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Introduction: Human behavior shapes the transmission of infectious diseases

and determines the effectiveness of public health measures designed to

mitigate transmission. To accurately reflect these dynamics, epidemiological

simulation models should endogenously account for both disease

transmission and behavioral dynamics. Traditional agent-based models (ABMs)

often rely on simplified rules to represent behavior, limiting their ability to

capture complex decision-making processes and cognitive dynamics.

Methods: Reinforcement Learning (RL) provides a framework for modeling how

agents adapt their behavior based on experience and feedback. However,

implementing cognitively plausible RL in ABMs is challenging due to high-

dimensional state spaces. We propose a novel framework based on Adaptive

Control of Thought-Rational (ACT-R) principles and Instance-Based Learning

(IBL), which enables agents to dynamically adapt their behavior using

nonparametric RL without requiring extensive training on large datasets.

Results: To demonstrate this framework, we model mask-wearing behavior

during the COVID-19 pandemic, highlighting how individual decisions and

social network structures influence disease transmission. Simulations reveal

that local social cues drive tightly clustered masking behavior (slope = 0.54,

Pearson r= 0.76), while reliance on global cues alone produces weakly

disassortative patterns (slope = 0.05, Pearson r= 0.09), underscoring the role

of local information in coordinating public health compliance.

Discussion: Our results show that this framework provides a scalable and

cognitively interpretable approach to integrating adaptive decision-making into

epidemiological simulations, offering actionable insights for public health policy.

KEYWORDS

infectious disease modeling, reinforcement learning, ACT-R, agent-based modeling,

cognitive modeling

1 Introduction

Disease transmission is influenced by both biological factors and human behavior. Public

health interventions–such as limiting social contact, promoting vaccination, and encouraging

mask-wearing–play a critical role in controlling its transmission. The COVID-19 pandemic, in

particular, revealed the challenges of understanding how populations respond to these

interventions and their effectiveness in mitigating transmission (1, 2). Although researchers

have created models to predict disease transmission and evaluate the effectiveness of these

interventions (3), there is a significant gap in understanding how adaptive behaviors

interact with social network structures and influence disease epidemiology (4, 5).
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Agent-based models are used to simulate individual

characteristics and interactions within populations, offering a

computational approach to studying emerging behaviors and

epidemiological dynamics. The COVID-19 pandemic

demonstrated the importance of incorporating adaptive decision-

making and changing preferences for social distancing and

vaccination, as these decisions significantly impact disease

transmission and the effectiveness of public health interventions

(3). However, many ABMs rely on simple, rule-based

representations of behavior that fail to capture the complexity of

human decision-making and cognition.

Reinforcement Learning (RL) is a computational framework

inspired by behavioral psychology, particularly operant

conditioning, that models how agents learn to make decisions by

interacting with an environment to maximize utility through

experience. In the context of human decision making, RL

provides a framework to understand and simulate how humans

learn from the consequences of their actions, adapt their

behavior over time, and make choices under uncertainty. RL is

particularly suited for decision-making in dynamic environments,

as it can represent mechanisms such as risk assessment, habit

formation, and goal-directed behavior. Despite these advantages,

incorporating cognitively plausible RL into agent-based

simulations is challenging. The high-dimensional state spaces

typical in ABMs require function approximators, such as neural

networks, to estimate expected utilities. However, these models

are often not interpretable, require training on large datasets, and

are computationally expensive.

To address these challenges, we propose a framework based on

Adaptive Control of Thought—Rational (ACT-R) principles and

Instance-based Learning (IBL). ACT-R provides a cognitively

grounded architecture for modeling human cognitive processes,

while IBL offers a non-parametric approach for learning and

decision-making. Our framework avoids the need for explicit

training phase and instead, dynamically adapts to new

information by leveraging past experiences stored in the

architecture’s memory. This enables agents to make decisions

that are both adaptive and cognitively interpretable, aligning with

human-like behavior.

