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We present Regional Psychologically Valid Agents (R-PVAs) as a modeling

approach to predicting transmission-reducing behaviors and epidemiology.

The approach builds upon computational cognitive theory and formalizes

aspects of theories of individual-level behavior change. We present R-PVA

models of social distancing and mask wearing in response to dynamics in the

physical and information environments in the 50 U.S. states. The models

achieve strong goodness-of-fits for predicting day-to-day mask-wearing

(R2= 0.93) and social distancing (R2= 0.62) for the first three waves of

COVID-19, prior to the rollout of vaccines.
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1 Introduction

Human behavior plays a crucial role in controlling the spread of infectious diseases,

whether in the form of pharmaceutical (e.g., vaccines) or non-pharmaceutical

interventions (e.g., wearing masks; social distancing) (1). Epidemiological models often

include stylized abstractions of human behavior and interaction (2–6), but do not

include theoretically established, empirically validated, computational models of human

psychology and social processes. Since the onset of the COVID-19 pandemic we have

focused on the development of Psychologically Valid Agents (PVAs) based on

established computational cognitive theory (7–12). We propose that richer, more

accurate models of human psychology and behavior can improve epidemiological

modeling and public health decisions (8).

The PVA approach is presented in Figure 1. The goal is to model beliefs, attitudes,

intentions, and behavior that are assumed to influence the transmission of infectious

diseases. The core cognitive modeling is based on the ACT-R cognitive architecture

(13). The model relies on analyses, including natural language processing and machine

learning techniques, that process a mix of big data sources including online media such

as Twitter and mass media. PVAs are used to model behavior change, such as social

distancing and mask wearing in response to dynamics in the physical and information

environments and are designed to represent individuals or homogeneous segments of a
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population of interest. In recent work (12) we presented Regional

PVA (R-PVA) models of mask-wearing behavior in the 50 U.S.

states. Here we present an extension of those R-PVAs to include

mass media and social media analyses and surveyed perceptions

of local infections. The extended R-PVAs are used to predict

social distancing behavior in addition to mask-wearing.

2 ACT-R and R-PVA models

Leveraging extensive COVID-19 data repositories and other

general data sources, we created Regional PVAs to simulate the

behavior of regional U.S. populations during the pre-vaccination

phase of COVID-19. The abundance of regionally organized

(e.g., state, county) demographic, psychographic,

epidemiological, behavioral, and information environment

data makes it feasible to develop and test such models. The

PVA pipeline includes demographic and psychographic data

about U.S. regions and online social media. These data are

used to initialize agents and provide time-series inputs

representing the pandemic context (e.g., local transmission

rates). The PVAs iteratively assess the current context and

make decisions (e.g., wear a mask or not) over discrete time

steps (e.g., every day). They are thus capable of predicting

various regional timeseries data, e.g., the U.S. county- or state-

level daily mobility patterns or daily mask-wearing. Regional

PVAs rely on ACT-R Instance-based Learning mechanisms to

conduct online learning, continuously adapting to daily data

inputs. Regional PVAs can be used as a novel data mining

technique to understand possibly nonlinear relations between

context and behavior.

In previous work (12), R-PVAs were developed to model

mask-wearing behavior in the U.S. over the pre-vaccination

phase of COVID-19 using regionally organized demographic,

psychographic, epidemiological, information diet, and behavioral

data. We also modeled a process of gaining self-efficacy with

repeated behavior. Self-efficacy is a theoretical mechanism in

social psychology: An individual’s belief in their capacity to

execute behaviors necessary to produce specific performance

attainments. The Social Cognitive Theory of self-efficacy (14)

predicts that behavioral goals that are perceived as too difficult

are unlikely to be attempted. In general, greater levels of self-

efficacy lead to greater likelihoods of achieving a goal. An R-PVA

using a set of five regional predictors selected by stepwise

regression, a psychological self-efficacy process, and context-

awareness of the effective transmission number, Rt, yielded good

fits to the observed proportion of the population wearing masks

in the 50 U.S. states [R2 = 0.92]. An R-PVA based on regional

Big 5 personality traits yielded strong fits [R2 = 0.83]. R-PVAs are

a novel technique to understand dynamical, nonlinear relations

amongst context, traits, states, and behavior based on

cognitive modeling.

