simpler formulation. The generation of age-specific latent fields was
performed for SC only and compared to a 15-month, 13-county data set of
observed >65 age population. It is possible to model spatio-temporal variations
in mortality at the county level with lagged dependencies, spatial effects, and
case dependencies. In addition, it is also possible to generate latent age-specific
fields based on estimates of death risk (using population proportions or more
sophisticated modeling approaches). More detailed data will be needed to make
more calibrated comparisons for future epidemic monitoring. The proposed
discrepancy tool could serve as a useful resource for public health planners in
tailoring interventions during epidemic situations.
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Introduction

During the COVID-19 pandemic, which spanned much of 2020–2023 and beyond,

daily case and death counts were recorded globally. Various hub sites provided access

to these data streams.

Based on these data, various modeling exercises were conducted, mostly using national

or state-level data. These modeling approaches predominantly focused on time series
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modeling of both case numbers and mortality (1–4). However,

there are only limited examples of spatio-temporal modeling for

case or death count data during the pandemic, despite clear

evidence of spatial spread over time (5–9).

With the benefit of retrospectively stabilizing the count data

generated during the pandemic, the CDC in the United States

has collated a complete set of stabilized counts for cases

and deaths, available on a weekly basis at the county level within

states (https://data.cdc.gov/dataset/Weekly-United-States-COVID-

19-Cases-and-Deaths-by-/yviw-z6j5). For the period from 22

January 2020 to 10 May 2023, data for a total of 173 weeks are

available. Note that these 7-day spans are useful as they help

eliminate random variations caused by reporting delays and

misassignments. In this study, we examined available mortality

and associated case counts, with a focus on estimating missing

information related to age distributions. The aggregate count

data from this source do not include age distributions. While age

is usually recorded for individual cases, it is possible that these

data are not available during certain outbreaks, even though the

differential risk is age-related. For the CDC pandemic data, age

distributions are not available in the weekly data county-level

reports. In this paper, we compared a model-based paradigm for

evaluating the optimal retrospective modeling of the space–time

variation in mortality as a function of caseload. In addition, we

explored the generation of age-specific distributions of mortality

counts within a spatio-temporal context. To achieve this, we

employed Bayesian spatio-temporal lagged dependence models

for weekly mortality at the county level. Here, we present the

results of an evaluation of age-specific data from South Carolina

(SC), which is available to us, as a first step in comparing three

US states at the county level: South Carolina, Ohio, and New

Jersey (NJ). Our choice of data source is based on several

criteria. First, we sought to consider a range of states with

different population bases. South Carolina is a southern US state
FIGURE 1

Charleston County, South Carolina: weekly case count and death count for
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with a predominantly rural population, whereas New Jersey is a

northern US state that is highly urbanized. Ohio, also a northern

state, has a mix of urban and rural counties. The state

population sizes in millions vary as follows: NJ, 9.3; Ohio, 11.8;

and SC, 5.1. Second, it was apparent that non-pharmaceutical

interventions (NPIs) were implemented differently in these states,

leading to a heterogeneity in policy decisions and responses to

the disease.
Available data

We have access to a data set covering 173 weeks of county-level

mortality and case counts of COVID-19.

Figures 1–3 display the full 173-week period of case and

death counts for selected counties in South Carolina, Ohio,

and New Jersey. It is notable that, overall, the death time

series follows the peaks and troughs of the case count

series, with some variation. However, early mortality peaks

in 2020 were observed in Ohio and New Jersey, but not in

South Carolina. Figure 4 displays the proportion of

population over 65 in three US states.
Modeling strategy

Our modeling strategy consists of examining a range of

relevant spatio-temporal mortality models to determine which

are most effective for each state, followed by the imputation of

the latent age fields across counties. The following quantities are

available from the CDC Wonder site. For m counties within a

state and T = 173 weeks,

ydi,j and yci,j are the death count and case count for the ith county

and jth week, respectively, md
ij is the death rate, mc

i,j is the case rate,
the period from 22 January 2020 to 3 May 2023.
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FIGURE 2

Franklin County, Ohio: weekly case count and death count for the period from 22 January 2020 to 3 May 2023.

