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Background: Evidence is limited on the impact of temperature variability (TV) on

health in low-and-middle-income countries (LMICs), such as South Africa. This

study examined the association between TV and cardiovascular disease (CVD)

and respiratory disease (RD) mortality in five South African cities.

Methods: Daily mortality and meteorological data in five South African cities

(Bloemfontein, Cape Town, Durban, Johannesburg, and Gqeberha) were

collected from Statistics South Africa and the South African Weather Service

for the period 2006–2016. TV was calculated as the standard deviation of the

daily minimum and maximum temperatures over the exposure period. City-

specific risks were estimated using quasi-Poisson regression models combined

with distributed lag nonlinear models, adjusting for potential confounders.

A meta-analysis was then conducted to pool the overall estimates across

cities. Additionally, stratified analyses by age group and sex were performed to

assess effect modification.

Results: A total of 213,875 cardiovascular and 114,887 respiratory deaths were

recorded in the five cities during the study period. The risks with increasing TV

were higher for RD mortality as compared to CVD mortality. The pooled

estimates showed the highest and significant increase in RD mortality of 1.21

(95% CI: 1.04;1.38) per an increase in TV at 0–2 days from the 25th to the

50th percentile for all ages combined. The elderly appeared more vulnerable

to RD mortality than <65 years age group, with significant mortality risks per

increase in TV at 0–2 days (RR = 1.18, 95% CI: 1.04; 1.32),0–3 days (RR = 1.16,

95% CI: 1.04; 1.28) and at 0–7 days (RR = 1.12, 95% CI: 1.02; 1.22) from the

50th to the 75th percentile. A stratified analysis showed the elderly and

women as more vulnerable. The pooled results across the five cities suggested

no statistically significant TV effect on CVD mortality.

Conclusion: This study found a short-term association between temperature

variability and respiratory mortality, especially among elderly individuals and

women, in five South African cities. No significant effect was observed for

cardiovascular mortality. The findings support targeted public health strategies

that account for temperature-related risks in vulnerable populations.

KEYWORDS

temperature variability, cardiovascular disease, respiratory disease, mortality, time-

series, DLNM, South Africa

TYPE Original Research
PUBLISHED 03 June 2025
DOI 10.3389/fepid.2025.1553553

Frontiers in Epidemiology 01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fepid.2025.1553553&domain=pdf&date_stamp=2020-03-12
mailto:u10202146@tuks.co.za
https://doi.org/10.3389/fepid.2025.1553553
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fepid.2025.1553553/full
https://www.frontiersin.org/articles/10.3389/fepid.2025.1553553/full
https://www.frontiersin.org/articles/10.3389/fepid.2025.1553553/full
https://www.frontiersin.org/articles/10.3389/fepid.2025.1553553/full
https://www.frontiersin.org/articles/10.3389/fepid.2025.1553553/full
https://www.frontiersin.org/journals/epidemiology
https://doi.org/10.3389/fepid.2025.1553553
https://www.frontiersin.org/journals/epidemiology
https://www.frontiersin.org/


1 Introduction

Non-communicable diseases (NCDs) are globally regarded as a

cause of premature death (1, 2). Cardiovascular and chronic

respiratory diseases are among the top five NCDs that were

prioritized to reduce the global burden of mortality and

morbidity at the third United Nations High-Level Meeting on

NCDs (3). A total of 71% of deaths that occur globally are

attributable to NCDs, with 85% of these deaths occurring in low-

and middle-income countries (LMICs) due to poor infrastructure

and inadequate adaptation and mitigation strategies (4–7). In

2017, 57.8% of all deaths in South Africa were attributed to non-

communicable diseases (NCDs). Among these, diseases of the

circulatory system [classified under codes I00–I99 of the

International Classification of Diseases, 10th Revision (ICD-10)]

accounted for 18.4% of all deaths, while diseases of the

respiratory system (ICD-10 codes J00–J99) accounted for 9.5% (8).

Most global climate-related studies have focused on the health

impacts of increases in mean temperatures, paying relatively little

attention to the health effects of temperature variability (TV), which

refers to short-term fluctuations in ambient temperature (5, 9, 10).

Climate change not only causes an increase in average temperatures

but also leads to greater fluctuations in temperature with its

associated extremes (10–12). Climate variability refers to the natural

variations in climate patterns that occur over time, both on a

regional and global scale. It includes variations in meteorological

variables such as temperature, rainfall, and wind patterns (13).

Natural factors, such as changes in solar radiation or volcanic

activity, or anthropogenic factors, such as land use or greenhouse

gas emissions, are both considered as drivers of climate variability,

and eventually, climate change (13, 14).