FIGURE 1

The PVA framework. Clockwise from lower left: Datasets are used to extract cognitive content (e.g., perceptions, attitudes, beliefs, and intentions) and

initialize PVAs implemented in the ACT-R cognitive architecture. Given decision contexts, the PVAs simulate the choice of behaviors, which predict

behavior-response profiles (e.g., for hand washing, social distancing, vaccination). The PVAs can be run in agent-based models or abstracted into SIR

models to simulate effects on disease progression.
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3 Modelling pipeline

The modelling pipeline is summarized in Figure 2. Data from a

variety of sources were collected and preprocessed as described in

Section 4. The merged data set consists of (1) static variables

describing regional characteristics such as demographics and

political leanings, (2) time series variables describing dynamics such

as epidemiological phenomena as well as stances and topic

mentions in mass media and social media, and (3) behavioral

variables for the adherence to the non-pharmaceutical interventions

of mask wearing and social distancing. The standardized sets of

variables (1) and (2) were used to predict the behavioral choices (3)

that could have an impact on the spread of infectious diseases.

Some variables may have a longer temporal range effect on other

variables. For instance, Rt is not directly observable and the effect of

a change in Rt would manifest itself only after an incubation period.

We performed a Granger analysis to identify the time lags between

variables that would produce a significant effect. The resulting

shifted time series together with the static predictor variables were

downselected using stepwise regression. The most significant

variables were then used to construct the R-PVA models. In

addition, modelling the self-efficacy mechanism involves two

parameters. A grid search was performed on a small data set to

estimate the optimal parameter values.

We modelled the behavioral variables using R-PVAs

constructed with variable sets of several sizes, with and without

additionally modelling the effect of the self-efficacy mechanism.

The evaluation consisted of cross-validation using unseen data

from successive time periods. We will describe some of the

analysis steps in more detail in the following sections.

4 Data and feature construction

In previous work we modelled mask wearing behavior in the

United States using demographic, epidemiological, psychographic,

weather, political and media diet data at the state and county levels.

Here we expanded the data set to include additional inputs,

including COVID- and influenza-like illnesses, pro/con stances and

other measures derived from social media, and topic mentions in

mass media. We validated the model on a social distancing measure

in addition to mask wearing. Geographic location information was

not used as an input for the cognitive model, but regional

differences were observed from the modelling analysis.

Supplementary Tables S1, S2 in Supplementary Materials show

the static and time-series data used in this study. Using principal

component analysis, the raw monthly weather data was reduced

from 48 dimensions to 2 dimensions. The first principal

component (PC1) explains 65% of the variance and is dominated

by the monthly temperature related variables. The second

principal component (PC2) explains 13% of the variance and is

dominated by the monthly precipitation related variables during

the fall and winter (Oct–Apr).

The Stanford Cable TV News Analyzer made available closed

caption transcripts time-aligned with the video recordings of TV

news programming on CNN, Fox News, and MSNBC. We

compiled co-mentions of terms for “COVID”, “masks” and several

attitudinal concepts, such as “protect”, “restrict”, “fear”, as well as

general positive and negative descriptions (e.g., “good”, “useless”).

Supplementary Section S1 in Supplementary Materials describes

the procedure for obtaining the mass media data in more detail.

Except for the social media data from CASOS, which has a

shorter time range (04/08/2020–11/30/2020), the time series data

covers the pre-vaccination rollout period of 04/24/2020–03/31/

2021, corresponding to the first three waves of COVID-19 as

defined by Pew Foundation1. Most of the data is daily and

FIGURE 2

The modelling pipeline.

1https://www.pewresearch.org/politics/2022/03/03/the-changing-political-

geography-of-covid-19-over-the-last-two-years/
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available at both the state and county levels. A notable exception is

the mask wearing data. COVID States data was collected

approximately every three weeks, starting in April 2020.

COVIDcast data was collected daily but with a later start date of

September 2020. We imputed the time series by first ordering

the survey data by the date that occurred mid-survey wave and

iterating through each successive pairs of data points using linear

interpolation weighted by the ratio between elapsed days from

the lower-dated value and days remaining to the upper-dated value.