We demonstrate the potential of this framework by applying it to

mask-wearing behavior during the COVID-19 pandemic. Mask-

wearing is an ideal intervention in which to study human behavior,

because it involves frequent individual decisions that can adapt to

changing circumstances. In contrast, decisions on lockdowns are

made collectively for large groups and vaccination decisions usually

occur annually. The model captures how individual decisions-

shaped by personal risk tolerance, peer conformity, and discomfort-

interact with social network structures to impact population-level

infection outcomes. Our experiments show that this approach offers

a scalable, flexible, and interpretable method for integrating data-

driven cognitive modeling into epidemiological simulations, which

can support public health policy-making.

The remainder of this paper is organized as follows. In

Section 2, we review background literature and related work on

epidemiological modeling, reinforcement learning, and cognitive

architectures. Section 3 presents the theoretical foundations of

our framework, outlining its statistical learning principles and

cognitive mechanisms. In Section 4, we apply the framework to a

case study on mask-wearing behavior during the COVID-19

pandemic. Section 5 reports simulation results examining how

behavioral adaptation and network structure shape infection

dynamics. Section 6 discusses the broader implications,

advantages, and potential extensions of the framework. Finally,

Section 7 concludes with limitations and future research directions.

2 Background and related work

Computational epidemiology combines multiple disciplines to

study disease transmission and evaluate public health

interventions (3). Effective policy analysis requires models that

integrate causal epidemiological and behavioral theories with

empirical data (6). Disease transmission in the real world

involves complex behavioral dynamics influenced by

demographics and the social norms (7). To address these

requirements, there is a need to integrate endogenous behavior

into epidemiological models of disease transmission (8–10).

While such integrated approaches have existed for over a decade

(11–15), the COVID-19 pandemic has resulted in renewed

interest, particularly in modeling how compliance with

interventions varies over time and its impact on disease

epidemiology (16). Many epidemiological simulations use

population-based models (PBMs), relying on differential

equations to represent disease transmission (17). While PBMs

can incorporate some population differences, they cannot capture

individual behaviors or complex social networks. When

combined with behavioral models, PBMs adjust disease

transmission rates at the population or group level, rather than

modeling how individuals adapt (18).

Sufficiently detailed behavioral simulations require a

framework where individuals interact across complex social

networks and make autonomous decisions as agents (19, 20).

This has prompted the development of sophisticated models with

deliberative agents, where variability in behaviors and decisions

can emerge due to differences in individual epidemiological

histories instead of only by aggregate-level group membership.

Agent-based models have become essential in computational

epidemiology to overcome the limitations of population-based

models (21–24). However, Agent-based models typically use

predefined rules to govern agent interactions and simulate

resulting behaviors. This approach may not capture the

emergence of complex and adaptable behaviors.

Reinforcement Learning (RL) provides a computational

framework for understanding how agents learn to make decisions

by trial and error to maximize rewards and minimize punishments

(25). Its relevance to human behavior and cognition emerged with

findings that RL algorithms mirror the activity of dopamine

neurons, which encode prediction errors to guide learning and

decision-making (26). These insights have been extended to explain

the role of the basal ganglia and dopaminergic systems in motor

control, habit formation, and reward-driven behavior (27, 28). By

integrating neural mechanisms, RL approaches provide a
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framework for modeling higher-level cognitive functions such as

planning, goal-directed behavior, cognitive control, and even

simulating the interactions between the prefrontal cortex and basal

ganglia (29, 30). Hierarchical RL approaches have further clarified

how humans organize actions into structured sequences to achieve

complex goals (31). Additionally, Bayesian extensions of RL have

provided a framework for understanding adaptive and maladaptive

behaviors, such as learned helplessness and the ability to infer

others’ goals through theory of mind (32, 33).