FIGURE 3

Middlesex County, New Jersey: weekly case count and death count for the period from 22 January 2020 to 3 May 2023.
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ydG65ij is the death count in >65 age group in the ijth unit, and ydL65ij

is the death count in the <65 age group in the ijth unit.
Aggregate models

As an overall aggregate mortality model, we used case and

cumulative case dependencies and added a lagged mortality

count term. A random-effect term, both spatially and temporally

dependent, was also included (5, 6). We assumed a Poisson data

model for the aggregate death count and modeled the mean level
Frontiers in Epidemiology 03
with a log link. Overdispersion was accounted for via a random

effect at the unit level:

ydi,j � Pois(md
i,j),

log(md
ij) ¼ a0 þ a1log(y

c
ij)þ a2log(y

d
i,j�1)þ a3log(T

y
ij)þ zij,

where md
ij ¼ mdL65

ij þ mdG65
ij .

Here, it is assumed that current case count (including an

asymptomatic estimate, ycij) and cumulative count (Ty
ij) are

important, as is dependence on previous mortality count in the
frontiersin.org
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FIGURE 4

County-level maps of the proportion of population aged 65 and over in three US states (from left): South Carolina, New Jersey, Ohio (not to scale).
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same county (ydi,j�1). This latter term introduces temporal lag

dependence, alongside case dependence. The possibility that

deaths could be lagged after case occurrence is accounted for by

including the cumulative case count. This does not directly

model the tapered lag in deaths but serves as a surrogate for that

dependence. Finally, the random effect zij can be parameterized

in various ways, depending on the context. Some variants of this

general model have been considered. First, a base model is

considered with only case dependence of the form:

log(mdL65
ij þ mdG65

ij ) ¼ a0 þ a1log(yij)þ a3log(T
y
ij)þ zi, (1)

where the random effect is spatial only with an uncorrelated prior

distribution. This is termed an uncorrelated heterogeneity (UH)

effect. This effect is assigned a prior distribution as

zi ¼ vi � N(0, t�1
6 ), with precision t6 assigned a weakly

informative gamma prior distribution, such as Ga (2,0.5).

As an extension to this base model, Equation 2,

log(mdL65
ij þ mdG65

ij ) ¼ a0 þ a1log(yij)þ a2log(y
d
i,j�1)

þ a3log(T
y
ij)þ zi, (2)

includes a lagged death dependence to account for temporal

dependence on the mortality stream.
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Equation 3 provides for an extra random component with a

spatial dependence term added to Equation 1:

log(mdL65
ij þ mdG65

ij ) ¼ a0 þ a1log(yij)þ a3log(T
y
ij)þ zi, (3)

where zi ¼ vi þ ui.

This represents a combination (or convolution) of spatial

effects with vi � N(0, t�1
v ) as before and a spatial correlation

term ui. This term is assumed to have a conventional intrinsic

conditional autoregressive prior distribution (ICAR),

ui � N(�udi , t
�1
u =ndi ), which accounts for correlation via the

neighborhood mean �udi , with di representing the neighborhood

set (here defined for first-order neighbors of the ith region), and

the number of neighbors as ndi (10–12).

Finally, Equation 4 includes a lagged dependence term and also

a convolution on the spatial random effects:

log(mdL65
ij þ mdG65

ij ) ¼ a0 þ a1log(yij)þ a2log(y
d
i,j�1)

þ a3log(T
y
ij)þ zi, (4)

where zi ¼ vi þ ui.
Age-specific models

Note that for any model choice to estimate total deaths, we

could assume a simple link between age groups or groups and
frontiersin.org
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total deaths. This disaggregation could take the following form for

the >65 age group:

ypdG65i,j�1 � Bin( p, ydi,j�1), where p ¼ G65prop. G65prop is the

proportion of deaths in the >65 age group. As we did not

observe the age-specific death counts, ypdG65i,j�1 remained

unobserved and must be estimated. Of course, the ypdG65i,j�1 could

be simulated from a binomial distribution based on the

population proportion of >65 age group in a county (denoted

pG65 ¼ G65prop), so that

ypdG65i,j�1�Bin(pG65, ydi,j�1): (5)

In the initial analyses of the mortality count data, it was found

that different random-effect components were appropriate for the

different states. Hence, variations in zij needed to be accounted

for. However, to model dependence, as in our aggregate models,

it is possible to propose the following approach for the age-

specific variation:

ydG65i,j �Pois(mdG65
i,j ),

log(mdG65
i,j ) ¼ log( pG65)þ log(ldG65i,j ),

log(ldG65i,j ) ¼ b0 þ b1log(yi,j)þ b2log(T
y
i,j)þ b3log(y

dG65
i,j�1 )þ zdi,j,

(6)

where zdi,j ¼ vi for SC and NJ and zdi,j ¼ vi þ ui for OH.