4.1 Exploratory analysis

We performed pairwise correlation between the variables (see

Supplementary Figure S1 in Supplementary Materials). Each

variable consists of nt data points, where n is the number of states

and t is the number of days in the target period. The two target

behavioral variables, mask wearing and difference in daily social

distance, were moderately negatively correlated (r =−0.41). Larger

increases in the proportion of mask wearing were associated with

larger decreases in distance travelled compared to the pre-COVID

baseline. Both target variables were most highly correlated with

the political variables (r = ±0.41–±0.53), which were themselves

very highly correlated (r = 0.77–0.89). The political variables

however were not very correlated with any of the mass media

variables, for example, the proportion difference in people

watching Fox News (r =−0.02–0.07). CDC case rate was

moderately correlated with COVID- and influenza-like illnesses

(r = 0.35–0.40), but not much correlated with Rt (r =−0.06). The

latter might be an indication of the time lag between Rt and the

onset of observable symptoms. We will re-align the data to

account for this effect as identified by Granger analysis.

4.2 Granger analysis

As mentioned, some variables might not have an immediate

effect on others. We performed Granger analysis on pairs of time

series variables. For each pair of variables x and y, the predictor

variable x was shifted with successive time lags of 1–30 days, and

the shifted previous values of x, together with the unshifted

previous values of the predicted variable y, were used as input to

predict the current value of y. The shortest time lag of x with a

significant improvement over using only the values of y was

deemed the effective lag length. Bonferroni correction to the level

of significance (0.05) was applied to tests of each x-y pair.

Figure 3 shows the time lags of variables predicting the

proportion of mask wearing and the difference in daily

distancing at the county level, which provide a finer-grain view

of the relationships than at the state level. For mask wearing, the

most common lag length for Rt is 7 days, which could be partly

attributed to the incubation period of COVID-19. Other more

observable epidemiological indicators, such as COVID-like and

influenza-like illnesses had a slightly shorter time lag. For daily

distancing difference, mass media indicators had a wider

influence in the shorter time frame, whereas Rt and the illness

indicators had more uniform influence over the longer time lags.

Note that not all time series variables in the data set appeared in

the figure, because some of them, notably the social media

variables, did not exhibit a significant lag with respect to the

target variables (mask wearing and social distancing) according

to Granger analysis.

Where applicable the variables were shifted by their respective

effective lag lengths to account for the time lags between the

variable and the behavior variable of interest. All subsequent

analyses were performed using the time-shifted data.

4.3 Feature selection

The most relevant features were selected using forward

stepwise regression on the shifted data. Starting with an empty

set of predictors, at each step a linear regression model for

predicting the target variable was constructed using the

predictors selected so far and one of the unselected predictors.

The models were evaluated using 10-fold cross validation, where

the data set was randomly divided into 10 folds, and for each

trial 9 folds were used for training and the remaining 1 fold was

used for testing. The unselected variable that gave rise to the

model with the highest average R2 was added to the set of

selected variables.

Figure 4 shows the R2 of successive models with increasing

number of predictors selected. The optimal cutoff was obtained

by visually inspecting the graph and finding the “shoulder”

where adding more variables did not result in much more

improvement in the R2 score. For mask wearing, the optimal

cutoff was set at 6 variables. For daily distancing difference, the

optimal cutoff was less clear. We selected two potential cutoff

points, at 3 and 9 variables, for further exploration. The variables

selected in each case are shown in Table 1.

For both mask wearing and daily distance difference, the

predictor with most weight was a variable representing the

political leaning towards Trump. For mask wearing, the

additional variables spanned a variety of dimensions, including

personality, epidemiology, media and demographics. For daily

distance difference, the 3-variable set included additionally

COVID-like illness and Population, whereas the 9-variable set

was more heavily focused on the COVID-like and influenza-like

illness indicators. As shown in Supplementary Figure S1 in the

Supplementary Materials, these indicators were highly correlated.

From Figure 4b we observed that the additional 6 variables gave

rise to a noticeable though modest increase in R2 over the

3-variable model. Overall, the best R2 achieved by the mask

wearing models were considerably larger than that of the daily

distance models, indicating that the mask wearing model was a

better fit than the daily distance model.