RL approaches to modeling human behavior are typically

applied to constrained state and action spaces, as these tasks are

often designed to test specific aspects of cognition and are

simpler in nature. However, agent-based simulations often

involve large, non-enumerable state spaces, posing significant

challenges for traditional RL methods. To address these

challenges, value or policy functions are often approximated

using parametric models such as neural networks, enabling Deep

RL to solve high-dimensional tasks like Atari games (34, 35).

In computational epidemiology, Deep RL has been leveraged

for various applications. For instance, (36) developed a deep

learning framework using recurrent and convolutional neural

networks to predict epidemiological conditions, such as patient

counts and activity levels, in time-series data, outperforming

traditional autoregressive models. Other studies have

demonstrated the ability of Deep RL to learn effective mitigation

policies under complex epidemiological conditions, across large

state and action spaces (37, 38). Bushaj et al. (39) developed a

Simulation-Deep Reinforcement Learning (SiRL) framework

which can suggest optimal interventions based on specific

epidemic situations and compare different vaccination strategies.

Beyond epidemiology, Deep RL has also been used along with

agent-based models to study social phenomena. For example, (40)

investigated the self-organizing dynamics of social segregation,

revealing how reward structures influence segregation patterns and

demographic distributions. Jäger (41, 42) proposed neural

networks as replacements for manually defined behavioral rules in

ABMs. Additionally, decision trees and random forests have been

explored for behavior modeling in ABMs. However, these

approaches face limitations, such as difficulties in ensuring realistic

decision-making when agents lack critical information or when

training environments differ significantly from application settings,

often requiring iterative retraining to address these gaps effectively.

As (43) noted, Deep RL methods rely on incremental

parameter adjustment through gradient descent. While effective,

this process requires small updates to preserve generalization and

avoid catastrophic interference, leading to slow learning (44, 45).

Furthermore, the weak inductive bias of neural networks allows

them to model a broad range of patterns but makes them highly

data-intensive and sample-inefficient (46). These limitations

result in Deep RL methods demanding orders of magnitude

more training data than humans for similar tasks (47), making

them less analogous to human learning and behavior.

Cognitive architectures provide a framework not only for

modeling behavior but also for capturing the underlying cognitive

processes and computational stages that drive decision-making.

ACT-R is a cognitive architecture that integrates modules for

memory, perception, and action to simulate human cognition (48).

ACT-R has been used to model phenomena such as learning,

fatigue, and goal-directed decision-making. Building on ACT-R

principles, Cognitive Instance-Based Learning [CogIBL; (49)]

enables non-parametric, instance-based function approximation,

offering a cognitively interpretable alternative to neural network-

based approaches. CogIBL has been used to model various aspects

of human behavior across a range of domains such as competitive/

cooperative games (50–53), cybersecurity (54, 55), and automated

malware/intrusion detection systems (56).

The framework was investigated independently by Blundell et al.

(57) and referred to as Episodic RL and was used to alleviate the

issues associated with the parametric form of Deep RL. It was

further extended to accommodate learned representations from

neural networks (58). Related to our work is the concept of

Psychologically Valid Agents (PVAs; (59–61)), which is based on

computational agents implemented within the ACT-R architecture

to simulate and analyze human behaviors in epidemiological

settings. PVAs incorporate heterogeneous input drivers, such as

media exposure and psychological traits, to model behavior

dynamics. However, these approaches have primarily focused on

regional dynamics rather than individual decision-making in large-

scale social networks. Similarly, (62) developed an ACT-R-based

model to simulate vaccination decisions influenced by personal and

social network experiences, but their approach did not leverage the

estimation capabilities and utility-based learning of ACT-R.

3 Cognitive framework

To address the aforementioned limitations, we build on this

prior work to develop a computational framework that combines

non-parametric machine learning, grounded in a cognitive

architecture, with agent-based simulations to enable real-time,

cognitively plausible decision-making. The machine learning

foundation allows the agents for statistical inference for data-

driven decision-making, instead of manually predefined rules.