The counts other than the specified age groups could be

estimated by differencing, e.g., ypdL65i,j�1 ¼ ydi,j�1 � ypdG65i,j�1 .

This would be fitted jointly with the aggregate model for

mortality:

ydi,j � Pois(md
i,j),

log(md
ij) ¼ a0 þ a1log(yij)þ a2log(y

d
i,j�1)þ a3log(T

y
ij)þ zij,

md
ij ¼ mdL65

ij þ mdG65
ij ,

where zij ¼ vi for SC and NJ and zij ¼ vi þ ui for OH.

Note that the ydG65i,j would be latent and must be fitted jointly

with the overall aggregate mortality model. As this involves

extensive simulation of latent time-dependent fields, which is

computationally demanding, the first approach adopted here was

to generate estimated counts via simulation from the observed

mortality totals within counties while simultaneously fitting the

overall aggregate county-level time-dependent mortality models.
TABLE 1 WAIC values for different models using aggregate data.

SC

WAIC pWAIC
Base model (1) 22,684.5 453.65

Lagged death dependence (2) 22,590.3a 600.83

Spatial convolution (3) 22,667.9 444.97

Lagged plus spatial convolution (4) 22,600.6 598.87

pWAIC, WAIC penalty.
aLowest WAIC for each area.
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Prior specification and sensitivity

In the models described above, we included different combinations

of regression parameters. Conventional choices were made for the

prior specification of these effects, generally opting for non-

informative choices, although we also used weakly informative

specifications (such as ICAR). For the regression parameters, we

assumed zero mean Gaussian distributions: a��N(0, t�1
� ); for

precision parameters, we assumed gamma prior distributions:

t��Ga(a, b). We assumed that a ¼ 2:0 and b ¼ 0:5, which are

weakly informative; these values are usually favored in Markov

Chain Monte Carlo (MCMC) sampling, as they prevent sampling at

an asymptote of 0. We also varied a, b specifications to assess prior

sensitivity (a:1:0, 0:5 and b:0:1, 0:2). We found that, while some

posterior mean estimated regression parameters varied, the overall

resulting model choice based on Watanabe–Akaike information

criterion (WAIC) differences remained consistent. The resulting

best-fit model was still identified. Hence, the inference appears

robust to this type of variation (increased non-informativeness).
Aggregate model fitting

To determine the best model for generating age-specific counts,

we first examined the differences in overall goodness of fit using the

WAIC measure. A choice of whether to use retrospective goodness

of fit or predictive loss was considered (13). However, since we

focused on developing a tool for the retrospective assessment of

policy decisions, a retrospective fit measure was deemed most

appropriate. Models were fitted using the MCMC posterior

sampling R package Nimble. Convergence was checked using

Geweke diagnostics with single chains. Models usually converged

within 10,000 iterations, with a burn-in of 2,000. Models with

ICAR components often required additional iterations to achieve

convergence. We estimated the overall WAIC for each state when

fitting the space–time-dependent models (models 1–4) described

above. WAIC values are available for any fitted Nimble model.

Interpretation of WAIC values follows the “small is better”

criterion. Smaller values indicate a closer fit. A difference of

around 3–5 indicates a significant difference in model ability.

The code for selected Nimble models is available at https://

github.com/AndrewBLawson/Age_structure/tree/CODE.

Table 1 displays the result of these fits for SC, NJ, and Ohio.

For the SC and NJ counties, the best descriptive model for

deaths appears to be one with a lagged death dependence.
NJ OH

WAIC pWAIC WAIC pWAIC
18,667.6 610.79 42,057.7 582.79

17,205.0a 656.88 41,536.9 730.11

18,673.6 586.38 41,530.5 724.25

17,247.1 669.46 41,519.1a 724.48
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However, for the Ohio counties, spatial models performed uniformly

better, with the lowest WAIC model including lagged dependence

and a spatial convolution term. It is worth noting that all models

include an uncorrelated spatial heterogeneity term by default.
Estimation of latent age-specific counts

To assess the extent to which age-specific estimates are related to

observed counts, we approached the Departments of Health in each

state. Although most US states maintain COVID-19 dashboards with

case and mortality data, they typically do not provide county-level

disaggregated age structures, which are required for these analyses.