5 Regional psychologically valid agents

Regional Psychologically Valid Agents can be viewed as a

variation on recent research on geographical psychology. This is
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Frontiers in Epidemiology 04 frontiersin.org

https://doi.org/10.3389/fepid.2025.1532553
https://www.frontiersin.org/journals/epidemiology
https://www.frontiersin.org/


FIGURE 3

Granger analysis results for (a) mask wearing and (b) social distancing. Time series variables are described in the Supplementary Materials.
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a rapidly growing subfield that has generated a 588% increase in

publications between 2001 and 2019 (15). Geographical

psychology studies the spatial patterns of psychological

phenomena, including the spatial distribution of psychological

traits, underlying mechanisms shaping psychological patterns, and

their influence on micro- and macro-level patterns. For instance,

geographical psychology studies (e.g., 15, 16) show spatial

clustering of psychological characteristics and psychological

phenomena associated with economic entrepreneurship and other

political, economic, social, and health outcomes.

5.1 ACT-R and R-PVA models

Our R-PVAs utilize a decision-making modeling approach

known as Instance-Based Learning (IBL) (17, 18). Such models

FIGURE 4

Overall goodness-of-fit for feature selection in stepwise regression for predicting (a) mask wearing and (b) social distancing.

TABLE 1 Best predictors for mask wearing and social distancing.

Mask Wearing Daily Distance Difference

(3 variables) (9 variables)

PctTrump_State_2016 trump_approval_feb2020 trump_approval_feb2020

Agreeableness smoothed_wcli smoothed_wcli

smoothed_whh_cmnty_cli Population Population

Openness media_mask_restrict

media_foxnews_lean Median_Household_Income_2018

TOM smoothed_wili

Total_age65plus

smoothed_whh_cmnty_cli

smoothed_wnohh_cmnty_cli
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are particularly effective in dynamic and uncertain environments. The

R-PVA models implementing IBL were developed in pyACTUP 2.2.3,

which simulates the declarative memory module of ACT-R, including

the storage and retrieval of experiences and a memory blending

process. IBL leverages the ACT-R framework to simulate human

decision-making based on past experiences stored in declarative

memory. This memory stores multi-attribute past instances of

decisions with subsets of attributes representing contexts (situational

features), actions (decision; behavior choice), outcomes (resulting

changes), and rewards. When a decision needs to be made, IBL uses

a memory retrieval process called blended retrieval (or blending) to

compute a choice or behavior based on decision context. Rather than

retrieving a single best-matching past memory instance, blending

computes a weighted average of multiple stored memory instances.

The contribution of each instance to the blended result is

determined by the activation, which is based on frequency and

recency of the instance, and the similarity of the instance contexts to

the decision context. Blending makes context-sensitive decisions that

integrate past experiences and allows for generalization and

adaptation in dynamic environments.

The mathematical foundation of IBL is rooted in Statistical

Learning Theory (19), where it functions as a linear smoother—a

non-parametric, instance-based learning function approximator.

Consequently, IBL supports various learning paradigms, including

Supervised Learning for regression and classification, as well as

Reinforcement Learning for utility-based habitual behaviors. IBL

continuously retains its “training data” within its memory repository,

allowing it to adapt dynamically to new situations. To handle large

datasets efficiently, IBL computations can be vectorized and

parallelized, incorporating techniques such as approximate k-nearest

neighbors for scalability. This combination of scalability, adaptability,

and a cognitively plausible approach to decision-making through

approximate expectations makes IBL particularly well-suited for

modeling evolving human behavior in large-scale multi-agent systems.

ACT-R has subsymbolic mechanisms that determine

the dynamics of the R-PVAs. Equations 1–3, below, define how

the levels of activation of chunks in memory determine the

probabilities of chunk retrieval.

Blended retrieval determines the value V that minimizes the

sum of squared dissimilarities with the answer Vi proposed by

each chunk, weighted by the probability, Pi, of retrieval of value Vi:

V ¼ argmin
V

X

i
Pi(1� Sim(V , Vi))

2 (1)

The probability of retrieval is

Pi ¼
eAi=s

P

j e
Aj=s

(2)

Where the activation, Ai, is

Ai ¼ Bi þ

X

f
MPf Sim( f , V)þ 1i (3)

and s and ε are noise factors, B is a base-level activation, and MP.