The architecture’s non-parametric, instance-based properties

allow learning without distinct training and deployment phases,

making the framework both sample-efficient and adaptive.

Finally, the cognitive constraints provide interpretability and

links behavior to cognitive and psychological theories. In this

section, we describe the statistical learning foundations of the

framework, the architecture and the benefits of the approach.

3.1 ACT-R theory summary

ACT-R is a cognitive theory that models decision-making as a

production system operating over a declarative memory. The

architecture assumes that cognition is shaped to perform

optimally given the statistical structure of the environment, and

emphasizes activation-based processes for relating the production

system to the declarative memory. Different experiences in

declarative memory have different levels of activation which

determine their rates and probabilities of being processed by the

Mitsopoulos et al. 10.3389/fepid.2025.1563731

Frontiers in Epidemiology 03 frontiersin.org

https://doi.org/10.3389/fepid.2025.1563731
https://www.frontiersin.org/journals/epidemiology
https://www.frontiersin.org/


production rules. These mechanisms allow agents to make

decisions by retrieving information that is most relevant to the

current situation. According to ACT-R theory, knowledge is

divided into two distinct types:

• Declarative knowledge, which is stored in memory as structured

units called chunks. These chunks represent factual or

experiential knowledge that consists of: the input situation x

consist of contextual features xi (e.g., local and global infection

rates), the action a taken in that situation (e.g., whether to wear

a mask), and the utility value that resulted from that decision.

• Procedural knowledge, which is encoded as production rules—

symbolic if-then rules that govern behavior. Production rules

control the flow of cognition by triggering actions or subgoals

when specific conditions are met, and their utilities are

updated over time through reinforcement-like learning

mechanisms. This procedural component supports skill

acquisition, strategic planning, and the execution of multi-step

cognitive operations [as employed in (63–65)].

In this work, we focus exclusively on declarative knowledge, as we

do not aim to model skill learning or goal-oriented behavioral

sequences that require procedural knowledge. Instead, we rely on

declarative mechanisms to estimate the utility of actions based on

past experiences.

3.2 Statistical learning foundations

The core decision making component for each agent in our

simulations is based on the CogIBL which is a cognitive

framework implemented within the constraints of ACT-R

principles. Although developed independent of Statistical

Learning theory (66) and with utility-based learning in mind,

CogIBL fundamentally employs the same principles as Instance-

Based Learning [IBL; (67)], but adapts them to provide

cognitively interpretable mechanisms. IBL is a family of Machine

Learning algorithms that approximate functions based on

comparisons between new problem instances with similar

instances previously seen and stored in a memory module. This

is in contrast to other methods such as neural networks that

create abstract representations from specific instances.

Specifically, CogIBL is a linear smoother (68, 69) which is a non-

parametric1 instance-based learning function approximator.

Therefore, CogIBL can implement various types of learning

algorithms. These include Supervised Learning (SL), with

applications in regression and classification, and RL, which

facilitates utility-based learning for habitual behavior and with

additional modules (e.g., goal buffers) it can support goal-driven

behavior. Below, we outline the general statistical learning

capabilities of CogIBL, starting with SL as this provides the

regression mechanism which enables the utility function

approximation in the RL case.

3.2.1 Supervised learning capabilities
The premise of SL is to learn a function that maps input data to

corresponding outputs, based on provided examples of input-

output pairs. Given samples (xi, yi), i ¼ 1, . . . , N , where

xi ¼ (x1i , x
2
i , . . . , x

D
i ) is a D-dimensional vector of features with

x
j
i [ R for j ¼ 1, . . . , D, a linear smoother is an estimator for

the underlying regression function f (x) at an arbitrary point x0,

expressed as:

f̂ (x0) ¼
X

N

j¼1

w(x0, xj) � yj, (1)

where w(x0, xj) [ R are weights determined based on the

similarity function w between the query point x0 and each data

point xj in the dataset, and yj represents the corresponding

output. It is important to note that the estimator in Equation 1

directly minimizes the mean squared error between the predicted

values f̂ and true values y, as proven in Statistical Decision

Theory (70, 71). This is in contrast to parametric approaches

that require parameter estimation by minimizing the mean

squared error. Figure 1 illustrates a one-dimensional regression

example. To estimate the value ŷ of the underlying unknown

function for a new input x�, the smoother computes a weighted

average of the observed outputs. The weights are determined by

the similarity between the new input and the observed inputs,

with higher similarity resulting in greater weights.

