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Approximation of the infection-
age-structured SIR model by the
conventional SIR model of
infectious disease epidemiology
Ralph Brinks1* and Annika Hoyer2

1Medical Biometry and Epidemiology, Faculty of Health/School of Medicine, Witten/Herdecke
University, Witten, Germany, 2Biostatistics and Medical Biometry, Medical School OWL,
Bielefeld University, Bielefeld, Germany
During the SARS-CoV-2 pandemic, the effective reproduction number (R-eff)
has frequently been used to describe the course of the pandemic. Analytical
properties of R-eff are rarely studied. We analytically examine how and under
which conditions the conventional susceptible–infected–removed (SIR) model
(without infection age) serves as an approximation to the infection-age-
structured SIR model. Special emphasis is given to the role of R-eff, which is
an implicit parameter in the infection-age-structured SIR model and an
explicit parameter in the approximation. The analytical findings are illustrated
by a simulation study about an hypothetical intervention during a SARS-CoV-2
outbreak and by historical data from an influenza outbreak in Prussian army
camps in the region of Arnsberg (Germany), 1918–1919.
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1 Introduction

The susceptible–infected–removed (SIR) model is a frequently used model in

infectious disease epidemiology dating back at least to Kermack and McKendrick (1). In

the SIR model, the population is partitioned into susceptible, infected, and removed (the

initial letters of which give the model’s name “SIR”). To take into account varying

transmissibility during the infectious period, sometimes a generalized conventional SIR

model, known as the infection-age-structured SIR model, is considered. Both models

are described by a set of differential equations. While the conventional SIR model is

easy to understand and frequently used, the infection-age-structured SIR is slightly

more complex. In this work, we seek for an approximation to simplify the differential

equations of the infection-age-structured SIR model. In both models, conventional and

infection-age-structured SIR, the removed state comprises people recovered and

deceased from the infected state. The numbers of the people in the susceptible and the

removed states at time t are denoted by S(t) and R(t), respectively.

The conventional SIR model is described in the next section. We start with the

infection-age-structured SIR model, where the function i(t, t) denotes the density of

infected people at time t and duration t since infection (i.e., the infection age). The
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number of infected at time t [I(t) ] is

I(t) ¼
ð1
0
i(t, t)dt: (1)

The transmission rate of the infected people with infection age

t (i.e., the duration since infection) is b(t, t) and the removal rate

from the infectious stage is g(t). The rate g comprises mortality as

well as remission. According to Inaba (2), we can formulate the

model equations for the infection-age-structured SIR model

as follows:

dS(t)
dt

¼ �l(t)S(t) (2)

@

@t
þ @

@t

� �
i(t, t) ¼ �g(t)i(t, t) (3)

dR(t)
dt

¼
ð1
0
g(t)i(t, t) (4)

The incidence rate l in Equation 2 is given by

l(t) ¼
ð1
0
b(t, t)i(t, t)dt (5)

which is usually called the force of infection (2).

Systems 2–4 are accompanied with the following initial and

boundary conditions:

S(0) ¼ S0 (6)

i(t, 0) ¼ l(t)S(t) (7)

i(0, t) ¼ i0(t) (8)

i(0, 0) ¼ S0

ð1
0
b(0, t)i0(t)dt (9)

where S0 is assumed to be positive and i0 is assumed to be non-

negative and integrable. Apart from non-negativity, i0 can have

any distribution. For later use, we additionally assume that

i(t, 1) : ¼ limr!1 i(t, t) ¼ 0. Condition 9 is called coupling

equation and guarantees that Systems 2–4 is well-defined [see

Chen et al. (3) for details]. Note that Systems 2–4 are a

generalization of the SEIR model (2), where SEIR means a model

consisting of the states susceptible, exposed, infected, and removed.

Detailed discussion of Equations 2–4 with initial Conditions 6–9

can be found in Inaba (2), such that we can be brief here.

