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This paper summarizes several presentations in the Thresholds in Epidemiology
and Risk Assessment session at the Monticello III conference. These
presentations described evidence regarding thresholds for particles, including
asbestos and silica, and cancer (e.g., mesothelioma) and noncancer (e.g.,
silicosis) endpoints. In the case of exposure to various types of particles and
malignancy, it is clear that even though a linear non-threshold model has
often been assumed, experimental and theoretical support for thresholds exist
(e.g., through particle clearance, repair mechanisms, and various other aspects
of the carcinogenic process). For mesothelioma and exposure to elongate
mineral particles (EMPs), there remains controversy concerning the
epidemiological demonstration of thresholds. However, using data from the
Québec mining cohort studies, it was shown that a “practical” threshold exists
for chrysotile exposure and mesothelioma. It was also noted that, in such
evaluations, measurement error in diagnosis and exposure assessment needs
to be incorporated into risk analyses. Researchers were also encouraged to
use biobanks that collect specimens and data on mesothelioma to more
precisely define cases of mesothelioma and possible variants for cases of all
ages, and trends that may help define background rates and distinguish those
mesotheliomas related to EMP exposures from those that are not, as well as
other factors that support or define thresholds. New statistical approaches
have been developed for identifying and quantifying exposure thresholds, an
example of which is described for respirable crystalline silica (RCS) exposure
and silicosis risk. Finally, the application of Artificial Intelligence (AI) to
considering the multiple factors influencing risk and thresholds may
prove useful.
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Introduction

Risk assessors have criticized epidemiologists for failing to

account for threshold effects in data analyses, indicating that the

incorporation of thresholds is needed to make epidemiology

more policy-relevant (1).

With respect to arguments that have been made in favor of

linear, no-threshold models of cancer risk, it has been suggested

that given the usually incomplete understanding of the

underlying biological reasons for the existence of background

cases, it is hard to refute the possibility of additivity to this

background and hence induction of responses at even the lowest

doses. A resulting policy perspective is that—to be precautionary

—lack of thresholds should be presumed to ensure safety from

effects for which low-dose risks cannot be firmly refuted (2).

However, the reason that an increasing dose-response pattern

is observed for various types of cancers (i.e., higher cancer

incidence at higher exposures) has traditionally been thought of

as due to one of two basic causes:

• Stochastic events: In a stochastic event, an event either does or

does not happen, the site of action is specific, and an

accumulation of “hits” precipitates the toxic response. This

term is generally used in reference to genotoxic carcinogens,

with the “hits” being somatic mutations and a malignancy

is generated when any cell acquires a set of such mutations

that cause it to behave as a malignant cell. Because the all-

or-none events are possible from single molecules (albeit

increasingly unlikely at lower exposures), a threshold would

generally not be expected.

• Tolerance distributions: Individuals at risk vary in their

abilities to tolerate stresses or damage, and higher doses

exceed the individual thresholds of an increasing fraction of

the population, leading to more responses. This term has

generally been applied to noncancer toxicity, and a

threshold of insufficient collective effect to cause adverse

reactions is often assumed.

It is useful to consider that the above distinction hinges on how the

agent affects its targets:

• If individual molecules (or fibers) affecting individual cells

generate a critical effect, then the stochastic event model

should describe the process, with potential target cells either

affected or not in an all-or-none way, the probability of

which (but not the magnitude) is a function of dose.

Whether or not the event happens in cell “A” is

independent of what happens in nearby cell “B.” That is,

the concentration of the causative agent is only affecting the

probability that events happen, but the events are

independent of one another.

• If the critical effect instead depends on the collective impact of

all the units of the agent (molecules or fibers), then

the tolerance distribution model applies. That is, the

physiological reaction is related to the concentration of the

causative agent, which varies continuously and has an effect

that varies in magnitude dependent on its level. Each
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individual molecule (or fiber) of the causative agent is only

generating a small fraction of the total response, but it is

the sum of these small amounts that has consequences, not

each individual molecule’s individual actions.

In sum, the distinction is between the probability of all-or-nothing

localized events precipitating the adverse change vs. the collective

sum of all the small events’ consequences exceeding some

tolerable level (3–5). Both of these mechanisms have thresholds

and suggest that if thresholds are not found in dose-response

curves in epidemiology studies, they are likely obscured for

various reasons.
The biologic basis for thresholds in
carcinogenesis

There are many examples of thresholds in normal biology and

therapeutics. For example, humans need oxygen to live, but

exposure to 100% oxygen (O2) can cause blindness (retrolental

fibroplasia) in premature babies (6) and lung damage in adults

(7). In addition, the presence of thresholds can be inferred by

the numerous defense mechanisms in cells, such as DNA repair,

immune response, metabolism, and others, that protect against

adverse responses.