To date, the impact of TV indicators on health outcomes in

South Africa had been investigated in only two time-series

epidemiological studies (15, 16). In the first study, the effects of

various meteorological variables, including diurnal temperature

range (DTR), on hospital admissions due to pneumonia in two

government public hospitals in the Limpopo Province were

investigated. The results indicated that an increase in pneumonia

hospitalizations is significantly associated with an increase in DTR

(an indicator of TV) (16). In the second study, the health effects of

the composite index of inter- and intraday TV on CVD and RD

hospital admissions in private hospitals in Cape Town were

investigated. The researchers observed significant associations

between an increase in TV and an increase in hospital admissions,

even after controlling for several confounders (15). The limitations

of these studies include their region-specific focus, relatively small

sample sizes, and shorter study periods, which limit the

generalizability of the findings to other parts of South Africa.

Furthermore, one study used DTR as an exposure variable, which

is another limitation as a multi-country study ascertained that the

effects of TV last for several days before exposure which is not

captured by DTR (10). Therefore, using an inter- or intraday TV

index (such as DTR) might underestimate the risks of TV on

health outcomes. While DTR captures within-day temperature

variation, it does not reflect between-day fluctuations or the

cumulative impact of temperature variability over several days.

These warrant more epidemiological studies assessing health risks

associated with climate change and variability in South Africa.

Consequently, the present study aims to extend the current

knowledge on the health effects of climate variability and change in

South Africa by examining the association between TV and CVD

and RD mortality in five South African cities (namely

Bloemfontein, Cape Town, Durban, Johannesburg, and Gqeberha).

Secondly, stratification by age and sex was performed to identify

potential effect modifiers of the association between TV and mortality.

2 Methods

2.1 Data collection

Daily count data of CVD and RD deaths for the five cities were

obtained from Statistics South Africa (Stats SA) for the 11-year study

period from 1 January 2006 to 31 December 2016. The mortality

data were classified using the International Classification of Diseases,

10th Revision (ICD-10), based on the primary cause of death: RD

(ICD-10: J00–J99) and CVD (ICD-10: I00–I99). All deaths, whether

occurring in hospitals or in the community are legally required to be

registered. Cause-of-death information is typically certified by a

medical practitioner, or in the case of non-hospital deaths, by

forensic or traditional practitioners. Stats SA codes and manages

death records through its national civil registration and vital statistics

system. While national coverage of death registration is relatively

high (>90%), some variation in the completeness and accuracy of

cause-of-death reporting may exist across regions (8). Meteorological

data for the five cities were obtained from the South African Weather

Service (SAWS) and included hourly temperature (°C) and relative

humidity (%), recorded at ground-based weather stations. These

stations were primarily located at major airports near the urban

centers and were selected based on their proximity to the city (within

20 km) and the completeness of their data records. The locations of

these stations are displayed in Figure 1.

2.2 Study design and location

For this study, a time-series epidemiological approach was

followed. As a study area, five South African cities located in

different Köppen-Geiger climatic zones were included:

Bloemfontein, Cape Town, Durban, Johannesburg, and Gqeberha.

These cities represent a range of climatic conditions across the

country. Bloemfontein falls within the BSh zone (hot semi-arid),

characterized by low annual rainfall and hot summers. Cape Town

is classified as Csb (warm-summer Mediterranean climate), with

dry, warm summers and cool, wet winters. Durban lies in the Cfa

zone (humid subtropical climate), marked by hot, humid summers

and mild, moist winters. Johannesburg is situated in the Cwb zone

(subtropical highland climate with dry winters), experiencing warm

summers and cool, dry winters. Gqeberha (formerly Port

Elizabeth) lies in a transitional zone, primarily Cfb (temperate

oceanic climate), with relatively uniform rainfall throughout the

year and mild temperatures. The geographic location of these cities
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is shown in Figure 1. These cities were also selected since they are the

most populated cities in the country. They are therefore

representative of the different climatic conditions experienced in

South Africa with adequate data to justify the research.

2.3 Exposure definition

Temperature variability (TV) refers to short-term fluctuations

in ambient temperature that may exert additional stress on

human health, beyond the effects of mean or extreme

temperatures alone. Multiple definitions of TV exist in literature,

depending on data availability, temporal resolution, and the

epidemiological context (10, 17, 18). Consistent with Guo et al.

(10) we defined TV as the standard deviation (SD) of the daily

minimum and maximum temperatures over a given exposure

window to capture both intra- and inter-day variation. For

instance, TV at 0–1 day was calculated as the SD of the daily

minimum and maximum temperatures on the day of the health

outcome and the preceding day. Similarly, TV at 0–2 days

included data from the day of the event and the two preceding

days, and so on, up to a 7-day exposure window (TV 0–7).