For classification tasks, the target output yj is a discrete class

label. In this case, the linear smoother estimates the probability

of each class c at x0 by aggregating the contributions of

neighboring data points (Equation 2):

P̂(cjx0) ¼
X

n

j¼1

w(x0, xj) � I(yj ¼ c), (2)

where I(yj ¼ c) is an indicator function that equals 1 if yj belongs to

class c, and 0 otherwise. The predicted class is then determined as

the one with the highest estimated probability (Equation 3):

ŷ ¼ argmax
c

P̂(cjx0): (3)

This formulation allows linear smoothers to be applied for both

regression and classification tasks. Time dependencies can be

introduced into the framework either by adapting the similarity

function w(x0, xj) to account for temporal proximity or by

incorporating an additional parametric term, such as a weighted

sum of lagged values, creating a semi-parametric model. This

1Non-parametric in this context means that linear smoothers do not assume

a fixed functional form for the relationship between inputs and outputs,

instead deriving predictions directly from the data using weighted averages

of nearby observations. In contrast, parametric models make strong

assumptions of the functional form relating inputs and outputs (e.g.,

f̂(x0) ¼ bTx0 where b are coefficients estimated from the data.)
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modification enables the linear smoother to perform autoregressive

computations modeling explicitly temporal dynamics. Moreover,

the framework can be extended to handle non-linear

relationships by allowing the weights to depend on both inputs

and outputs, making the smoother non-linear with respect to the

outputs (unlike the standard case where weights depend only on

inputs and the smoother remains linear).

3.2.2 Reinforcement learning capabilities

RL focuses on optimizing an agent’s sequential decision-making

by maximizing cumulative rewards obtained through interaction

with an environment. We consider the standard RL setting, where

an agent interacts with an environment E over discrete time steps

to complete a task. At each time step t, the agent observes the

state st of the environment and selects an action at from a set of

possible actions A, following its policy p. The policy p is a

decision-making function that maps states st to actions at . After

taking the action, the agent transitions to the next state stþ1 and

receives a scalar reward rt . This process continues until a terminal

state is reached, after which the environment resets.

The goal of the agent is to maximize the expected return, defined

as the total accumulated reward over time Rt ¼
P

1

k¼0 g
krtþk, where

g [ (0, 1] is a discount factor that prioritizes immediate rewards

over future rewards. The expectation is taken over a trajectory of

states and actions generated by the agent’s interactions with the

environment. The value of a state s under a policy p is given by

the state-value function Vp(s) ¼ E[Rt j st ¼ s] which represents

the expected return when starting from state s and following

policy p. Similarly, the action-value function Qp(s, a) is

Qp(s, a) ¼ E[Rt j st ¼ s, at ¼ a], and quantifies the expected return

when taking action a in state s and subsequently following policy p.

A key challenge in RL is estimating the value function

especially in complex or continuous state-action spaces, such as

the ones in agent-based modeling. Directly enumerating all

possible states becomes infeasible, requiring the use of function

approximation to estimate the corresponding value functions.

Linear smoothers can approximate the action-value function

Q(s, a), where s represents the current state and a the action.