With respect to carcinogenesis, it is known that several genetic

alterations are required for cancer formation, DNA replication

fidelity is not 100%, cancer arises from a stem cell population,

cancers are clonal, and carcinogenesis is stochastic process

(8–10). Thus, there are essentially only two ways to increase the

risk of carcinogenesis: increase the rate of DNA damage per cell

division or increase the number of cell divisions. With respect to

the latter, this can be a result of an increase in cell births via

direct mitogenesis or toxicity and regeneration, or a decrease in

cell deaths by inhibiting apoptosis or cell differentiation.

Cohen (9) and Cohen et al. (8) demonstrated that there are

several modes of action for human carcinogens, including

immunosuppression, estrogenic activity, DNA reactivity, and

increased cell proliferation. The mode of action for asbestos in

mesothelioma has not been fully established in toxicology, with

various hypotheses proposed [e.g., (11)]. Asbestos is not DNA

reactive, immunosuppressive, or estrogenic, so its mode of action

will be cytotoxicity with regenerative proliferation. Consistent

with this is the recent proposal by Carbone et al. (12), who

argued that asbestos/fiber carcinogenesis occurs because of the

chronic inflammatory process that is induced in mesothelial cells,

accompanied by the secretion of HMGB-1 proteins that

“activates autophagy…that helps mesothelial cells survive

asbestos exposure.” If the Carbone hypothesis is correct, there are

several threshold-based stages in mesothelial carcinogenesis. In

particular, the inflammation itself requires an exposure threshold

to become chronic (13). Also, a threshold in mesothelioma can

be observed from the balance between the intensity of

inflammation and the intensity of the cell survival proteins,

which are secreted because of the exposure (and potential

mechanical damage that rigid asbestos fibers can produce in

the cells).
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Even without accepting the HMGB-1 hypothesis, we can argue

that, if the mode of action of asbestos is cytotoxicity with

regenerative cell proliferation, this process would also require

exposure above a threshold dose for the development of disease.

Thus, no excess in cancer incidence is expected if the dose is

below a threshold. A prototypic example is chloroform (14), which

causes liver and kidney cancers in rodents via cytotoxicity/

regeneration at very high exposures. High doses of chloroform are

also toxic to the human liver and kidney, but only at the high

doses used in anesthesia; there is no evidence that chloroform

causes cytotoxicity at the much lower exposures occurring through

drinking water. In the same vein, asbestos requires a threshold.

Unlike chloroform, however, one must account for accumulation

of asbestos over time. A typical reaction to particulates in the lung

at high exposures will lead to cytotoxicity, inflammation, and

reparative regeneration, with a threshold dose-response.
Issues with mesothelioma diagnoses

Diagnostic error for mesothelioma can contribute to

misclassification of risk in either direction, and much of the

historical cohort and case-control study data that informs on risk

did not use pathology validation, relying instead on death

certificate data and hospital records. Where pathology was

available, it relied histologically mainly on Hematoxylin and

Eosin (H & E) staining. More recent studies were improved by

the advent, in the late 1990s, of immunohistochemical (IHC)

markers of mesothelial cell origin, although these vary in

sensitivity and specificity, as do markers of differential diagnoses

including various carcinomas metastatic to the pleura. This

gradual evolution and improvement in certainty of pathology

diagnosis attributable to IHC advances is described elsewhere

(15). Current standard international pathology practice for both

morphology (using H & E) and IHC is maintained by the

International Mesothelioma Interest Group (16).
Statistical issues in identification and
estimation of thresholds from
epidemiological data

Occupational epidemiology studies clearly demonstrate

increased risk of silicosis among workers exposed to respirable

crystalline silica (RCS); however, few have quantified with any

precision the exposure thresholds at which risk significantly

increases. For example, evidence from the German Porcelain

Workers Study, in which silicosis cases were defined as those with

B-reader International Labour Organization (ILO) scores ≥1/1,
suggested thresholds for both cumulative and average exposures

based on simple Cox proportional hazards analysis by exposure

categories (17). However, there were only 40 silicosis cases (18)

and analysis by categories is fraught with challenges, including

introduction of differential exposure misclassification (19, 20).