2.4 Statistical analysis

Previous studies have often assumed a linear relationship

between temperature variability (TV) and health outcomes (10,

18, 19). In contrast, our model comparison using Akaike’s

Information Criterion (AIC) supported a non-linear distributed

lag structure, indicating that the association between TV and

mortality was non-linear and exhibited delayed effects in all five

cities. To estimate these associations, we employed a two-stage

analytical approach, combining a distributed lag non-linear

model (DLNM) with a quasi-Poisson generalized linear model to

account for overdispersion in mortality counts. This modeling

strategy has been widely applied in multi-city and multi-country

time-series investigating temperature-related health effects, such

as hospital admissions or mortality (10, 20, 21).

In the first stage, city-specific estimates of CVD and RD

mortality risks were obtained using the following model:

E( log (Morti) ¼ aþ cb(TV0�i)þ cb(Tmeant,i)

þ ns(timei, 11� df )þ s(RH, 3)þ ldowi � sintl

þ dowi � costþ dpubi

FIGURE 1

Geographic locations of Cape Town, Bloemfontein, Durban, Johannesburg, and Gqeberha in South Africa. The link for the Koppen Geiger

Classifications shapefile were downloaded from http://stepsatest.csir.co.za/climate_koppen_geiger.html and the boundary shape file was acquired

from the Municipal demarcation Board of South Africa (https://dataportal-mdb-sa.opendata.arcgis.com/).
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Mort indicates the daily count of CVD or RD mortality in a city,

while cb(TV0�i) denotes the cross-basis matrix of TV and its lag

structure in the DLNM, which differed from city to city and

health outcome (CVD or RD). Refer to the appendix

(Supplementary Tables A1 and A2) for details of the specifications

of the cross-basis function for each city. Three internal knots were

placed at equally spaced TV percentiles (25th, 50th, and 75th) and

for the lag structure, two internal knots at log values plus an

intercept. The median (50th percentile) was selected as the

reference value of the TV exposure variable to calculate

the relative risks. The TV mortality association was reported at the

25th percentile, 75th percentile and 99th percentile relative to

the reference value. ns(timei, 11� df ) denotes a natural cubic

spline for calendar time to control for long-term and seasonal

trends with df degrees of freedom for each year in the study

period. The degrees of freedom ranged from four to eight for

CVD models, and from five to nine for RD models. s(RH, 3)

denotes the natural cubic spline function applied to relative

humidity (RH) with 3 degrees of freedom, allowing for a flexible,

non-linear relationship between RH and the health outcome

cb(Tmeant,i) denotes a cross-basis function to account for the

delayed and nonlinear effects of daily mean temperature. Similar

to previous studies, a natural cubic spline with four degrees of

freedom was used for the daily mean temperature and to capture

the lags over time up to 21 days (10, 18, 21). The models included

an indicator variable for the day of the week (dowi) and public

holidays (pub) which considered public holidays as well as other

important events (e.g., election days).

Additionally, to account for potential variations in the day-of-

the-week (dow) variables due to seasonal fluctuations, the model

included cost and sint variables with yearly cycles. These

variables were supplemented with interaction terms involving the

day-of-the-week variables [Equations (1) and (2)] (22).

cost ¼ cos
time� 2� p

365:25

� �

(1)

sint ¼ sin
time� 2� p

365:25

� �

(2)

To obtain pooled effect estimates for the association between

temperature variability (TV) and cause-specific mortality, we

conducted a two-stage meta-analysis. In the first stage, city-

specific relative risks (RRs) and 95% confidence intervals (CIs)

were estimated for each TV exposure window (0–1 to 0–7 days)

and TV percentile level (25th, 75th, and 99th), using the 50th

percentile as the reference. A fixed-effect model was used when

between-city heterogeneity was statistically insignificant

(Cochran’s Q test p≥ 0.1), while a random-effects model was

applied when heterogeneity was present (p < 0.1), thereby

accounting for differences in local contexts across the five cities.

Additionally, to explore potential effect modification, stratified

meta-analyses were conducted by age group (<65 years and ≥65

years) and sex (females and males).

Sensitivity analyses were conducted to evaluate the robustness of

the city-specific model estimates. First, we extended the lag structure

of the temperature cross-basis function from 21 to 28 days to assess

whether the selected lag period sufficiently captured delayed

temperature effects. Second, we varied the degrees of freedom (df)

for the temperature spline between 3 and 6 to examine the impact

of model flexibility on effect estimates. Third, to address potential

concerns of overadjustment, we removed the seasonal sine and

cosine terms and their interaction with day-of-week from the

model and re-evaluated the associations. All statistical analyses

were conducted using the mvmeta package in R (version 4.2.2,

The R Foundation for Statistical Computing, Vienna, Austria).