Denoting the probability of still being infected at infection age

t with G(t),

G(t) : ¼ exp �
ðt
0
g(s)ds

� �
(10)
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the effective reproduction number R(t) is defined by (4, Equations

22 and 23)

R(t) ¼ S(t)
ð1
0
b(t, t)G(t)dt (11)
Note that the reproduction number R defined in Equation 11

is occasionally called instantaneous reproduction number (5).

A typical situation in infectious disease epidemiology is that the

transmission rate b(t, t) and the initial Conditions 6–9 are given.

Then, Systems 2–4 are solved and the effective reproduction

number R is calculated by Equation 11. In this way, R can be

seen as an implicit or indirect parameter for the infection-age-

structured SIR model, because R(t) can be calculated via

Equation 11 after solving the governing Equations 2–4 with

initial Conditions 6–9. In some situations, however, R(t) can be

estimated more easily from population surveys than the

transmission rate b(t, t). Especially, in early phases of an

outbreak of a new pathogen, the function b is frequently

unknown. Then, the question arises if and how the infection-age-

structured SIR model can be solved if the effective reproduction

number R is given instead of b. In this case, we ask for a direct

(or explicit) dependency of the differential equations on the

parameter R.
2 Approximation of the age-structured
SIR model by the conventional SIR
model

In case the transmission rate b(t, t) depends only on calendar

time t, i.e., b(t, t) ¼ b(t), the force of infection can be written as

l(t)¼5;7b(t) I(t)¼11 R(t) I(t)

S(t)
Ð1
0 G(t)dt

:

Then, Systems 2–4 become explicitly dependent on R. This

means that for given R, the system can be numerically solved,

for instance, by the algorithm described in the supplement to

Brinks et al. (6). This is advantageous in situations when the

effective reproduction number R is known while the

transmission rate b is unknown. Note that there are a variety of

methods for estimating R from a time series of numbers of

incident cases, see, e.g., Fraser and Galvani (5) and Cori et al.

(7). The question arises under which conditions Systems 2–4 can

be approximated by the simpler conventional SIR model that

explicitly depends on R: As shown at the beginning of this

section, this is the case if the transmission rate b is independent

from the infection age t, i.e., b ¼ b(t): For many diseases,

however, there is a non-negligible dependency on the infection

age t, as for example, in SARS-CoV-2, see He et al. (8).

The conventional SIR model is a simpler model than the

infection-age-structured SIR. The meaning of the variables is the

same as above; however, the infection age t is not considered.

The governing equations of the conventional SIR model are as
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follows:

dS(t)
dt

¼ �l(t)S(t) (12)

dI(t)
dt

¼ l(t)S(t)� r(t)I(t) (13)

dR(t)
dt

¼ r(t)I(t) (14)

To show similarities between the two SIR models, we start by

applying Leibniz’s integral rule to Equation 1. The temporal

derivative dI
dt of the number of infected in Equation 1 can then be

expressed as

dI
dt

¼ d
dt

ð1
0
i(t, t)dt ¼

ð1
0

@

@t
i(t, t)dt

¼3 �
ð1
0
g(t)i(t, t)dt�

ð1
0

@

@t
i(t, t)dt

¼ �
ð1
0
g(t)i(t, t)dt� i(t, 1)þ i(t, 0)

(15)

As i(t, 1) ¼ 0 (by the assumption above) and i(t, 0) ¼ l(t)S(t),

Equation 15 reads as

dI
dt

¼ �
ð1
0
g(t)i(t, t)dtþ l(t)S(t) (16)

It is reasonable to assume that the integral in Equation 16 has a

finite upper bound v , 1, because there are no infected people

with infinite infection age t: As i(t, t) � 0, the Mean Value

Theorem for Definite Integrals (9) guarantees the existence of

~t ¼ ~t(t) [ [0, v] such that

dI
dt

¼ �g(~t(t))I(t)þ l(t)S(t) (17)

Equation 17 is the same as Equation 13 with r(t) ¼ g(~t(t)),

which gives an indication that Equation 3 from the infection-

age-structured SIR model can indeed be approximated by

Equation 13 from the conventional SIR model.

If it holds true that

l(t)S(t) ¼ R(t) r(t) I(t) (18)

we can reformulate Equation 13 with an explicit dependency on R.