Using these data, Morfeld et al. (21) applied a likelihood profile

estimation procedure for Cox regression analyses and estimated the
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best-fit average exposure intensity threshold but detected no

threshold using estimated cumulative exposure; confidence

intervals (CIs) were obtained using a bootstrap. This work was

extended by application of segmented Cox regression that

provided a maximum likelihood estimate and CI for the best-

fitting threshold. In the new analysis, silicosis cases were defined

as having ILO scores ≥1/0 and were each matched to four

controls. RCS exposure was based on estimated annual average

intensity for each worker over their first two and five years of

employment, as comparing the effects of continuous and discrete

exposures tended to be highest in the first several years of

employment, as well as cumulative exposure over their entire

employment (22). While applying such a threshold-seeking

analytical approach returns the exposure value (and 95% CI) at

which risk of the event statistically significantly departs from no

excess risk [i.e., hazard ratio (HR) = 1.0], as well as coefficients

(i.e., slopes) for modeled segments before and after the threshold

estimate, it does not inform the shape of the dose-response

function between the reference (typically the lowest exposure)

group and the estimated threshold. It is unlikely a straight line;

however, it also may be inestimable, as very few cases typically

are observed below the threshold, as would be expected if the

threshold estimate is accurate. The cases with very low associated

exposure likely reflect exposure misclassification (22).

When segmented regression (any regression model) is used to

identify a threshold (or complex shapes), a qualitatively and

quantitatively incorrect exposure-response shape and threshold

may be reported if measurement error is ignored. This was

illustrated in simulated data that mimics a Québec cohort of

miners and millers, and the relationship that may exist within

that population between exposure to dust and fibers. It was

argued that it is impossible to draw conclusions about the shape

of the exposure-response and a threshold without quantitatively

adjusting for measurement error in exposure and allowing for

such thresholds to exist within the statistical model. Developing

accessible statistical methods that do this would constitute an

important advance on current practices in epidemiology.
A practical example

In their seminal paper estimating lung cancer and

mesothelioma asbestos risks, Hodgson and Darnton (23)

asserted, “Direct statistical confirmation of a threshold from

human data is virtually impossible.” This is inarguably true but

does not mean that there is no threshold.

Direct observation of human exposure and disease within an

epidemiology study could provide evidence of a generally “safe

level of exposure”—a practical rather than a statistical concern.

A review of exposure and disease in Québec chrysotile miners,

millers, and factory workers; their families; and their neighbors

can be used as an example of the kinds of analyses—and

problems—that are possible.

The Québec chrysotile mining area can be subdivided into

three areas. The first area, known in the literature as “Asbestos,”

is near the town of that name, which was recently renamed “Val
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des Sources.” It is better referred to as the “Jeffrey Mine,” which is

the only mine in the area and the world’s second largest chrysotile

mine. Also located in the town of Asbestos was a factory, operated

by Johns-Manville, that used crocidolite asbestos in some of the

products manufactured there.

The second and third areas, often referred to collectively as the

“Thetford Mines,” are two sets of a number of mines each, located

between 60 and 100 km northeast of the Jeffrey Mine. Although

these are usually referred to as a single group, they are best

looked at separately as

A. The originally exploited mines, such as “Bell”—the “original

complex.” This “localized area of five mines (Area A)” have

highest tremolite content (24, Chatfield et al., submitted), and

B. The third area, usually referred to as within “Thetford Mines,”

consists of about 15 mines farther away from that town and

its original complex (Area A) at Thetford Mines. This third

area has been called “Area B” (24) or the “peripheral

complex” (25).

The team led by the McDonalds at McGill University conducted

studies of Québec chrysotile miners, millers, and associated

factory workers starting in 1966 and were followed to the end of

1992 (25, 26). Thirty-three mesothelioma cases were identified

among male miners and millers exposed principally to chrysotile

and (possibly non-asbestiform) tremolite EMPs. A case-control

analysis within the Thetford Mines region reported a more than

two-fold excess for men who had worked at least 20 years in the

original complex of mines and mills with higher levels of

tremolite (25). At the Johns-Manville factory in Asbestos, where

all 708 employees were potentially exposed to crocidolite and/or

amosite, there were 553 deaths with five mesotheliomas—3.5

times higher than among the primarily chrysotile-exposed miners

and millers at the Jeffrey Mine, despite cumulative exposure an

order of magnitude lower.