3 Results

3.1 Descriptive statistics

This study analyzed mortality and meteorological data from five

South African cities between 2006 and 2016. Table 1 presents the

summary statistics of respiratory and cardiovascular disease

mortality counts stratified by age group and sex, alongside the

mean (±SD) values of key meteorological variables across the five

South African cities included in the analysis, with percentages

shown in parentheses. A total of 213,875 cardiovascular disease

(CVD) and 114,887 respiratory disease (RD) deaths were recorded.

Durban reported the highest CVD mortality (62,623), while

Bloemfontein had the lowest (15,348). For RD deaths,

Johannesburg recorded the highest count (34,584), and Gqeberha

the lowest (12,517). CVD mortality was higher among individuals

aged ≥65 years across all cities, reaching 62.3% in Cape Town. In

contrast, RD mortality was more common among those under 65

years, particularly in Durban (71.0%) and Bloemfontein (73.7%).

Female mortality slightly exceeded male mortality for CVD in all

cities, while RD deaths were more evenly distributed by sex. Mean

temperature ranged from 16.0 ± 6.15 °C in Bloemfontein to

21.0 ± 3.19 °C in Durban. Gqeberha (Port Elizabeth) had the

highest humidity (75.2 ± 9.11%), and Bloemfontein had the highest

short-term temperature variability (TV0–1: 9.93 ± 2.43 °C).

Figure 2 shows clear seasonal trends in daily temperature and

temperature variability across all cities.

3.2 City specific estimates

The complex associations between CVD and RDmortality and TV

(based on 0–1 days TV exposure) are illustrated in the three-

dimensional plots shown in Figures 3, 4. The 50th percentile of TV

level was applied as the reference level. The mortality risks associated

with an increase in TV (for different exposure days) from the 50th to

the 99th percentile, after adjusting for the confounders, are shown in

Figures 5, 6. In general, greater CVD effects appeared at short

exposure durations (0–1 day). The elderly and females were more

vulnerable to die from CVD in most of the cities, except for Cape

Town and Gqeberha. Delayed CVD risks were observed for males in

Johannesburg. CVD risks were higher in Gqeberha compared to the
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other cities. In general, there were positive associations between TV and

RD mortality in all the cities and the effects appeared to last until 0–7

days exposure durations. The elderly were more vulnerable to die from

RD in Bloemfontein, Cape Town, and Johannesburg. Females were

more vulnerable to RD deaths in Bloemfontein and Durban, while

males were more vulnerable to RD deaths in Cape Town and

Johannesburg. RD risks did not differ by age or sex in Gqeberha,

while RD risks were generally higher in Bloemfontein and

Johannesburg as compared to the other cities.

3.3 Meta-analysis

The pooled results across the five cities suggested no statistically

significant TV effect on CVD mortality. However, in general, the

elderly and females were exposed to high CVD mortality risks with

increasing TV (Supplementary Table A3). Table 2 presents the

pooled relative risks (RRs) and 95% confidence intervals (CIs) for

RD mortality associated with temperature TV across different

exposure windows (0–1 to 0–7 days), stratified by age group (<65

and ≥65 years) and sex (females and males). In general, positive,

and immediate RD mortality risks associated with TV at different

reference points (25th, 75th and 99th percentiles) were observed for

all ages combined, and the risks remained positive for up to 0–7

days. An increase in RD mortality risks (RR = 1.21 95% CI: 1.04,

1.38) per TV (at 0–2 days exposure duration) increase from the

25th to 50th percentile observed for all ages combined. After

stratification by age, statistically significant RD mortality risks per

TV increase from the 50th to the 75th percentile were observed for

the elderly at 0–2 days exposure duration (RR = 1.18, 95% CI: 1.04,

1.32), at 0–3 days0–2 days exposure duration (RR = 1.16, 95% CI:

1.04, 1.28) and 0–7 days 0–2 days exposure duration (RR = 1.12,

95% CI: 1.02, 1.22). In general, the elderly were exposed to a higher

RD mortality risk, compared to the adults (<65-years). Stratification

by sex showed that the RD mortality risks differed by sex, refence

points, and lags. For example, higher risks of RD mortality per TV

increase from the 50th to the 75th percentile were observed at short

exposure durations (0–1 days) for females (RR = 1.18 95% CI: 0.85,

1.50) while protective effects were observed for males (RR = 0.99,

95% CI: 0.85;1.13). In general, RD mortality risks were higher for

males at long exposure durations and females had higher risk at

short exposure durations.