However, through a special request to the SC Department of Health

and Environmental Control (SCDHEC), we obtained age-specific,

county-level data for SC. These data span a limited time period

during the pandemic and exhibit various missing data patterns at

the county level. This missingness led us to consider a subset of

data, both in terms of time and county inclusion. In fact, only 13

counties in SC have complete mortality counts: Aitken, Anderson,

Beaufort, Charleston, Clarendon, Florence, Greenville, Horry,

Kershaw, Lexington, Richland, Sumter, and York. The period of

completeness is limited to 15 months, from March 2020 to May

2021. Hence, for comparative purposes, the only way to assess the

estimated divergence between simulated counterfactual age-specific

counts and observed counts is to aggregate the data by month and

restrict the comparison to these 13 counties with complete data.

Although the underlying mortality models can be fitted to the

entire SC county set over 173 weeks, the comparison must be

confined to the 13 counties and 15-month period.

Age-specific data requests for the NJ and OH are still pending,

and the analysis of these age-specific data will be the subject of a
FIGURE 5

Time series plots for six counties in SC (Aitken to Florence) showing the CDC
and the counterfactual for the >65 age group.
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subsequent publication. Hence, for initial evaluation, the focus of

this paper is on the assessment of the available data from SC.
Results

For the SC data, we have assumed a basic age-specific

counterfactual model. Since we had access to a subset of county-

level data, we assumed that the counterfactual population

proportion is generated using a binomial model with pG65, where

the simplest model for the population proportion is employed.

This model was fitted jointly with the best WAIC-based spatio-

temporal model for total county-level mortality. Alternative

specifications, such as variants of Equation 6, can be explored in

future evaluations. Figures 5, 6 display time series plots of total

deaths per county as recorded by CDC, the observed deaths in

the >65 age group as recorded by SCDHEC by county, and the

counterfactual deaths in the >65 age group generated from

Equation 5. Note that the reduced time series of 15 months

begins in March 2020 and ends in May 2021.

A number of features stand out in these data. First, the

counterfactuals generated from the total counts track the total

counts for each county as expected in proportion to the >65 age

population. This suggests that the counterfactual model can act as

a benchmark for measuring discrepancies in the actual death

count, as demonstrated by the observed data. Second, there is

considerable variation between counties in the form of the time

series and the timing of mortality peaks. Charleston County

demonstrates two large peaks centered around July 2020, with a

smaller peak around February 2021. This suggests that suppression

of severe infection may have been more successful there. In

contrast, Greenville County demonstrates almost the reversed
total death count, the SCDHEC-observed death count for >65 age group,
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FIGURE 7

Discrepancy time series for six counties in SC (Aitken to Florence): difference computed as SCDHEC mortality count minus the counterfactual count
generated from the CDC death count.

FIGURE 6

Time series plots for seven counties in SC (Greenville to York) showing the CDC total death count, the SCDHEC-observed death count for >65 age
group, and the counterfactual for the >65 age group.
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peaking pattern, with a small peak in July 2020 and a large peak

around January and February 2021. In fact, many counties in SC

show this lagged peaking pattern, with the majority of counties

showing their largest peaks in January–February 2021.
Frontiers in Epidemiology 07
For the most part, the SCDHEC data mirror the CDC-observed

deaths in proportion, with some slight lag effects. However, the

discrepancy between the observed count and the counterfactual

estimates is notable in most counties.
frontiersin.org
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FIGURE 8

Discrepancy time series for seven counties in SC (Greenville to York): difference computed as SCDHEC mortality count minus the counterfactual
count generated from the CDC death count.
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To assess more clearly how the observed count differs from the

counterfactual estimates, we calculated a time series discrepancy

measure, reporting the unadjusted difference between observed

and counterfactual data. Figures 7, 8 display this discrepancy

measure over the 15-month period of focus.

Themost notable feature of these plots is that, during the earliest part

of the pandemic, the observed death count exceeds the counterfactual

predicted from the population proportion in most counties.