Study of mesothelioma in miners, millers, and factory workers

was complicated by the fact that the mesothelioma diagnoses in five

cases was of low confidence and only of moderate confidence in 14.

In addition, six cases had worked there for five years or less and

had possible alternative asbestos exposures in other work.

After removing the low-confidence diagnoses and short-

duration cases from the analysis, 23 cases with all data available

remained for exploratory analyses for a practical threshold. These

analyses were run by Andrey Korchevskiy using data from

Dagbert (27) that were provided by Bruce Case; the original

midget impinger dust measurements had been provided by

Graham Gibbs to Dagbert (27). Dr. Korchevskiy’s preliminary

results, using those dust measurements, which were converted to

fibers/cc-years (f/cc-years) based on paired membrane filter

samples, with raw pair data obtained from Dagbert (27), showed

an average cumulative exposure in the cohort of approximately

500 f/cc-years, closely approximating L. Darnton’s estimated

average exposure of 600 f/cc-years (28). The 23 mesothelioma

cases had a greater mean exposure of over 1,000 f/cc-years, and

the lowest of the 23 had an estimated exposure of 135.7 f/cc-

years. Using chrysotile lung content where available (17 of the 23

cases), a “central tendency” of cumulative exposure to chrysotile
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at 148.8 f/cc-years was reported, but a CI is difficult to establish.

It is important to understand that these modelled exposure

estimates apply to a selective subsample of cases, and are

exploratory, but they do point to a “threshold” value of 100 f/cc-

years or greater, close to what others have estimated (29, 30).

Case et al. (31) examined ten women with mesothelioma

identified in the Québec mining areas among all female cases

(aged >50 years) diagnosed in Québec hospitals during 1970–

1989. No cases were identified around Asbestos (Jeffrey Mine);

all ten were near Thetford Mines. These were matched with 150

area controls. Five of the ten cases were found to be asbestos

workers and nine were living with asbestos workers. A complex

exposure reconstruction based on five data sources, as outlined

by Camus et al. (32), was used to estimate exposures for the ten

women, with a result averaging 226.1 f/cc-years (range: 84.5–

525.6 f/cc-years). Although the exposure estimation was

completely different, the results appear comparable with those

for the chrysotile miners and millers. Two women had lung fiber

content analyzed; both had crocidolite and amosite in their lungs

from occupational exposures in a small bag repair shop.

To summarize, based on the available data for mesothelioma

cases in the chrysotile mining areas of Québec, there was

minimal risk at well above the equivalent of 100 fibers total

EMP/cc. Sources of uncertainty, however, are many, including

the mesothelioma diagnosis itself, as well as the known issues

around exposure assessment. Further analysis will be necessary to

determine the degree of certainty with which comparisons

between chrysotile mining and milling cohort exposure values

can be compared with other cohorts. However, the relatively

small numbers of mesothelioma deaths, with fewer expected over

time, severely limits statistical modelling approaches.
Other theoretical and empirical
models

In addition to studies with the Québec cohort, there are several

other theoretical and empirical models of EMP exposures and

mesothelioma risk. These are described briefly below and in

more depth by Goodman et al.1

A theoretical model was proposed for the development of

mesothelioma in humans, assuming that several counteracting

factors are involved in the process, as in Carbone et al. (12). In

this model, the probability of mesothelioma depends on the

probability of inflammation, cell death because of cytotoxicity,

and induction of a process that promotes cell survival. Graphing

this model results in a hockey-stick-shaped curve, which has a

clear threshold.

Several models were tested on the epidemiological data for

mesothelioma in chrysotile cohorts. The original data analyzed
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by Darnton (28, 33) was expanded to include new data from the

International Agency for Research on Cancer for the Russian

miners and millers cohort. Statistical variability for the reported

datapoints was introduced to account for uncertainty in exposure

measurements and mesothelioma observations. The Monte Carlo

simulation was applied to the data to check if a linear threshold

model would fit the epidemiological information better than a

linear non-threshold model. The simulation study demonstrated

that 72% of fitted models confirmed the presence of thresholds

for chrysotile cohorts. The average threshold value of 25.6 f/cc-

years was found (95% CI: 24.2–27.1), with the 5th and 95th

percentiles being 3.3 and 52.9 f/cc-years, respectively.1

Also, the model previously developed by Korchevskiy and

Korchevskiy (34) was tested on the chrysotile epidemiological

data. It was demonstrated that a threshold-based model can be

combined with the Peto equations for the relationship between

mesothelioma mortality and age. The exposure intensity

threshold of about 2 f/cc was suggested, with a threshold

cumulative exposure of up to 90 f/cc-years.