MPf is a mismatch penalty representing the dissimilarity between

the representation of two values. Equation 4 defines how

activation levels are increased by repeated experiences, or decay

with time.

Bi ¼ ln
X

n

j¼1

t�d
j

 !

þ bi (4)

where tj is the time since the jth storage or retrieval trial of chunk i,

n is the number of occurrences, 0 < d < 1 is a decay parameter, and

βi is a constant offset. The parameters were set as follows:

MP = 30.0, d = 0.5, and β = 0.0. The mismatch penalty MP was

set to a value that allowed a relatively broad range of inexact

matches to contribute to the activation level, weighted by the

magnitude of the mismatch. The decay parameter d was set to

the mid-point of the range, allowing for a moderate rate of decay.

Chunks generally can be represented as an unordered feature-

value list of the form

{<feature1: value1>, <feature2: value2>, …, <featuren: valuen>}

For the R-PVAs modelling a target predicted behavior, the chunks

are of the form

{<predictor1: value1>, …, <predictorn: valuen>, <predicted:

valuep>}.

For instance, for modelling mask wearing, if on a given day t a

given state had a mask wearing proportion of x and a value of vt

for the time series variable smoothed_whh_cmnty_cli, then we

learned a total of 10 new chunks of two forms proportional to x,

that is, round(10x) chunks of the form

{<smoothed_whh_cmnty_cli: vt>, <PctTrump_State_2016: v1>,…,

<TOM: v6>, <mask_wearing: 1>}

corresponding to the mask-wearing faction, and 10-round(10x)

chunks of the form

{<smoothed_whh_cmnty_cli: vt>, <PctTrump_State_2016: v1>,…,

<TOM: v6>, <mask_wearing: 0>}

corresponding to the non-mask-wearing faction. These chunks

together with the previously learned chunks formed the current

memory of the model.

To make a prediction of the prototypical value of a feature

given a (partial) set of predictor values, chunks that are similar

to this chunk are retrieved and blended, weighted by a similarity

function. Our R-PVA models used the similarity function

Sim(x, y) ¼ 1=(1þ exp (y � x))2, with y . x: (5)

Thus, the mask wearing proportion of the next day, t + 1, was

obtained by the blended retrieval of mask_wearing, given the

values of the predictor variables on day t + 1:

{<smoothed_whh_cmnty_cli: vt + 1>, <PctTrump_State_2016: v1>,

…, <TOM: v6>},

using the smoothed_whh_cmnty_cli value of day t + 1, and the

same values for the static variables as before. (Recall that the
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values of the static variables varied from state to state, but for a

given state, their values remained constant from day to day.)

Once the mask wearing proportion for day t + 1 was obtained,

another 10 new chunks for t + 1 corresponding to this

proportion were generated and incorporated into the model. This

learning-prediction process was repeated for each day forward.

5.2 Self-Efficacy

In general, behavior change involves the gradual development

of habits that are woven into the fabric of everyday life (20).

A long history of psychological and neuroscience research on

learning, decision-making, and behavior has led to the idea that

there is a dichotomy between decisions and behaviors that result

from effortful goal-striving or reflective processes vs. behaviors

that are more automatic, less effortful habits (21–24). The

execution of novel behaviors typically involves an initial goal-

striving phase that requires cognitive effort in deliberation and

behavioral control in the relevant environmental contexts. Then,

repeated practice produces habit formation and strengthening

processes that associate those specific behaviors to cues in the

environment. Habitual behaviors come to be executed without

effortful goal-striving cognitive processes. Thus, generally, novel

behaviors are more difficult than familiar everyday behaviors

because they require goal-striving.

The construct of self-efficacy in Social Cognitive Theory is a

person’s judgment about their ability to control events or their

own behaviors. In general, an individual’s belief in their ability to

perform a behavior is necessary to attain the behavior. Self-

efficacy has been defined in terms of an underlying cognitive

learning process that may come from experienced mastery of the

behavior or vicarious observation of similar others performing

the behavior (14, 25). In our models, we assume mask-wearing is

for most people (e.g., those not in health care) a novel behavior

that initially requires effortful goal-striving processes, and that

self-efficacy processes and repeated practice gradually make the

behavior more likely to be executed.