To see this, we assume that Equation 18 holds true and find

dI(t)
dt

¼17;18�r(t) I(t)þR(t)r(t)I(t)

¼ r(t) I(t) (R(t)� 1)
(19)
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With the usual smoothness assumptions, Equation 19 has the

unique solution

I(t) ¼ I(0) exp
ðt
0
r(s) R(s)� 1½ �ds

� �
(20)

where I(0) ¼ Ð1
0 i0(t)dt (note that i0 was assumed to be

integrable). Equation 19 (and equivalently Equation 20) directly

relates the number of infected people I to the effective

reproduction number R.

Now, we have to examine the conditions such that Equation 18

at least approximately holds true. As i(t, � ) is non-negative, the

Mean Value Theorem for Definite Integrals applied to the left-

hand side of Equation 18 reads as

S(t)l(t)¼5 S(t)
ð1
0
b(t, t)i(t, t)dt

¼ S(t)b(t, t�(t)) I(t)
(21)

for t�(t) [ [0, v].

On the right-hand side of Equation 18, we have

R(t) I(t) r(t)¼11 S(t)b(t, t0(t)) I(t) r(t)
ðv0

0
G(t)dt (22)

where we assumed that b(t, � )G has a compact support [0, v0] and
t0(t) [ [0, v0].

By comparing Equations 21 and 22, we see that

r(t)
Ð v0

0 G(t)dt ¼ 1 and b(t, t�(t)) ¼ b(t, t0(t)) imply the desired

equality lS ¼ RrI. Hence, if r(t) ¼ g(t�(t)) is close to

(
Ð v0

0 G(t)dt)�1 and b(t, t�(t)) is close to b(t, t0(t)), we can

expect that Equation 20 is a reasonable approximation for the

number of infected I(t) in the age-structured SIR model.

Equation 19 has the important advantage of being a linear

ordinary differential equation with the analytic general solution

Equation 20. Given the remission rate r(t) and the effective

reproduction number R(t), the solution I(t) can be calculated at

least numerically, for example, by Romberg integration (10). Given

that r(t) . 0, Equation 19 (or equivalently Equation 20) yields a

very simple justification of the epidemiological commonplace that

the number of infected people I is increasing over time t if and

only if the effective reproduction number R(t) is greater than 1.
3 Simulation: lockdown during the
SARS-CoV-2 pandemic

To demonstrate how good the approximation given by

Equation 19 (or equivalently by Equation 20) is to describe the

number of infected people I in the infection-age-structured SIR

model, we use a simulation motivated from the SARS-CoV-2

pandemic. During the pandemic, many governments decided to

invoke public health interventions to control the spread of the

virus. Brinks et al. (6) simulated three consecutive periods of the
frontiersin.org
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FIGURE 1

Reproduction number R (ordinate) over calendar time t (abscissa, in days) in the simulation [cf. Figure 5 in Supporting Information S1 of
Brinks et al. (6)].
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epidemic in a hypothetical population. A phase of increasing

number of infections from t ¼ 0 to 25 (days) is followed by a

phase of implementation of a (strict) lockdown (from t ¼ 25 to

30). During the third phase (post-lockdown), the pandemic

remains controlled (from t ¼ 30 to 60). The 5-day period

following the start of the lockdown was chosen as the wash-in

phase. The rationale for the wash-in phase is that public health

interventions usually require some time before taking full effect

(11). After this wash-in period, we assumed that the effect of the

lockdown remains unaltered until the end of the simulation at

day t ¼ 60:

The specific numbers for solving Equations 2–4 with

initial Conditions 6–9 including their justifications are given

in Brinks et al. (6). The supplement of Brinks et al. (6)

also contains a description for the numerical solution

of Equations 2–4 with initial Conditions 6–9 on a grid

(tm, tn) ¼ (m� dh, n� dh), m ¼ 0, . . ., M, n ¼ 0, . . ., N , starting

with (t0, t0), ending with (tM , tn), and equidistant step size

dh . 0: Apart from the setting of the simulation and its results,

Brinks et al. (6) has a little overlap to the work presented here.

