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A systematic review and meta-
analysis on the association
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Christopher T. Migliaccio1, Jonathon Knudson2, Curtis Noonan2

and Erin L. Landguth2
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Montana, Missoula, MT, United States, 2Center for Population Health Research, School of Public and
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Introduction: This systematic review and meta-analysis investigate the
relationship between PM2.5 exposure and increased influenza risk (e.g.,
increased hospital admissions, confirmed influenza cases), synthesizing
previous findings related to pollutant effects and exposure durations.
Methods: We searched PubMed, Web of Science, and Scopus for relevant studies
up to 1 January 2010, following Preferred Reporting Items for Systematic reviews
and Meta-Analysis (PRISMA) guidelines for selection and analysis.
Results: Our review included 16 studies and found that a 10 μg/m3 increase in daily
PM2.5 levels was associated with an increase of 1.5% rise in influenza risk (95% CI:
0.08%, 2.2%), with significant variations across different temperatures and lag
times post-exposure. The analysis revealed heightened risks, with the most
significant increases observed under extreme temperature conditions. Specifically,
colder conditions were associated with a 14.2% increase in risk (RR= 14.2%, 95%
CI: 3.5%, 24.9%), while warmer conditions showed the highest increase, with
a 29.4% rise in risk (RR= 29.4%, 95% CI: 7.8%, 50.9%). Additionally, adults aged
18–64 were notably affected (RR=4%, 95% CI: 2.9%, 5.1%).
Discussion: These results highlight PM2.5’s potential to impair immune
responses, increasing flu susceptibility. Despite clear evidence of PM2.5’s
impact on flu risk, gaps remain concerning exposure timing and climate
effects. Future research should broaden to diverse regions and populations to
deepen understanding and inform public health strategies.
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Introduction

Influenza, an acute viral respiratory infection, has long posed a substantial global

health challenge with approximately 1 billion individuals falling victim to the disease

and an annual death toll ranging from 290,000 to 650,000 worldwide (1). The persistent

threat of influenza is not only confined to its annual toll but also extends to the

potential of a catastrophic pandemic. Drawing parallels to the 1918 Spanish flu, which

resulted in a devastating death toll of between 20 and 50 million individuals, the WHO

has warned that the emergence of a similar pandemic is not a question of “if” but

“when” (2). Historical and contemporary studies indicate that the ever-evolving nature
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of influenza viruses, coupled with increased interactions between

humans and animals, significantly raise the risk of a new

pandemic strain emerging. These historical along with recent

pandemics serve as stark reminders of the potential impacts and

that advanced surveillance and preparation strategies are essential

for mitigation (3).

Seasonal flu affects all individuals in every county, but specific

populations are at higher risk, including children, the elderly,

pregnant women, and individuals with chronic medical

conditions, as well as groups with greater risk factors for health

inequities (4). Recent research has expanded the understanding

of external factors influencing influenza dynamics. Climate

change and environmental variables, such as colder temperatures,

drier climates, and air pollutants, particularly PM2.5, have been

identified as critical determinants in influenza transmission (5–8).

Accumulating epidemiological evidence indicates an

association between elevated PM2.5 levels and increased

respiratory health risks, including heightened susceptibility to

influenza infection. Previous studies have consistently reported a

positive relationship bewtween PM2.5 exposure and influenza

incidence, although results vary bygeographical region,

population demographics, and exposure timing (9, 10). Despite

these individual findings, a notable gap remains, as no systematic

review or meta-analysis has yet comprehensively summarized

existing evidence to clarify the strength, timing, and consistency

of the PM2.5 influenza association across different settings and

populations. Addressing this gap is essential to provide robust

evidence for public health strategies aimed at mitigating influenza

risks associated with air pollution.

This study offered novelty by systematically synthesizing

existing epidemiological evidence on the relationship between

PM2.5 exposure and influenza, particularly within the context of

environmental changes driven by climate change and rising air

pollution levels. By conducting a systematic review and meta-

analysis, this research identified critical patterns, highlighted

differences across populations, and clarified the timing of PM2.5

exposure impacts. These insights are essential for public health

interventions, guiding policy decisions, and supporting proactive

measures against the combined threats posed by influenza, air

pollution, and climate change. Future research must adopt a

balanced approach, integrating associative studies—examining

epidemiological relationships—and mechanistic studies that

explore underlying biological pathways. Clarifying both how and

why PM2.5 affects influenza susceptibility will enable public

health strategies to be tailored specifically to diverse global

contexts, accounting for regional variations in air pollution

sources, population vulnerabilities, and environmental changes.
Methods

Search strategy

The systematic review and meta-analysis were performed in

accordance with the Preferred Reporting Items for Systematic

Reviews and Meta-Analyses (PRISMA) guidelines and checklist
Frontiers in Epidemiology 02
in the Supplementary File (11) and complies with the

recommendations of Meta-analysis of Observational Studies in

Epidemiology (12).