4 Discussion

In this study distributed lag non-linear models, combined with

quasi-Poisson generalized linear models were used to examine the

exposure-response association and delayed effects between TV and

mortality in five South African cities, located in different Köppen-

Geiger climatic zones. The relationship between TV and mortality

was found to be non-linear, deviating from the linear assumptions

TABLE 1 Summary statistics of respiratory and cardiovascular disease mortality counts by age group and sex, as well as mean (±SD) of meteorological
variables, in five South African cities. Values in parentheses represent percentages.

City Bloemfontein Cape Town Durban Johannesburg Gqeberha

Respiratory disease

Total 13,298 24,417 30,071 34,584 12,517

Age group

<65 9,796 (73.7%) 12,588 (51.6%) 21,361 (71.0%) 23,489 (67.9%) 7,805 (62.4%)

≥65 3,493 (26.3%) 11,768 (48.2%) 8,604 (28.6%) 10,794 (31.2%) 4,701 (37.6%)

Sex

Male 7,017 (52.8%) 13,450 (55.1%) 15,764 (52.4%) 18,239 (52.7%) 6,650 (53.1%)

Female 6,262 (47.1%) 10,895 (44.6%) 14,266 (47.4%) 16,093 (46.5%) 5,845 (46.7%)

Cardiovascular disease

Total 15,348 60,654 62,623 51,653 23,597

Age group

<65 6,899 (45.0%) 22,811 (37.6%) 27,529 (44.0%) 24,562 (47.6%) 10,408 (44.1%)

≥65 8,442 (55.0%) 37,791 (62.3%) 35,007 (55.9%) 26,907 (52.1%) 13,179 (55.9%)

Sex

Male 7,073 (46.1%) 29,214 (48.2%) 29,278 (46.8%) 25,182 (48.8%) 10,603 (44.9%)

Female 8,260 (53.8%) 31,377 (51.7%) 33,308 (53.2%) 26,258 (50.8%) 12,977 (55.0%)

Meteorological variables (Mean ± SD)

TV 0–1 day 9.93 ± 2.43 5.72 ± 1.91 4.88 ± 1.81 6.57 ± 1.39 5.29 ± 2.00

TV 0–2 day 9.52 ± 2.11 5.57 ± 1.56 4.75 ± 1.57 6.34 ± 1.21 5.18 ± 1.70

TV 0–3 day 9.36 ± 1.94 5.53 ± 1.36 4.71 ± 1.44 6.27 ± 1.12 5.14 ± 1.53

TV 0–4 day 9.28 ± 1.82 5.52 ± 1.22 4.69 ± 1.37 6.23 ± 1.07 5.13 ± 1.42

TV 0–5 day 9.23 ± 1.74 5.52 ± 1.11 4.68 ± 1.32 6.22 ± 1.03 5.13 ± 1.34

TV 0–6 day 9.20 ± 1.68 5.52 ± 1.03 4.67 ± 1.28 6.21 ± 1.00 5.13 ± 1.29

TV 0–7 day 9.18 ± 1.62 5.52 ± 0.971 4.67 ± 1.25 6.21 ± 0.981 5.13 ± 1.24

Temperature 16.0 ± 6.15 17.1 ± 3.85 21.0 ± 3.19 16.6 ± 4.33 17.6 ± 3.16

Humidity 53.4 ± 16.4 72.3 ± 9.95 73.8 ± 8.53 54.8 ± 19.1 75.2 ± 9.11

TV, emperature variability (from 0–1 day to 0–7 day’s exposure); SD, standard deviation. Proportions in parentheses refer to percentages within each disease category (age or sex breakdowns).
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employed in earlier studies conducted in various settings such as

China, Europe, and the United States (10, 23). Although studies

utilizing intraday (e.g., diurnal temperature range) and interday

variability have also applied non-linear models (19, 24, 25), our

findings reinforce the importance of applying flexible methods

such as DLNM, particularly when exploring multiple lag

structures and complex exposure–response curves. In line with

prior studies, the effects of TV appeared to last up to 0–7 days

after exposure (10, 26, 27), which emphasizes the need to assess

several lengths of TV and lags. In this study, the mortality risks

did not increase with exposure days. Similar to Tian et al. (27),

the highest risks were observed at 0–1 day of exposure. The

elevated risks observed at short durations (lags) in this study,

may also reflect mortality displacement (harvesting), where

vulnerable individuals such as the elderly or chronically ill die

slightly earlier due to stress induced by temperature variability.

This phenomenon has been documented in prior heat-related

mortality studies and should be considered when interpreting the

transient nature of the effects (28).