However, the selected counties show lower discrepancies in the

earlier period, with large spikes around winter 2020–2021

(Greenville, Horry, Richland, Lexington, York). In contrast, other

counties display bivalued spikes in discrepancy around July 2020

and January 2021 (Charleston, Aitken, Anderson, Beaufort,

Florence, Kershaw, Sumter). It should be noted, however, that

the scale of the discrepancies varies between counties. In some

cases, the discrepancy reaches a magnitude of 100 (Greenville),

whereas in others, it is as small as 15 (Beaufort). By March 2021,

in all cases, the discrepancy flips, with observed counts falling

below the counterfactual estimates. This negative discrepancy is

usually small in magnitude and appears to relate to the end of

the winter wave in 2020–2021, just before the delta wave

emerged in spring/summer 2021. The first delta variant case in

the United States was identified in March 2021.
Discussion

Overall, these results suggest significant differences in the

county-level control of COVID-19 mortality within this state. A

disproportionate mortality excess was experienced across most

counties during the winter of 2020–2021, with Greenville
Frontiers in Epidemiology 08
showing the highest excess among the 13 counties sampled. It is

also notable that, unlike other counties, Charleston was more

successful in suppressing the second winter wave compared to

other counties. Our unscaled discrepancy measure demonstrates

these differences quite clearly and provides a basis for

monitoring spatial and temporal variations in mortality within a

state. This measure therefore can form the basis of a useful

policy tool, helping to highlight differences in mortality trends.

This could allow better design of intervention activities.

We conducted a sensitivity analysis related to prior specification

to assess whether prior choice impacted the final model fitting

results and the related derived measures. We considered variations

in the parameterization of precision prior distributions but found

little impact on the posterior parameter estimates.

Further refinements to the approach and the discrepancy

measure could be made. First, population proportions could be

replaced by death rates to account for specific mortality

experiences, moving toward an excess death estimation. However,

in novel pandemics, such rates are either unavailable or evolving

with time, making them potentially unstable. Population

proportions remain relatively static and could be assumed constant

over time periods. A further extension, as discussed above, is the

use of a more comprehensive age-specific model, which could

differ from the parent model. It could easily be the case that the

lagged dependency over time for a specific age group differs from

that of the overall population, allowing for a more sensitive

modeling approach. However, it should be kept in mind that age

group is a latent field in this application, and any structure

assumed must support the identifiable estimation of that field.

In addition, some changes or improvements could be made to

the discrepancy measure. First, a confidence interval could be used
frontiersin.org
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for the counterfactual, either in addition to or instead of the

posterior predictive mean, to provide a measure of extremity for

the observed discrepancy. The observed count provided by

SCDHEC was fixed. In addition, to facilitate comparisons, a

proportionate discrepancy could be employed, which could scale

the discrepancy based on the total mortality in each county.

NPIs were implemented during the pandemic at different times

an for varying duration across different US states. So far, we have

not included specific information about the nature of these

interventions in this work. In the case of SC, which was used for

our evaluation, the lockdown occurred only during April 2020

and was almost completely lifted by May of that year. Hence, the

effect of an NPI was limited by the summer of 2020, when the

first large wave occurred.

In future work, we would like to improve the data quality by

incorporating CDC-based age data to provide a better testing

resource. In addition, we would like to introduce the stringency

index, which is compiled by the Oxford Covid-19 Government

Response Tracker (OxCGRT: http://bsg.ox.ac.uk/covidtracker),

which focuses on the stringency of NPIs during the pandemic. In

addition, the viral variant proportion would serve as a useful

time-varying additional confounder for the period in question.

We have not yet examined vaccination coverage, as the roll-out

did not take place until later in 2021.
Conclusions

We have demonstrated that different spatio-temporal models

apply optimally in different locales, with spatially correlated prior

components (for example, ICAR) sometimes playing an important

role in capturing the overall spatial variation over time. We also

demonstrated that it is possible to generate counterfactuals for

age-specific COVID-19 mortality rates and use them to assess the

effectiveness of control measures in reducing fatalities during the

pandemic. Aggregation of counts to month intervals and the

restriction to only 13 counties is a major drawback of this study.

Yet to be fully explored is extending the focus to Ohio and New

Jersey with additional data requests.

Alternative mechanisms for generating age-specific

counterfactuals could be explored. The first option is to use

model-based generation, similar to the main overall count model

forms, which involves generating latent fields in space–time with

unobserved parameters. Another extension could be to use

expected age-specific rates from a standard population (12),

which would more closely reflect expected deaths. Our use of

population-based proportionate rates provides a fast and simple,

albeit crude, approach for generating age-specific counts.

While we utilized retrospective models and assessed their

goodness of fit, it is possible to consider fixed data windows

that evolve over time, allowing for adjustments to the optimal

models to be used without changing the overall retrospective

approach. Finally, our future work will consider extending the
Frontiers in Epidemiology 09
age-specific discrepancy measure using more sophisticated

scoring rules (14, 15) and including NJ and OH in

the evaluation.
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