This review focused specifically on PM2.5 due to its well-

documented impact on respiratory health and its widespread

monitoring, which ensured consistency across studies for a

precise meta-analysis. Including other particulate sizes (e.g.,

PM10) would have added variability, as they differ in

measurement and health impacts. We excluded influenza-like

illness (ILI) studies to avoid conflating outcomes with non-

influenza cases, focusing only on confirmed influenza results.

Three electronic databases (PubMed, Scopus, and Web of

Science) were systematically searched to find relevant studies in

English between the time frame from January 1, 2010 to

September 30, 2023, a time frame chosen to avoid overlap with

previous reviews. Flow diagram for study selections are detailed

in Figure 1. Briefly, a combination of keywords and search

terms that included, but were not limited to, the following:

“Influenza PM2.5”, “Influenza Air Pollution”, “Particulate Matter

Influenza”, “Short Lag Influenza PM2.5”, and “Long Lag

Influenza PM2.5.” Additionally, studies that provided

mechanistic insights into the connection between PM2.5 and

influenza were included. The results were then restricted to

studies of humans. In addition, the reference lists of all

included articles and pertinent reviews were also screened

manually to identify more studies.
Inclusion and exclusion criteria

The studies included had to meet the following inclusion

criteria grouped according to the population-exposure-

comparator-outcome (PECO) framework (13, 14). Potential

sources of bias in this systematic review include publication bias

(studies with positive findings are more likely to be published),

heterogeneity in study design and exposure assessment methods,

and variations in the measurement of influenza incidence across

different studies.

• Population—population-based studies with no restriction on

sex, age, or region

• Exposures—studies of short-term (0–7 days) or long-term

(+7 days) exposures to any PM2.5

• Comparators—studies with clearly defined non-exposed or

lower-exposure comparison groups

• Outcomes—studies assessing the incidence of influenza,

measured by infection rates.

• Studies published in a peer-reviewed journal with full

text available.

Studies with the following descriptions were excluded:

• Population—nonhuman studies (e.g., animal studies)

• Exposures—studies focused not on the health effects caused

by PM2.5

• Outcomes—studies without an assessment of human

health outcome
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FIGURE 1

PRISMA flow diagram of study selection. Initially, 2,240 records were identified. Post-duplicate removal, 904 records were screened, leading to 575
being excluded after title and abstract review. Further assessment of 284 full-text articles resulted in 267 exclusions due to various reasons, leaving 16
studies (11 associative and 5 mechanistic) included in the final review.

Orr et al. 10.3389/fepid.2025.1475141
Study selection

All studies included in the final review or synthesis were

identified in several stages, beginning with automation tools,

including a Python web scraping script using package

“Biopython”, were employed initially to pull all relevant

articles based on keywords, duplicates were then (15). Then,

(A.O. and R.L.K.) independently reviewed the titles and

abstracts of the remaining studies to remove obviously

irrelevant articles. Finally, the remaining studies were

screened for full texts for eligibility. Any uncertainty and

disagreement were solved by discussion between the

two reviewers.
Data extraction

For each eligible study, the following information was

extracted: first authors and publication year, study period,

setting, design and population, sample size, exposure

assessment method, exposure window, outcome, statistical

method, and effect estimates (i.e., the effect estimates of

influenza risk related to PM2.5 exposures). We collected data

from sub studies within each eligible paper. Each study ran

multiple models, often exploring different exposure windows,
Frontiers in Epidemiology 03
population subgroups, or analytical methods. Two authors

(A.O. and R.L.K.) independently performed the procedure,

and any conflict was discussed between the two reviewers.
Study quality assessment

We assessed study quality using the Newcastle-Ottawa Scale

(NOS) for non-randomized studies in meta-analyses (16).