For R-PVAs that model self-efficacy, two additional features are

included:

{<predictor1: value1>, …, <predictorn: valuen>, <difficulty: δ>,

<effort: e>, <mask_value: m>},

where δ is the difficulty of the task of mask wearing, and e is the

amount of perceived effort to accomplish the task. Self-efficacy is

modelled as the difference between the difficulty and effort. For

each success in accomplishing a goal (e.g., wearing a mask for a

day in our scenario), self-efficacy is boosted by

(1�m)boost factor(exp(d� e)=(exp(d� e)þ exp(e))) (6)

where m is the mask wearing proportion, boost_factor is a small

quantity that promotes the self-efficacy upon success. The

threshold above which the intended effort would be too hard to

attempt was set at the mean of the initial difficulty and effort.

5.3 Norm initialization

In the current model, a “norm” is simply an initial behavioral

bias in a subpopulation. During the initialization phase, a norm

was established as the baseline for the model, using only the

static variables and the values of the target (time series) variable

from the initial 10 days of the data. For each state, the blended

norm x of the target variable was obtained and 10 new chunks

in proportion to this value x were learned, such that, keeping the

other variable values as given, a proportion of x of the new

chunks had a value representing the presence of the behavior

(e.g., wearing a mask), and the rest of the 10 chunks had a value

representing the absence of the behavior (e.g., not wearing a mask).

5.4 Parameter tuning

The self-efficacy mechanism in R-PVA involves two parameters,

the initial effort needed to perform a behavior and the boost factor

when the behavior is reinforced (without loss of generality, relative to

a fixed level of difficulty and a threshold value that is a function of

the other parameters). We performed a grid search over the

parameter space to identify the optimal parameter setting, with the

difficulty level set at 2.0 and using only data from California and

Wyoming during the first wave of COVID-19 (up to 2020/06/30).

The R-PVA models constructed were evaluated using n-fold

rolling origin cross-validation (see Section 6.1).

Figure 5 shows the RMSE values of models for mask wearing

and daily distance difference respectively. For mask wearing, the

best-performing parameter values were: boost factor = 0.02,

effort = 1.0. For daily distance difference, the best-performing

parameter values were: boost factor = 0.01, effort = 1.8. We noted

that for daily distance difference, the optimal parameter setting

was at the boundary of reasonable parameter space, which might

indicate that the self-efficacy mechanism was not of high utility.

We will discuss this further below.

5.5 Simulation of behavioral changes

Norms obtained as described in Section 5.3 provided a starting

point for the models. At each time point, ten memory chunks were

added in proportion to the presence or absence of the target

behavior as predicted by a R-PVA model. The model then

simulated the behavior for the next time step using the present

external variables and a blending of the past history of the internal

memory chunks up to that point, subject to a decay function. The

behavioral characteristics and the new memory chunks at the next

time point were then set according to the new blended value.

6 Evaluation and results

6.1 Evaluation

For each of the two behavioral variables, mask wearing and

daily distance difference, we constructed R-PVA models using
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FIGURE 5

RMSE fits for parameters in predicting (a) mask wearing and (b) social distancing.

Teng et al. 10.3389/fepid.2025.1532553

Frontiers in Epidemiology 09 frontiersin.org

https://doi.org/10.3389/fepid.2025.1532553
https://www.frontiersin.org/journals/epidemiology
https://www.frontiersin.org/


the variables selected from the stepwise regression procedure and

the parameter values obtained from the grid search. Several

models of increasing complexity were evaluated, using a subset of

the selected variables:

• Model 1: only the most significant time-series variable

• Model 2: the most significant time-series variable and the most

significant static variable

• Model 3: all the selected variables

• Model 4: all the selected variables, with modelling of the self-

efficacy mechanism

For daily distance difference, we evaluated Models 3 and 4 with

both the 3-variable and 9-variable versions of “all” variables as

shown in Table 1.