We also note that Schaeffer et al. (35) developed a filter model

based on the Lagrangian Poisson Process for chromosome

aberrations from radiation exposure and applied it to other

carcinogens. Using this model with data for non-textile

chrysotile cohorts, the threshold model was again supported,

with a threshold level of 162 f/cc-years. Further studies are

needed to determine the threshold values for other mineral

types of fibers, but an established relationship between potency

factors would suggest a threshold for Libby amphiboles of

4.3 f/cc-years, for amosite of 1.04 f/cc-years, and for crocidolite

of 0.25 f/cc-years.1

A threshold is also demonstrated with empirical models based

on the Surveillance, Epidemiology, and End Results (SEER)

Program cancer data and asbestos consumption data. SEER is a

US-based cancer registry supported by the National Cancer

Institute (https://seer.cancer.gov/), and asbestos consumption

data are available from a US Geological Survey annual report of

domestic production and use of asbestos (36). Moolgavkar et al.

(37) originally modelled asbestos consumption and mesothelioma

risk using a two-stage clonal expansion model. This model was

modified and demonstrated a good fit with the inclusion of

a threshold.

Finally, with respect to environmental exposures, there are a

number of more qualitative studies of environmental exposures to

asbestos in the neighborhoods of asbestos mines and asbestos

cement plants that used crocidolite with chrysotile in pipe

manufacture. These include the area around the Kubota

asbestos cement plant in Japan (38), where mesothelioma risk

appears to be related to the distance from the plant as point

source. Similar findings were determined around the Casale

Monferrato plant and others in Italy (39, 40), and near the

Johns-Manville pipe plant and other asbestos industries in

Jefferson Parish, Louisiana (41). A classic example is work

showing mesothelioma cases arising after brief but possibly

intense exposures to crocidolite among those living near the

mine in Wittenoom, Western Australia (42, 43). Unfortunately,

none of these studies provide confident measures of actual
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exposure levels, none especially inform as to the presence or

absence of a threshold generally, and all apply principally to

crocidolite. It is also a mistake to generalize “environmental”

exposures as being “low-dose” exposures, as often they are not

(44). As such, results of these studies are not necessarily

inconsistent with threshold models.
A path to asbestos threshold
determination for mesothelioma
using biobanks

Determining thresholds of asbestos exposure that can lead to

mesothelioma is a complex and critical task, as it involves the

assessment of various factors, including asbestos types, fiber size,

duration of exposure, genetic susceptibility, and individual health

conditions. Traditional threshold-based exposure limits, such as

permissible exposure limits (PELs), are in place for occupational

safety, but they do not necessarily directly correlate with health

risks, such as mesothelioma. A multi-faceted approach to help

determine more accurate thresholds for asbestos exposure leading

to mesothelioma can be accomplished using the National

Mesothelioma Virtual Bank (NMVB) (https://mesotissue.org/) as

a foundation. Avenues of research and potential tools include:

• Longitudinal cohort studies: Researchers can conduct long-

term cohort studies involving individuals with documented

asbestos exposures. These studies can monitor the health of

exposed individuals over an extended period, collecting data

on the type and duration of exposure, as well as genetic

and health factors. These studies can also provide insights

into cumulative dose-response relationships and help

identify critical exposure thresholds.
Example Innovation: Visonà et al. (45) conducted a study

of an Italian cohort with lung fiber digests by scanning

electron microscopy/energy-dispersive x-ray spectrometry

(SEM-EDS). The authors reported that their results

indicate an asbestos threshold associated with lung

fibrosis, pleural plaques, and ferruginous bodies in

patients with mesothelioma.
• Advanced biomarkers and genetic profiling: Utilizing

advanced biomarker analysis and genetic profiling,

researchers can identify individuals with a higher

susceptibility to mesothelioma due to genetic factors.

Understanding asbestos exposure thresholds in

mesothelioma should be facilitated by DNA/RNA, protein,

epigenetic, and proteogenomic biomarkers. This

information can help refine exposure thresholds for

individuals with specific genetic markers that increase

their risk.
Example Innovations: ToxicoGenomica (https://www.

toxicogenomica.com/) and The Cancer Genome Atlas

Project provided public access to genomic data on 74

cases of pleural mesothelioma and were supplied by

hospitals and medical centers participating in the

NMVB. This analysis was published by Hmeljak et al.
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(46). In addition, miRNA studies have shown promise in

identifying cellular and diagnostic changes related to

asbestos in mesothelioma cell lines and resected surgical

tissues (47, 48).
○

• Artificial intelligence (AI) and machine learning: Researchers

can employ AI and machine learning algorithms to analyze

extensive datasets from individuals exposed to asbestos.