Discrepancies were resolved through discussions to ensure a

rigorous evaluation. The NOS tool, applied manually,

considered factors such as study group selection,

comparability, and outcome assessment. This dual-reviewer

approach aimed to provide a comprehensive and robust

assessment of bias risk, contributing to the overall quality of

the systematic review. No automation tools were used in the

risk of bias assessment. The NOS uses the star system with a

maximum nine stars and evaluates three domains with a total

of eight items: the selection of the study groups, the

comparability of the groups, and the ascertainment of the

outcome of interest. The quality of observational studies was

categorized based on the total stars received: seven to nine

stars denoted high quality, five to six stars indicated moderate

quality, and four or fewer stars were indicative of low quality

(Supplementary Table S2).
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Statistical analysis

All studies included substudies, which allowed us to subgroup

the results into different categories such as lags, age groups, and

other relevant stratifications. Data for these subgroups were

extracted from the results sections of each paper. The extraction

process varied between studies, with necessary conversions

performed as described below.

To uniformly measure the effects of PM2.5 exposures on

influenza risk, effect estimates of relative risks (RR) (or similar

measure) and their corresponding 95% confidence intervals (CI)

were gathered from each study. It is noted that the availability of

RRs across all studies was not uniform, as certain studies

presented data in terms of excess rates or percent changes. To

address this difference, percent change was converted to RR

using the formula RR = 1 + Percent Change/100 and excess rate

was converted by RR = Excess Rate + 1, ensuring a standardized

and comparable metric for analysis.

Random- or fixed-effects meta-analysis was conducted on the

extracted RR for each study to quantify the combined effects of

PM2.5 exposure on influenza risk using R software (Version 4.3.2;

R Development Core Team) “metafor” and “meta” packages

(17, 18). To address the degree of heterogeneity within the

included articles, we used the Q statistic-based χ2 test and I2

statistic by the Cochrane guideline (19). Low, moderate, and

high hetergeneity were considered when I2 was less than 30%,

between 30% to 75%, and exceeding 75%, respectively.

A random-effects meta-analysis model was used. Publication bias

was examined for the effect of PM2.5 exposure through a

combination of funnel plots and the Egger’s test.

To identify the source of heterogeneity, we also conducted a

subgroup analysis based on sample size, patient ages, seasonality,

and different lag exposure periods, allowing for the dissection of

various sources within the collected data. Based on the included

articles, we divided sample size into 6 groups: NA, <1 k,

1 k–10 k, 11 k–25 k, 30 k–90 k, 100 k; Age into 3 groups: <18,

18–64, >64, with a final group including “all” ages; Season (based

on temperature) into 2 groups: Hot (24.2 °C–32.9 °C) and Cold

(−4.5 °C–10.1 °C); Lagged exposures into 5 groups: “0–1”, “2–3”,

“4–7”, “0–14”, “8–31”.

In the synthesis of mechanistic outcomes, quantitative

analyses were not conducted due to variations in methods

across the studies. Instead, a narrative overview was carried

out, characterizing the mechanisms involved in immune

responses triggered by PM2.5 leading to increased risk for

infection of influenza.
Results

The initial search yielded 2,240 records of which 1,336 were

removed due to duplication. The remaining 859 were screened

with 575 being further removed based on a review of the title

and abstract. A total of 284 citations were fully screened.

Consequently, a total of 16 studies were included in this

systematic review and meta-analysis: 11 studies for the
Frontiers in Epidemiology 04
meta-analysis with another 5 that focused on the mechanistic

underpinnings of the association between PM2.5 exposure and

influenza (see Figure 1 and Supplementary Figure S2).
Characteristics of the studies

The selected studies included different study designs and

statistical methods: one case-crossover analysis (20), three studies

employed distributed lag nonlinear models within their respective

design (21–23), two studies utilized generalized additive models

(24, 25), two applied random forest models (26, 27), two used

regression models (28, 29), and one time series model (30). Each

study had its own sub studies, often dividing the analysis by

factors such as age, gender, temperature, and other demographic

or environmental variables to assess subgroup-specific impacts.