Because of the sequential nature of the data, regular cross

validation, with random assignment to folds, was not appropriate, as

this would enable the prediction of a data point using future data

points that should not have occurred yet. We instead analyze the

models using n-fold rolling origin cross-validation (26), n being

the length of the time series minus 1. For the i-th fold, the data

from the initial time sequence <t0, t1,…ti−1> was used for training,

and the data at time point ti was used for testing. Each successive

training data set was a longer time series and included the previous

training set. n-fold rolling origin cross-validation was performed

using data in the date range 2020/04/24–2021/03/31. R2 and RMSE

scores were obtained for each of the models.

6.2 Results

The evaluation results are shown in Tables 2, 3. For both mask

wearing and daily distance difference, the models performed better

as we included more of the selected variables (from R-PVA-*-1 to

R-PVA-*-3), in particular going from the first model to the second

model, suggesting that political leaning (PctTrump State 2016 and

trump_approval_feb2020) had a substantial effect on the

target behaviors.

The models of the two behaviors diverged with the inclusion of

the self-efficacy mechanism. For mask wearing, self-efficacy helped

improve the model, whereas for daily distance difference, the

models with self-efficacy performed slightly worse than their

corresponding models without self-efficacy [e.g., R-PVA-distance-

3(a) vs. R-PVA-distance-4(a)]. We will discuss this in more detail

in Section 7.

In addition, in the 9-variable setting for daily distance

difference, both models without and with self-efficacy were worse

than their 3-variable counterparts, suggesting that the 9-variable

set might be overfitting the model. There were other indications

that this might be the case. For instance, we noted earlier, when

performing feature selection using stepwise regression

(Figure 4b), that the addition of the 6 variables beyond the first 3

provided only a modest increase in R2. Another consideration is

that perhaps daily distancing was inherently harder to predict

than mask wearing, as suggested by the lower maximum R2

scores achieved for the two behaviors (Figures 4a, b). Note

however, that R-PVA and regression models are based on

different modelling principles and the results from stepwise

regression, although suggestive, are not directly extensible to

R-PVAs.

We noted earlier that the variables that carried the most weight

in the feature selection procedure were political variables

(“PctTrump State 2016” and “trump_approval_feb2020”

respectively), suggesting that political partisanship is a strong

factor in the adherence to non-pharmaceutical interventions

during COVID-19. Here we will delve into this aspect more

closely by examining the states with the most extreme values for

“PctTrump State 2016”. The five states with the highest

“PctTrump State 2016” values were West Virginia, Wyoming,

Oklahoma, North Dakota and Kentucky. The five states with the

lowest “PctTrump State 2016” values were Maryland, New York,

Hawaii, Vermont and California. We will refer to these two sets

of states as HighTrump and LowTrump states respectively.

Figure 6 shows the observed and predicted values of the two

behavioral variables in the HighTrump and LowTrump states

TABLE 2 Evaluation of R-PVA models for predicting daily mask wearing.

Mask Wearing Number of Predictors Self-Efficacy Average RMSE Average R
2

R-PVA-mask-1 1 (smoothed_whh_cmnty_cli) no 0.10 0.22

R-PVA-mask-2 2 (+ PctTrump State 2016) no 0.06 0.75

R-PVA-mask-3 6 no 0.04 0.86

R-PVA-mask-4 6 yes 0.03 0.93

TABLE 3 Evaluation of R-PVA models for predicting daily social distancing.

Daily Distance Difference Number of Predictors Self-Efficacy Average RMSE Average R
2

R-PVA-distance-1 1 (smoothed_wcli) no 0.13 0.20

R-PVA-distance-2 2 (+ trump_approval_feb2020) no 0.10 0.53

R-PVA-distance-3 3 no 0.09 0.62

R-PVA-distance-4 3 yes 0.09 0.62

R-PVA-distance-3a 9 no 0.14 0.06

R-PVA-distance-4a 9 yes 0.14 0.05
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FIGURE 6

R-PVA prediction of daily behavior during COVID-19: (a) observed proportion of mask wearing and proportion predicted by R-PVA-mask-4, and

(b) observed daily social distancing difference and behavior predicted by R-PVA-distance-3, for 10 U.S. states over the first three waves of

COVID-19. The top row shows the LowTrump states (5 states with the lowest proportion voting for Trump in 2016) and the bottom row shows

the HighTrump states (5 states with the highest proportion voting for Trump in 2016).