These algorithms can identify complex patterns and

interactions between various factors, including exposure

levels, duration, asbestos types, and genetic predisposition.

These advanced analytical approaches should be used in

synergy with traditional statistical methodologies and with

Bayesian (causal) discovery to address the complexity of

multidimensional datasets. The hope is that they can help

predict the impact of asbestos more accurately and identify

personalized thresholds. The promise in this area, however,

has yet to be realized.
○

Example Innovation: Karunakaran et al. (49) used

generative AI to make protein-protein interactions (PPI)

and genomic interactions understandable to translational

researchers with Wiki-Pi. The authors also discussed this

approach for genomic data interpretation with

ToxicoGenomica (see above) if the PPI pilot proves

promising for public genomic and proteomic data. Other

possibilities include deep learning using whole pathology

slide images of mesothelioma cases and using causal
E 1

thelioma patient record locations in the ENACT, NMVB, and PaTH/PCORnet da
ce: This map was generated using data from Visweswaran et al. (55), Morrato et
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discovery (advanced form of AI to query large

cohorts) (50).
• Multi-omics approaches: Data from genomics, proteomics,

and metabolomics can be combined to create a

comprehensive profile of how asbestos exposure affects an

individual’s biology. This approach may reveal subtle

molecular changes that precede mesothelioma, leading to

the identification of critical exposure thresholds.
Example Innovation: Resources include the Human

Atlas of Malignant Mesothelioma and Human

Mesothelioma Interactome (https://mesotissue.org/;

https://mesotheliomaspatialatlas.streamlit.app/; https://

hagrid.dbmi.pitt.edu/wiki-MPM/) (49, 51).
• Geographic and environmental factors: Researchers can

consider the geographic and environmental context of

asbestos exposure. Different regions have varying levels of

asbestos types and environmental factors that influence

mesothelioma risks [e.g., (39)]. Integrating geographical

data into the assessment may improve exposure

threshold estimates.
Example Innovation: Gao et al. (52) used industry and

occupational exposures of patients in the mid-Atlantic

region collected by the NMVB.
• Public health surveillance: A comprehensive public health

surveillance system that tracks mesothelioma cases,

including non-occupational cases, and links them to
ta sharing networks.
al. (56), Forrest et al. (57), and Amin et al. (58).
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exposure histories can be implemented. This system can

provide valuable data for setting exposure limits for various

scenarios. One approach would be to develop a National

Mesothelioma Patient Registry, which was the conclusion of

a Workshop held in 2018 (53).
○

Frontiers
Possible Innovation: Multiple researchers have noted that

the US is only country without a government-sponsored

national mesothelioma registry (52, 54).
Determining precise thresholds for asbestos exposure leading to

mesothelioma is a multi-faceted challenge, and it may require a

combination of these novel approaches to improve our

understanding and risk assessment capabilities. Collaboration

between scientists, healthcare professionals, regulatory agencies,

and the affected communities is essential to make progress in

this field. The NMVB provides a foundation for the formation of

a National Mesothelioma Patient Registry and can leverage

national Electronic Health Record (EHR) data sharing efforts (see

Figure 1), including the Evolve to Next-Gen Accrual to Clinical

Trials (ENACT) for Research (55, 56) and the Patient Centered

Outcomes Research Network (PCORnet) (57, 58).
Conclusions

One might ask whether there is any difference in protecting

human health and safety with a threshold vs. non-threshold

model. This concerns risk management actions that might be

based on the risk assessment’s findings, and so is beyond the

scope of this paper. We note, however, that it is preferable to

base risk management decisions on the soundest scientific

footing available. If risk management practice assumes no

threshold and infers risks at exposures below a true threshold,

then actions might be counterproductive, perhaps incurring

unnecessary costs and changing regulated processes such that

they entail greater exposures to other hazards.

Thus, while there remain skeptics, the evidence indicates there

are situations in which thresholds for asbestos and silica exist and

methods to establish them quantitatively should be better

developed. Researchers are urged to incorporate methodologies to

include the possibility of a threshold so that data will exist to

enable the setting of threshold-based standards where the data fit

threshold models.
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