This allowed for detailed stratifications and comparisons,

shedding light on how different population segments—children,

the elderly, or those living in higher-temperature zones, for

example—respond to similar exposure levels. Geographic

diversity among the studies was notable, with nine based in

China and one each from Thailand and the USA, collectively

encompassing 3,510,530 influenza cases. Additionally, five

mechanistic studies were included in a narrative overview to

provide a broader understanding of underlying biological

pathways. More specific details on each study and their subgroup

analyses are outlined in Table 1.
Results of the 11 association studies

The overall weighted averaged pooled RR (Figure 2) along with

the meta-analysis RR revealed that for each 10 μg/m3 increase in

PM2.5, the risk of influenza increased by 11.6% and 1.5%,

respectively (averaged RR = 11.6 95% CI: 2.5%, 23.7%; weighted

meta-analysis RR = 1.5 95% CI: 0.8%, 2.2%). The observed

difference between the overall weighted average pooled RR

(11.6%) and the meta-analysis RR (1.5%) arises from differences

in calculation methods. Specifically, the weighted average pooled

RR was derived by directly averaging reported RRs from

individual studies, weighted by study size or precision, while the

meta-analysis RR was calculated using a more robust statistical

approach, accounting explicitly for between-study heterogeneity

and precision (e.g., random-effects meta-analysis). Consequently,

the meta-analysis RR provides a more conservative and

statistically rigorous estimate of the association. It is important to

note that the heterogeneity of results was extremely high among

the studies (Table 2). The I2 statistic indicated that approximately

91.90% of the variability in effect estimates can be attributed to

heterogeneity rather than random chance, and the estimated

amount of total heterogeneity τ² was calculated to be 0.0014.

This high heterogeneity implies that the observed association

between influenza and PM2.5 might vary widely across different

factors not explicitly accounted for in the analysis. Variations in

study design, such as the geographical location, population

demographics, and seasonality, as well as differences in analytical
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TABLE 1 Studies included in the meta-analysis investigating for the relationship between PM2.5 and Influenza.

Reference Time
period

Study
design

Study
location

Population
exposure

Influenza
counts

Lag (days) Ages Confounders

(28) 2013–2014 RE China All 76,902 2, 3, 2–3 All T, RH, AP, WS, HS, C, M, H, Y

(20) 2005–2016 CC USA All 3,246 0, 0–3, 0–6 All G, A, RA, E, Y, S, HP, ED, P, OAP, T,
RH

(30) 2011–2021 TS Thailand All 84,075 31 All P,T,RH,C, H,D,R, Y, M

(48) 2013–2016 GAM China <15 2,569,021 2, 1 <15 HP, A, OAP, T, RH, C, H

(29) 2013–2015 R China All NA 7, 14 All OAP, T, RM, AP, ILI,

(24) 2010–2019 GAM China All 206 0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13,

14

All A, G, Y, IVA, IVB, OAP, T, AP, RH,
WS, PR, AQI, IVA, IVB, ILI,
AECOPD, RD

(21) 2013–2015 DL China All 206 4 All IVA, IVB, OAP, T, RH, WS, HS, C, H

(25) 2015–2017 GAM China All 11,485 0, 1, 2, 0–1, 0–2 All OAP, T, RH

(22) 2014–2031 DL China <17 16,176 0, 0–1, 0–2, 0–3, 0–
4, 0–5, 0–6, 0–7

All, 0–17,
18–64, > 65

A, G, T, RH, WS, VP, OAP, S

(23) 2014–2017 DL China All 15,312 All, 0–6, 7–17,
18–64, > 64

A, G, T, RH, OAP, H, M, C, S

(27) 2013–2019 RF China <19 191,846 0, 1, 2, 3, 4, 5, 6, 7,
0–6

<19 A, G, EL, T, AP, WS, RH, HS, S

Study Design: TS, Time-Series; CC, Case Crossover; GAM, Generalized additive model; DL, Distributed Lag; RF, Random Forest; R, Regression; RE, Random Effects. Confounders: G, Gender;

A, Age; RA, Race; E, Ethnicity; Y, Year; M, Month; S, Season; T, Temperature; RH, Relative Humidity; AP, Air pressure; WS, Windspeed; HS, Hours of Sunshine; PR, Precipitation; AQI, Air

Quality Index; C, Cold; M, Mild; H, Hot; D, Dry; R, Rainy; OAP, Other Air Pollutants; HP, Hospitilaizations; ED, Emergency Department; P, Pneumonia; ILI, Influenza-like Illness; IVA,
Influenza A; IVB, Influenza B; AECOPD, acute exacerbation of chronic obstructive pulmonary disease; RD, Respiratory Disease; EL, Education Level.