The mortality risks varied across the five cities, with high risks

observed in inland cities, especially in Bloemfontein, which denotes

a semi-arid region. Similar to findings from a previous study

conducted in the semi-arid regions of China, females in

Bloemfontein exhibited a higher vulnerability to respiratory disease

(RD) mortality associated with temperature variation (29). Inland

cities tend to experience high TV due to physiographic factors,

such as lack of oceans or seas, which act as moderating influences

on temperature (30). People might experience discomfort due to

abrupt fluctuations in temperature throughout the day and

between days, primarily because they lack adequate physiological

and behavioral adaptations to cope with such changes (31).

Individuals in coastal areas were more vulnerable to mortality

following prolonged exposure to TV, such as Durban which

experiences higher average temperatures, in contrast to the findings

reported by Guo et al. (10) where acute mortality risks were

observed in warm areas. Further research is needed to better

understand the differential impacts of temperature variability on

mortality between inland and coastal areas.

FIGURE 2

Time series distribution of TV and daily mean temperature for the five selected cities at short time lags (0–1 day) and longer time lags (0–7 days).
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Consistent with global studies (23, 32), RD mortality risks

associated with TV were generally higher than those for CVD.

However, the results contradict the results of a recent study

conducted in Cape Town which found higher risks of CVD

hospital admissions as compared to RD admissions (15). The

observed differences may be attributed to the demographic

characteristics of the study populations and the nature of health

outcomes assessed. For instance, the recent study focused on

hospital admissions among private hospital patients, whereas the

present study assessed mortality outcomes in the general

population. Hospital admission data may capture less severe

cases or a subset of the population with better healthcare access,

while mortality data reflects more severe health outcomes.

Furthermore, although several TV exposure durations were

assessed in both studies, different modeling approaches were

used. The underlying mechanisms explain why increased

temperature variability may lead to elevated mortality risks,

particularly among certain vulnerable subgroups that remain

poorly understood and warrant further investigation in

future research.

The elderly population were likelymore susceptible to TV, which is

similar to findings from previous studies. This might be due to the

degenerating thermoregulatory system linked with ageing (10, 27,

33), but also to the higher prevalence of chronic conditions, such as

diabetes, cardiovascular disease, and hypertension, which can amplify

physiological stress during temperature fluctuations. These

underlying conditions may also interact with TV in younger age

groups living with comorbidities, although this requires further

investigation. Furthermore, subgroup analysis showed that females

were generally more affected by TV, which is consistent with

previous studies (34, 35). Females are often considered more

vulnerable to temperature changes due to a combination of

physiological and societal factors. Physiologically, hormonal

fluctuations related to the menstrual cycle, particularly the effects of

estrogen and progesterone can influence core body temperature,

vasodilation, and sweating responses, potentially altering

FIGURE 3

Three-dimensional graphs illustrating the exposure–lag–response relationship between short-term temperature variability (TV), based on 0–1 day

exposure, and CVD mortality in five South African cities during the period 2006–2016. The x-axis represents TV (°C), the y-axis represents lag in

days (up to 21), and the z-axis shows the estimated relative risk (RR) of CVD mortality. The 50th percentile of TV was used as the reference value.
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thermoregulation and increasing susceptibility to environmental

stressors (36). Socially, gender-based differences in occupational

exposure, clothing norms, caregiving responsibilities, and healthcare

access may exacerbate this vulnerability, particularly in low- and

middle-income countries where women often face structural barriers

to health services and adaptive capacity (2, 5). Together, these factors

may increase the risk of temperature-related adverse outcomes in

females, especially in socioeconomically and climatically vulnerable

settings. In addition, hormones, such as estrogen, can influence how

the body perceives temperature. Fluctuations in estrogen levels during

the menstrual cycle may contribute to varying temperature sensitivity

in women (35). Furthermore, occupational exposures are also likely

to influence vulnerability to temperature variability, with outdoor

workers potentially at greater risk (5). Also, adaptation strategies like

improved housing, access to cooling or heating, and early warning

systems can reduce the health impacts of temperature variability

(4, 5), especially in vulnerable communities. Furthermore, behavioral

practices such as hydration, or clothing, which may influence

individual vulnerability to temperature variability. Future research

should consider these factors to better understand how people adapt

to fluctuating temperatures. These factors are important modifiers

of heat-related health risks (5) and should be considered in

future research.

This study has some specific strengths. Firstly, this is the first

multi-city study focusing on the relationship between TV and

mortality in South Africa, using a composite index of intra- and

interday variability (10). Secondly, most of the studies that used

the compositive index of TV assumed the association between

TV and mortality to be linear (10, 18, 19). In the present study,

the non-linear and delayed effects of TV at different exposure

days were investigated. Thirdly, cause-specific, age-specific, and

sex-specific mortality was investigated. Fourthly, to test the

robustness of the results, a range of sensitivity analyses were

performed (Supplementary Figures A1–A10 in the appendix).