For the simulation done here, we calculate the incidence density i on

the grid (tm, tn) ¼ (m� dh, n� dh), m ¼ 0, . . ., M, n ¼ 0, . . ., N ,

starting with (t0, t0) ¼ (0, 0), ending with (tM , tn) ¼ (60, 30),

and equidistant step size dh ¼ 1
24 (days). The transmission rate

b(t, t) is assumed to be the product of two functions

b(t, t) ¼ bt(t)� bt(t): Note that the factorization into two

factors is not a necessary condition and has been chosen for ease

of representation, for details refer to Brinks et al. (6).

The removal rate g is assumed to be constant g(t) ¼ 1
4 :

Applying Romberg integration (10) to Equation 11 yields the

effective reproduction number R as depicted in Figure 1 [details

can be found in Brinks et al. (6) and the associated supporting

information S1]. We see that the lockdown reduces R quickly to
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values below 1, which is intended to control the spread of the

disease. The steep decline of R is consistent with Fraser’s

description of an abrupt switch from a high to a low value due

to an effective intervention (5). Note that we do not consider the

kind (or effectiveness) of the considered interventions. Here, it is

important to simulate a realistic reduction of R (at least

in magnitude).

So far, we have only used the theory of the infection-age-

structured SIR model. To see if the approximation by Equation

20 (derived from the conventional SIR model) yields reasonable

results, we solve Equation 20 with the calculated R values (as

shown in Figure 1). With respect to the number of infected

people I(t) over time t, we obtain the black graph as presented

in Figure 2. For comparison, the exact I as calculated by

Equation 1 (from the infection-age-structured SIR model) is

shown as a blue curve. Periods of increasing and decreasing

numbers of infected people coincide quite well in both curves.

The approximated numbers (the black curve) deviate from the

exact values (the blue curve) less than 10% between days 0 and

45. After day 45, when the number of infected people is already

strongly decreasing, the approximated I values overestimate the

true values considerably (up to 67% at day 60).
4 Application: pandemic influenza in
Prussian army camps around Arnsberg
(Germany)

In 2007, Nishiura estimated the number of cases of incident

influenza in Prussian army camps in the region of Arnsberg

(Germany) from reported death cases during September 1918

and January 1919 (12). The estimated numbers of incident cases

are extracted from Nishiura (12) and are published in Briggs
frontiersin.org
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FIGURE 2

Number of infected people I over calendar time t in the simulation. The blue curve corresponds to the exact solution (Equation 1) while the black curve
is the approximation via Equation 20.

FIGURE 3

Approximate effective reproduction number R after 9 September 1918 (in days) for an influenza outbreak in Prussian army camps.
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et al. (13). Then, Nishiura and later Nishiura and Chowell

estimated the effective reproduction numbers R from the case

counts for a period of 140 days starting from 9 September 1918

(4, 12). The estimation method required the length of the

generation time of the virus, which is unknown. To overcome

the problem of the unknown generation time, Nishiura and

Chowell used three scenarios with different generation times. We

confine ourselves to a coarse schematic description of the

temporal course of R shown in Figure 3. After the start of the

outbreak, the effective reproduction decreases from about 1.8 to

0.7 on day 90, increases to 1 on day 100, and decreases after that

again. Using these R values, we could reconstruct the estimated
Frontiers in Epidemiology 05
values of infected people by Equation 20. The result is shown in

Figure 4. The black curve corresponds to the approximated I

according to Equation 20 with constant r(t) ¼ 0:32. The number

of estimated cases I is shown as a blue curve. As in the previous

section about the simulation, the fit between the curves is

reasonably well.
5 Discussion

In this article, we demonstrated that the number of infected

people I in the infection-age-structured SIR model without
frontiersin.org
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FIGURE 4

Number of infected people I (ordinate) over calendar time t in Prussian army camps in the region of Arnsberg (Germany). The blue curve corresponds
to estimated numbers according to Nishiura (12) and the black curve is the approximation via Equation 20.
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demography of the background host can be approximated by a

simpler differential equation based on the conventional SIR

model. While the dependency on the effective reproduction

number R in the infection-age-structured SIR model is implicit,

the simpler differential equation makes the dependency explicit.