FIGURE 2

Forest plot of meta-analysis of the effect on the risk of influenza associated with PM2.5.

Orr et al. 10.3389/fepid.2025.1475141
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TABLE 2 Subgroup pooled analysis for the heterogeneity factors in the included articles. Relative Risk (RR), χ2 the Q statistic-based test and I2 statistic
bolded values indicate confidence intervals that do not overlap 1.

Subgroup Included study Sub-studies RR (95% CI) 2-sided p-value Heterogeneity
measurements

χ2 I2 P-value

Influenza counts
<1 k (21, 24) 51 0.997 (0.993, 1.001) 0.134 56.167 0.27% 0.2549

1 k–10 k (20, 22, 23) 45 1.014 (0.983, 1.045) 0.366 27.025 2.11% 0.9794

11 k–25 k (20, 22, 23, 25, 28) 75 0.981 (0.971, 0.992) 0.0003 136.003 0.21% <.0001

30 k–90 k (22, 28, 30) 29 1.036 (0.971, 1.101) 0.268 87.725 94.03% <.0001

100 k+ (27, 48) 48 1.044 (1.036, 1.053) <.0001 1,552.790 86.85% <.0001

Age (years)
<18 (22, 23, 48) 27 0.879 (0.780, 0.979) 0.015 123.682 98.82% <.0001

18–64 (22, 23, 27) 65 1.040 (1.029, 1.051) <.0001 1,570.393 97.37% <.0001

All ages (20–24, 28, 30, 49) 136 0.998 (0.994, 1.002) 0.317 204.694 0.27% 0.0001

Season
All temps (20–25, 27–30, 48) 214 1.012 (1.005, 1.019) 0.0001 2,225.552 92.77% <.0001

Hot (23, 28, 30) 11 1.294 (1.078, 1.509) 0.006 25.928 58.07% 0.0038

Cold (23, 28–30, 48) 16 1.142 (1.035, 1.249) 0.008 48.926 72.55% <.0001

Lags
0–14 (20, 22–25, 27–29, 48) 238 1.013 (1.006, 1.020) 0.0002 2,251.381 92.03% <.0001

0–1 (20, 22, 24, 25, 27, 29, 48) 34 1.023 (1.009, 1.038) 0.002 238.512 93.61% <.0001

2–3 (23–25, 27, 28, 48) 90 1.008 (0.994, 1.020) 0.218 395.095 86.85% <.0001

4–7 (20–22, 24, 27) 91 1.017 (1.003, 1.030) 0.012 1,123.624 95.27% <.0001

8–31 (24, 30) 33 0.998 (0.992, 1.005) 0.580 97.085 1.14% <.0001

Overall 248 1.015 (1.008, 1.022) <.0001 2,308.679 91.90% <.0001

Orr et al. 10.3389/fepid.2025.1475141
methods—like adjustments for confounders and the specific

models used to estimate risk—can all influence the observed

effect sizes. For instance, studies using different definitions of

influenza cases or various lag periods between PM2.5 exposure

and influenza outcomes may yield varying risk estimates.

Subgroup analyses highlighted that factors such as season, age

groups, and gender had notable impacts on heterogeneity

(p < 0.05), which underscores that these design and analytical

choices affect the robustness and comparability of results.

Our analysis indicates that the risk of influenza due to PM2.5

exposure varies with seasons, showing stronger risk estimates

during warmer flu seasons RR = 29.4% (95% CI: 7.8%, 50.9%) and

colder seasons RR = 14.2% (95% CI: 3.5%, 24.9%). Heterogeneity

among studies within a particular temperature group was

moderate, 58.07% and 72.55%. Additionally, focusing on the 18–

64 age group, we observed a slight increase in influenza risk due

to PM2.5, RR = 4% (95% CI: 2.9%, 5.1%), with the heterogeneity

across studies being non-significant. Of the studies that showed

significant heterogeneity, the subgroup analysis by influenza

counts demonstrated that larger populations (100K+) yielded

higher risk estimates than smaller populations: RR = 4.4% (95%

CI: 3.6%, 5.3%) per 10 μg/m3 increase in PM2.5, respectively.
Publication bias

Publication bias results from the regression test for funnel plot

asymmetry revealed a z-value of 1.6282 with a corresponding

p-value of 0.1035. Although this p-value exceeds the conventional

cutoff for statistical significance (0.05), suggesting no significant
Frontiers in Epidemiology 06
funnel plot asymmetry, the limited number of studies included