This study also has some limitations. Firstly, this study was

conducted at the population level using city-wide average

FIGURE 4

Three-dimensional graphs illustrating the exposure–lag–response relationship between short-term temperature variability (TV), based on 0–1 day

exposure, and RD mortality in five South African cities during the period 2006–2016. The x-axis represents TV (°C), the y-axis represents lag in

days (up to 21), and the z-axis shows the estimated relative risk (RR) of RD mortality. The 50th percentile of TV was used as the reference value.
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meteorological data. As such, exposure misclassification may be a

source of bias, since temperature and humidity can vary within

cities due to local environmental conditions, urban heat islands, and

individual behaviors. Secondly, the cities included in the study are

in urban areas and therefore, the results might not be generalizable

to rural areas. Even within urban settings, people’s living

conditions, access to healthcare, and types of work can affect how

temperature variability impacts health. These differences matter, and

future studies should consider including socio-economic factors and

rural areas to better understand who is most at risk. Remote

sensing data, such as satellite-derived temperature, could improve

spatial resolution by capturing local microclimates, especially

between urban and rural areas. Though not used here, it may

benefit future studies. However, the cities were in different Köppen-

Geiger climatic zones. Thus, the results can be generalized to areas

with similar climatic conditions. Thirdly, air pollutants which are

known to confound heat and health associations were not

controlled due to the availability of adequate data. However,

previous studies found little to no effect of air pollutants on the

overall results (15, 37). Fourthly, stratification by season was not

performed. Lastly, while this study focused specifically on

temperature variability as an exposure, it is important to distinguish

TV from other climate-related stressors such as heatwaves and cold

spells. Heatwaves and cold spells are acute extreme events that tend

to cause short-term spikes in mortality, whereas TV reflects

frequent and irregular fluctuations in temperature that can lead to

more sustained physiological stress. Prior studies have shown that

both types of exposure are associated with increased health risks,

but through potentially different mechanisms and time frames (38,

39). Future research should consider comparing these exposures

within the same analytical framework to better understand their

relative and combined impacts on mortality.

FIGURE 5

Estimated effects of temperature variability (TV) on cardiovascular disease (CVD) mortality by age group, sex, and overall population at different lag

periods: (A) 0–1 day, (B) 0–3 days, (C) 0–5 days, and (D) 0–7 days of exposure. Relative risks (RRs) and 95% confidence intervals (CIs) are

presented for each city, comparing the 99th percentile of TV to the 50th percentile (reference level). Estimates are stratified by age.
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Given the increasing global frequency and intensity of

temperature extremes, as recently projected by García-León et al.

(39, 40), urgent integration of environmental risk factors like TV

into epidemiological surveillance and public health strategies is

essential, especially in vulnerable regions like southern Africa (3).

Future research should further standardize and compare different

TV metrics to isolate the most predictive measures and inform

targeted public health interventions.

5 Conclusion

This study advances the knowledge of mortality risk factors in

South Africa. The study found a positive association between TV

and mortality. The increased risks of death due to TV highlight

the importance of assessing the health effects of other indicators

of climate change, and not only focusing on mean temperature.

However, little to no statistically significant effects of TV on

CVD mortality were observed, with the elderly and females more

vulnerable. Significant RD mortality risks were observed at the

national level. Furthermore, the elderly were more vulnerable to

RD mortality; in terms of sex in general, females were more

vulnerable. Further research can provide a more comprehensive

understanding of the mortality risks associated with TV

exposure, allowing for more targeted and evidence-based policies

and interventions. This study could help policymakers and

clinicians to inform public health strategies and clinical practices

aimed at reducing mortality rates and improving the overall

health of the population, especially among vulnerable groups, like

the elderly and females.

FIGURE 6

Estimated effects of temperature variability (TV) on respiratory disease mortality by age group, sex, and overall population at different lag periods: (A)

0–1 day, (B) 0–3 days, (C) 0–5 days, and (D) 0–7 days of exposure. Relative risks (RRs) and 95% confidence intervals (CIs) are presented for each city,

comparing the 99th percentile of TV to the 50th percentile (reference level). Estimates are stratified by age.
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TABLE 2 Meta-analysis of the relative risks of the association between RD mortality and TV. Models were adjusted for day of the week, public holiday,
time, daily mean temperature and relative humidity.