FIGURE 7

Dampened oscillation of Rt. The values of Rt are plotted against Rt + 7, where t is in days. Figure panel titles are U.S. state abbreviations.
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over time. The predicted values were obtained from the best

performing models of the two behaviors (R-PVA-mask-4 and

R-PVA-distance-3). In general the predicted values tracked the

observed values fairly closely. LowTrump states showed a higher

proportion of mask wearing behavior and a larger decrease in

distance travelled compared to the pre-COVID baseline. For

mask wearing, the values in HighTrump states fluctuated but

exhibited an overall upward trend over time, whereas the values

in LowTrump states showed less fluctuation, possibly because the

proportion of mask wearing was already fairly high in those

states. For difference in daily distance, the values in both

HighTrump and LowTrump states displayed more variations

than those for mask wearing, perhaps another factor contributing

to the lower performance of the social distancing models, when

compared to the mask wearing models. For most states, the

difference in daily distancing progressed in an S-shape,

increasing steadily till around day 80 and then decreasing till

around day 280 when it started to rise again, drastically in some

cases. These inflection points roughly corresponded to the end of

the first wave (and start of the second wave) of COVID-19 and

FIGURE 8

Daily behavior as a function of Rt: (a) Rt vs. proportion of mask wearing 7 days later, and (b) Rt vs. social distancing 7 days later. A spiraling increase in

the adoption of mask wearing can be observed in many cases as time progresses in (a), whereas the pattern is more erratic in (b). Figure panel titles are

U.S. state abbreviations.
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the vaccine roll out at the end of the third wave. The HighTrump

states had smaller decreases in distance travelled, but with slightly

more variation than LowTrump states, and in some states there was

even an increase in distance travelled compared to the pre-

COVID baseline.

7 Discussion and conclusion

We investigated the use of Regional Psychologically Valid

Agents, built upon the ACT-R cognitive architecture, to model

two behaviors of non-pharmaceutical interventions of COVID-

19. The R-PVA models performed better with mask wearing

than with difference in social distance. At first glance, the two

behaviors could be expected to have similar signatures.

However, we note that while (increasing or decreasing) social

distancing was a modification of a pre-existing construct, mask

wearing was, for most of the population in the US, a novel

behavior. Modifying an entrenched behavior is perhaps more

prone to “relapse” than adopting a new behavior. Another

possible dimension is that while mask wearing (including mask

wearing in an ineffective way) is arguably compatible with

most daily activities, increase in social distancing is harder to

maintain in some situations, for instance birthday parties,

which would induce people to sidestep the requirements for

social distancing more often than for mask wearing. Figure 7

shows the evolution of Rt + 7 as a function of Rt seven days

earlier that exhibits a signature temporal phenomenon

observed in virtually all regions: a damped oscillation pattern

around Rt = 1. Figure 8a is a plot of Rt vs. mask wearing 7 days

later, and Figure 8b is a similar plot of the evolution of Rt vs.

the difference in social distance 7 days later. Compared to the

corresponding plot of Rt vs. mask wearing (Figure 8a), Rt vs.

social distancing (Figure 8b) showed a more erratic

relationship to the combination of Rt and time, indicating

possible short-term relapses in social distancing. In addition,

the upward spiral progression in Figure 8a suggests a self-

efficacy component. The same pattern was not apparent for

social distancing, suggesting that perhaps a different

supplementary mechanism was at work. This was borne

out by the results that self-efficacy contributed to better

performance of R-PVA-mask-4, but not to the performance

of R-PVA-distance-4.

Computational cognitive modeling is typically used in

modeling individual cognition. In our research we have

extended these modeling techniques to make time series

predictions of decisions and behaviors that affect pandemic

dynamics. Psychologically Valid Agents are needed for

improved infectious disease control. They can help shape the

course of human behavior response in more precise and less

burdensome ways and aid in the development of new

technologies for scenario modeling and mitigation efforts. This

approach based on a unified theory of human cognition

promises generalizability and deeper understanding of at-scale

interactions between human behavior and pathogens and we

recommend the approach for modeling the intricacies of the

human mind as a foundation for future success in

mitigating pandemics.
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