reduces the statistical power of this test. Therefore, the possibility

of publication bias cannot be completely excluded, and findings

should be interpreted with caution (see Supplementary

Figure S1). Future studies with larger sample sizes would help

provide more robust evaluations of publication bias.
Mechanistic effects

There were five studies that delved into the mechanistic

underpinnings of the association between PM2.5 exposure and

influenza (10, 31–34). Hsiao et al., identified certain chemicals

within PM2.5 that are correlated with the presence of active

influenza viruses, illuminating a potential chemical process that

might facilitate the transmission of influenza. This research

suggests that the chemical constituents of PM2.5 could play a

crucial role in enabling these particles to act as carriers or

vectors for the influenza virus (33). Kumar et al. found that

exposure to PM2.5 can lead to failure to sustain optimal levels of

interleukin 22 (IL-22), coupled with an inability to induce IL-22

production during flu infection. This inadequacy in maintaining

IL-22 levels was proposed as a catalyst for aberrant epithelial

repair and compromised immune responses, potentially

escalating flu severity (31). Moreover, a different study elucidated

the impairment of pulmonary immune defense mechanisms and

lung tissue cell injury due to prolonged PM2.5 exposure,

attributing increased post-infection death rates to the resultant

downregulation of immune defenses (32). Additionally, findings

from another investigation highlighted how PM2.5 compromised
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innate immune responses, rendering individuals susceptible to

influenza by suppressing critical factors like the NLRP3

inflammasome and interferon-beta (IFN-β) expression (10).

Lastly, a study exploring wood smoke particles during wildfires

revealed dynamic changes in pulmonary macrophage and T-cell

subsets in response to WSP and influenza challenge, providing

insights into the nuanced immune response alterations triggered

by these environmental factors during viral infection (34).
Discussion

Key findings

Our meta-analysis highlights the association between increased

PM2.5 exposure and heightened influenza risk, with an overall 1.5%

increase in relative risk (RR) per 10 μg/m3 increment of PM2.5. This

relationship is significant but requires nuanced interpretation,

especially given the high heterogeneity across studies. Our

findings demonstrate the necessity of exploring factors beyond

pooled averages, considering subgroup analyses that reveal the

differential impact of PM2.5 across diverse populations. However,

several limitations warrant further discussion, particularly

concerning the subgroup analyses. While these analyses

contribute valuable insight, the potential influence of

confounding factors—such as socioeconomic status, baseline

health, or lifestyle variations—is often under-addressed, risking

overinterpretation of observed subgroup effects.

High variability exists among the included studies in terms of

both study context and design. Variations in subgroup results

could stem from factors other than PM2.5 exposure, such as

underlying health status, access to healthcare, or differences in

exposure measurement techniques. While the study stratifications

—based on age, gender, temperature, and seasonal factors—

provide compelling findings, they also introduce complexities that

require careful consideration to avoid attributing all observed

differences solely to PM2.5. Additional exploration of these

confounders is essential to accurately interpret the observed

associations. Potential limitations related to existing data sources

were also identified, including inconsistencies in air pollution

measurement techniques, variability in influenza reporting

methods, and biases inherent in meta-analytic approaches. These

limitations underscore the need for standardized methodologies

and more consistent data collection practices in future research to

ensure comparability and enhance the robustness of conclusions.

Below, we discuss these findings in the context of each sub

analysis grouping and their possible linkages to the impact of

PM2.5 exposure on compromised immune response to influenza.
Short- and long-term Pm2.5 exposure
periods affects influenza risk

Our meta-analysis revealed that nearly all lag periods of PM2.5

exposure influence influenza risk. We examined various lag

periods, from immediate (“0–1” day) to extended (“8–31” days),
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to understand the temporal relationship between PM2.5 exposure

and influenza risk.