This is advantageous for calculating I in situations when the

effective reproduction number R is given, for example, by

surveys or surveillance.

In a simulated example about a hypothetical lockdown during

the SARS-CoV-2 pandemic, we could compare the exact number of

infected people (calculated by the infection-age-structured SIR

model) with the approximation during a 60-day period.

Qualitatively, the two epidemic curves agree reasonably well over

the whole simulated period. During the first 45 days, the absolute

difference between the epidemic curves is below 10%. As the

number of infected people decreases, the relative difference

increases rapidly and reaches about 70% at the end of the 60-day

period. Of course, this is also an effect of the relatively low

absolute numbers of infected people at the end of the simulation.

Finally, we applied the approximation to real-world data from

an influenza outbreak in Prussian army camps after the Second

World War. We could compare the estimated number of infected

people with the approximated number based on the R values.

Again, the two epidemic curves qualitatively agree well.

In other prominent sources, the effective reproduction number

R is defined via a renewal equation [see, e.g., Nishiura (12)] or as

the spectral radius of the next generation operator (14). However,

our approach is based on calculus and does not need these more

sophisticated mathematical concepts. Thus, we believe that the

important concept of the effective reproduction number might be

accessible and useful to a broader audience.

During epidemic situations, the effective reproduction number

R is frequently estimated from the number of reported cases (5).
Frontiers in Epidemiology 06
Recently, we have shown that this estimation is stable in case of

incomplete case detection (6). At the moment, we do not have

any indication that Equations 19 or 20 provide a better

alternative for estimating R. The benefit of Equations 19 or 20

lies in the fact that an estimated R allows calculation of the true

number of infected people I, which might be underestimated by

incomplete case detection or under-reporting. The question

whether to use Equation 19, or equivalently Equation 20,

depends on the specific application and the preference of the

user. We have chosen to use Romberg integration for Equation

20, because error estimates are easier to obtain than for

numerical solutions to Equation 19 (10, p. 335).

To our knowledge, it is the first time that the dependency of I on

the effective reproduction number R is made explicit by an

approximation using a differential equation in the infection-age-

structured SIR model. For the conventional SIR model, which is a

special case of the infection-age-structured SIR model, a similar

result has been found in Bettencourt and Ribeiro (15, Equation 2).

For a recent study about approximating SARS-CoV-2 with the

conventional SIR model, we refer the reader to Prodanov (16).

Usually, the effective reproduction number R is defined in terms of

the variables in Equations 2–4, like in Equation 11. In the literature,

we frequently find the definition R ¼ R0 � S
SþIþR, which describes

how R depends on the basic reproduction number R0 and the

variables S, I, and R defined above [see, e.g., Vynnycky and White

(17)]. Conversely, Equations 19 and 20 describe how the number of

infected I depends on R for the infection-age-structured SIR

model. Hence, Equations 19 and 20 describe an opposite way than

usual. In our work here, we could generalize the findings of

Bettencourt and Ribeiro (15) for the conventional SIR model to the

infection-age-structured SIR model. We note that the use of SIR

models is not restricted to epidemiology but can also be used in

examining the spread of rumors and news (18). With a view to
frontiersin.org
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news, the infection age refers to the time elapsed after a recipient got

to know the new information.

By the differential Equation 19 and similarly Bettencourt and

Ribeiro (15, Equation 2), the common interpretation of R as an

indicator if the number of infected people I increases (R . 1) or

not is justified in a very simple and straightforward way. While the

approximation works reasonably well in the examples about SARS-

CoV-2 and influenza shown here, there might be diseases for which

a higher accuracy is requested. The approximation of Equations 19

or 20 might not work well in all cases or other parameter

constellations. To gain insight into these constellations, an extensive

simulation study is necessary, which is beyond the scope of this

article and is subject to future work. As long as error estimates are

not known, careful consideration of the use of Equation 19 (or

equivalently Equation 20) is necessary.
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