Exposure Percentiles Respiratory mortality

All ages <65 ≥65 Females Males

TV0−1 Lowa 1.04 (0.90;1.18) 1.06 (0.86;1.27) 0.91 (0.77;1.05) 0.90 (0.78;1.02) 0.96 (0.83;1.08)

Highb 0.99 (0.85;1.13) 1.11 (0.84;1.38) 1.04 (0.89;1.19) 1.18 (0.85;1.50)d 0.99 (0.85;1.13)

Extreme highc 0.99 (0.76;1.23) 0.98 (0.78;1.18) 1.12 (0.84;1.39) 1.04 (0.65;1.43)d 0.99 (0.76;1.23)

TV0−2 Lowa 1.21 (1.04;1.38)* 1.22 (0.94;1.50) 0.99 (0.77;1.21) 0.87 (0.64;1.09) 1.18 (0.96;1.39)

Highb 1.05 (0.94;1.17) 1.03 (0.91;1.16) 1.18 (1.04;1.32)* 1.00 (0.88;1.13) 1.05 (0.94;1.17)

Extreme highc 1.04 (0.85;1.22) 0.95 (0.78;1.11) 1.12 (0.91;1.35) 0.90 (0.70;1.25) 1.04 (0.85;1.22)

TV0−3 Lowa 1.18 (0.92;1.45)d 1.05 (0.84;1.25) 1.02 (0.71;1.34) 0.91 (0.66;1.55) 1.17 (0.93;1.41)

Highb 1.03 (0.92;1.13) 1.04 (0.90;1.19) 1.16 (1.04;1.28)* 0.98 (0.86;1.10) 1.03 (0.92;1.13)

Extreme highc 1.01 (0.79;1.22) 0.99 (0.82;1.15) 1.09 (0.88;1.31) 1.08 (0.69;1.46)d 1.01 (0.79;1.22)

TV0−4 Lowa 1.13 (0.94;1.33) 1.00 (0.80;1.20) 0.98 (0.68;1.27) 0.92 (0.68;1.16) 1.07 (0.84;1.29)

Highb 1.00 (0.90;1.09) 1.00 (0.93;1.08) 1.07 (0.97;1.17) 1.01 (0.91;1.11) 1.00 (0.90;1.09)

Extreme highc 0.95 (0.77;1.33) 0.96 (0.80;1.12) 1.07 (0.85;1.29) 1.02 (0.69;1.34)d 0.95 (0.77;1.13)

TV0−5 Lowa 1.12 (0.99;1.25) 1.05 (0.85;1.24) 1.10 (0.80;1.40) 0.98 (0.75;1.21) 1.14 (0.92;1.36)

Highb 1.00 (0.91;1.10) 1.03 (0.91;1.15) 1.09 (0.98;1.19) 1.05 (0.93;1.16) 1.00 (0.91;1.10)

Extreme highc 0.98 (0.80;1.15) 0.96 (0.81;1.10) 1.07 (0.89;1.26) 1.02 (0.70;1.33)d 0.98 (0.80;1.15)

TV0−6 Lowa 1.06 (0.93;1.20) 1.03 (0.83;1.22) 1.07 (0.77;1.36) 0.96 (0.72;1.20) 1.11 (0.89;1.34)

Highb 1.01 (0.93;1.09) 1.04 (0.94;1.14) 1.05 (0.96;1.14) 1.01 (0.92;1.09) 1.01 (0.93;1.09)

Extreme highc 1.02 (0.87;1.16) 0.93 (0.81;1.05) 1.07 (0.91;1.24) 0.96 (0.66,1.27)d 1.02 (0.87;1.16)

TV0−7 Lowa 1.05 (0.92;1.18) 0.99 (0.79;1.79) 1.02 (0.73;1.32) 0.93 (0.70;1.17) 1.07 (0.85,1.29)

Highb 1.05 (0.97;1.14) 1.09 (1.02;1.17)* 1.12 (1.02;1.22)* 1.10 (0.95;1.25)d 1.05 (0.97;1.14)

Extreme highc 1.00 (0.85;1.14) 0.91 (0.78;1.03) 0.99 (0.83;1.16) 0.90 (0.72;1.07) 1.00 (0.85;1.14)

TV-temperature variability at different exposure windows (0–1 day to 0–7 days).
aLow TV exposure = 25th percentile compared to the reference level at the 50th percentile.
bHigh TV exposure = 75th percentile compared to the reference level at the 50th percentile.
cExtreme high TV exposure = 99th percentile compared to the reference level at the 50th percentile.
dHeterogeneity among the cities was suggested by a p-value < 0.1 from the test for heterogeneity. These cities were analyzed by random effects.

*Statistically significant p-value < 0.05.
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