For the short lag periods (“0–7” days), we observed an increase

in influenza risk, suggesting an almost immediate effect of PM2.5

on influenza susceptibility. These observations align with

previous research linking PM2.5 exposure to increased influenza

risk and respiratory issues within a week of exposure (24, 25,

27–29, 35, 36). Mechanistic studies shed light on this

relationship, showing that short-term PM2.5 exposure can trigger

interleukin-6 (IL-6) synthesis, enhancing early immune response

(32). However, short-term (<7 days) exposure can lead to

reduced IL-6 production, subsequently compromising the

immune response, and diminishing influenza resistance in mice

(32). Further research indicates that PM2.5 can impede the

production of critical immune factors like IL-1β and interferon-

beta (IFN-β), potentially aggravating flu infections and

suppressing certain immune pathways (10). Additionally, Kumar

et al. (31) highlighted that while initial PM exposure increased

IL-22 expression in the lungs, short-term exposure or subsequent

influenza infection in PM-exposed mice resulted in reduced IL-

22 expression, potentially contributing to aggravated lung injury

during influenza infection (31).

The highest influenza risk was noted during the longer PM2.5 lag

periods (“4–7” days). This could suggest a more pronounced impact

of prolonged PM2.5 exposure on the respiratory system and immune

response. We did look at a longer lag effect (7–14 days) which was

significant; however, due to the small number of studies looking at

this period of time, we did not include it in the final analysis.

Mechanistic insights into extended exposure periods indicate that

PM2.5 might compromise the immune system, rendering

individuals more susceptible to influenza later. For instance, Ma

et al. indicated that prolonged PM2.5 exposure diminished the

expression of IL-6 and IFN-β in pulmonary macrophages, reducing

resistance to influenza viruses (32). Another study highlighted a

decrease in the production of IL-1β and IFN-β following PM2.5

exposure (10). Other studies with longer correlations emerged in

Montana, USA, between elevated PM2.5 levels during the wildfire

season and increased influenza activity in the subsequent season,

suggesting a potential immune suppression pathway due to

prolonged exposure (9). Another study by Orr et al. found that

residents in Seeley Lake, Montana, USA, had decreased lung

function after prolonged exposure to PM2.5 from wildfires long

after the initial exposure event (37). These insights demonstrate the

complexity of PM2.5’s influence on influenza transmission, showing

that it is affected by exposure duration, timing, and environmental

events like wildfires, thus emphasizing the multifaceted factors

influencing influenza risk in the presence of PM2.5.
Impact of seasonality on flu and Pm2.5
exposure in temperate and tropical
locations

The influence of geographic locations, specifically temperate vs.

tropical regions, on influenza patterns is well-established, with

differences in environmental conditions leading to distinct viral
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transmission dynamics that vary with climatic conditions (23,

28–30, 38). Temperate zones experience seasonal flu peaks with

onsets occurring after dry and cold periods (8, 39). In some

tropical regions, influenza epidemics are reported during wetter

periods, while others similar regions experience year-round peaks

or do not exhibit clear seasonal patterns (40, 41). However, our

meta-analysis revealed a disparity in the geographic distribution

of studies, with most of the studies in tropical to subtropical

areas. Our findings show that seasonal flu risks are heightened

during warmer seasons, a trend likely influenced by the higher

temperatures and humidity in tropical regions. These findings

underscore the importance of developing region-specific flu

prevention strategies, considering the continuous presence of the

virus in tropical regions and the seasonal peaks in temperate zones.

The relationship between temperature, air pollution, and the

immune response to influenza is complex and varies across

different demographic groups and environmental conditions.

High temperatures, particularly when combined with air

pollutants like PM2.5, have been shown to significantly affect

susceptibility to influenza. This impact is notably pronounced in

certain demographic groups, including individuals aged 18–64

years. The interaction of high temperatures with pollutants such

as ozone also exacerbates respiratory issues, as indicated by

multiple studies (21, 22, 42).

In colder climates, particularly during winter, the combination of

lower temperatures and decreased humidity is conducive to the

stability and transmission of the influenza virus (43). These

environmental conditions not only facilitate the virus’s survival but

also may impair immune responses, increasing vulnerability to

influenza (44). Additionally, during cold periods, there is an

increased likelihood of people remaining indoors near one another,

which further enhances the transmission of the virus. Warm

temperatures, conversely, present a more complex scenario in

terms of influenza impact. While warm weather might reduce the

stability and transmission of the influenza virus, studies by Zhang,

Meng et al. and Shin et al. indicate a complicated relationship

between temperature, air pollution, and flu susceptibility in these

conditions (23, 36). In warmer climates, the role of air pollution

becomes more significant in influencing respiratory health, which

might affect influenza transmission dynamics.
Effect of study system and design

Our results demonstrated that factors such as population size,

and age-specific analyses can influence the observed strength of

association between PM2.5 exposure and influenza risk. Regarding

influenza counts, larger populations often provide more robust

and reliable statistical associations. This is a well-established

principle in epidemiological studies, reflected in our findings of

stronger inferences in studies with larger influenza counts

aligning with existing research norms (45).

Our age-specific analyses showed a significant impact of PM2.5

exposure on influenza risk predominantly in the 18–64 age group,

showing a reduced risk for individuals under 18. Intriguingly, no

significant effect was observed in those over 64, as indicated by
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the relative risk value of 0.937 (95% CI: 0.887, 0.987). This

absence of a noticeable effect in the elderly population, typically

considered highly vulnerable to influenza, raises important

questions. It could be hypothesized that this group may have

reduced exposure to outdoor air pollution due to limited

mobility or spending less time outdoors. Furthermore, the elderly

might benefit from more robust public health interventions, like

increased vaccination rates or better access to healthcare, which

could mitigate the impact of PM2.5 on influenza risk.

For the 18–64 age group, factors unique to this demographic,

such as increased periods spent outdoors, leading to higher

exposure to pollution, and lifestyle characteristics that may

contribute to elevated risk. Additionally, underlying health

conditions that are more prevalent in this demographic might

amplify the effects of PM2.5. Further compounding this issue is

the role of immune system maturity and the presence of

comorbidities, both of which are more pronounced in the adult

population and may enhance vulnerability to the combined

effects of influenza and air pollution. Research has shown that

immune responses can vary significantly with age due to

immunosenescence, which is the gradual deterioration of the

immune system associated with aging. This can affect how the

immune system responds to infections like influenza and to

vaccinations (46). Studies have also shown that immune

responses in individuals with conditions like obesity and type 2

diabetes mellitus, which are more common in adults, can

significantly influence the efficacy of the influenza vaccine,

highlighting the complex interaction between PM2.5 exposure and

influenza risk in this age group (47).
Research gaps and future perspectives

Influenza remains a formidable challenge in global public

health, often heightened by the looming threat of pandemics.

Our meta-analysis has delved into the intricate relationships

between PM2.5 exposure and influenza risk, shedding light on the

dynamic interplay of environmental factors and their health

impacts. While PM2.5 levels are decreasing in some parts of the

world due to stringent regulations, they are concurrently rising in

others, fueled by increasing human populations and climate-

induced changes such as wildfires. This emphasizes the

importance of addressing air pollution within influenza public

health strategies.

However, notable limitations exist. Variability in air pollution

measurement methods, geographic coverage, and influenza

reporting practices introduce inconsistencies, complicating meta-

analysis interpretations. Standardized data collection and

reporting are essential for future research. Confounders such as

socioeconomic status, healthcare access, and vaccination rates,

which significantly affect influenza vulnerability, were

inadequately addressed. Future studies should incorporate robust

methodologies to manage these confounders effectively.

Additionally, interactions between PM2.5 and other pollutants

(e.g., nitrogen oxides, ozone, sulfur dioxide) that may amplify

influenza susceptibility remain under-explored. Future research
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should prioritize comprehensive multi-pollutant analyses to clarify

these interactions. Lastly, the predominance of studies from China

limits the global applicability of findings. Enhanced international

collaboration and geographically diverse research are essential to

improve generalizability and inform effective global public

health policies.
Conclusion

From our work, a key takeaway emerges: the impact of PM2.5 on

influenza risk is multifaceted, influenced by exposure duration,

population demographics, and environmental variables. This

complexity highlights the necessity of both associative and

mechanistic studies. While our analysis has provided valuable

insights, it also reveals the need for more comprehensive research.

To address this complexity effectively, future research must adopt a

balanced approach, integrating associative studies—examining

epidemiological relationships—and mechanistic studies that explore

underlying biological pathways. Clarifying both how and why PM2.5

affects influenza susceptibility will enable public health strategies to

be tailored specifically to diverse global contexts, accounting for

regional variations in air pollution sources, population

vulnerabilities, and environmental changes. This comprehensive,

dual-focused research approach is critical for developing responsive

and sustainable interventions capable of reducing influenza risks

across varying environmental and demographic s
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