The estimator for Q(s, a) is derived by adapting (1) to

approximate rewards (or discounted returns):

Q̂(s, a) ¼
X

n

j¼1

w((s, a), (sj, aj)) � Rj, (4)

where w((s, a), (sj, aj)) are weights measuring the similarity

between the current state-action pair (s, a) and past instances

(sj, aj), and Rj is the observed reward associated with the j-th

instance. In multi-step sequential decision-making, we use the

FIGURE 1

Illustration of function approximation using smoothing. The red curve represents the estimated function, while the green dashed curve shows the true

sine function. The value ŷ is estimated at the new input x� ¼ 2:1 using a weighted average of observed outputs, where the weights are determined by

the similarity between x� and the observed inputs. The point (x� , ŷ) is indicated by the star symbol. The color bar indicates the normalized weights, with

higher weights assigned to inputs closer to x� .
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return, defined as the discounted sum of rewards accumulated over

a sequence of steps. The weights, as in SL, are determined using a

similarity function (e.g., a kernel) to ensure the estimation is

localized and data-driven. As mentioned, the estimator in

(Equation 4) minimizes the mean squared error between

predicted and true values of the value function. By using the

discounted return instead of the immediate reward, this approach

implicitly performs Q-learning with function approximation.

By having an estimation of the value function, an agent can use

a policy function to make informed decisions. A policy specifies the

agent’s strategy for selecting actions in the state it is in. One

common function for this purpose is the Boltzmann function:

P(ajs) ¼
ebQ(s,a)

P

a0 e
bQ(s,a0)

(5)

where b is the exploration-exploitation trade-off parameter,

balancing the choice between trying new actions (exploration)

and leveraging known rewards (exploitation). Lower values of b

encourage exploration by assigning nearly equal probabilities to

all actions, while higher values promote exploitation by favoring

actions with higher estimated rewards.

3.3 Cognitive instance-based learning

Now that we have established the statistical learning foundations

of our framework, we describe how these principles are implemented

in the CogIBL model. The CogIBL model is based on the idea that

decisions and behaviors have subjective utility (or value), such as

satisfaction or preference. When a behavior occurs in a situation

and produces an outcome, it is associated with a subjective

assessment of its value. Following ACT-R theory, these experiential

associations are stored in declarative memory as experiential

records (chunks) of decision-making situations, behaviors,

outcomes, and their values. Over time, this repository of

experiences forms the basis for implicit and explicit knowledge

about decision-making (72–74). It is assumed that when

individuals are faced with decisions, they draw from these stored

experiences, retrieving memories that align with current cues to

evaluate alternatives and decide on actions. This relies on ACT-R’s

memory retrieval and blending mechanisms. Retrieval uses

situation cues to recall past instances based on their recency,

frequency and similarity to the current situation. Blending

aggregates and generalizes across activated memories. By leveraging

instance-based knowledge the model is able to estimate

expectations of potential outcomes based on past similar situations.

A typical learning mechanism of an RL agent is Q-Learning

(75), which updates the Q-values using the following Equation 6:

Q(s, a) ¼ Q(s, a)þ a R(s, a)þ gmax
a0[A

Q(s0, a0)� Q(s, a)

� �

(6)

where a represents the learning rate, g is a discount factor for

future returns, and R(s, a) is the reward function. Here, s0

denotes the next state resulting from taking action a in state s,

and a0 [ A represents all possible actions in the next state s0.

The term maxa0[A Q(s0, a0) captures the maximum estimated

future reward obtainable from the next state s0. However, due to

the continuous nature of epidemiological simulations,

enumerating all possible states becomes infeasible. To address

this challenge, we employ CogIBL’s estimation capabilities to

approximate the action value function. This involves formulating

the problem as an RLFA task, where the estimation from

blending process minimizes the mean squared error between

received rewards and estimated rewards, as described in

Section 3.2.2.

In Figure 2 we describe in detail the computations that take

place in the CogIBL model. The model approximates the utility

for actions related to masking in three main steps:

1. Activations Computation: Each stored prior experience has an

activation At indicating its relevance to the current situation.

Activations, reflect the cognitive mechanism of memory

accessibility, modeling how prior usage and contextual

relevance influence information retrieval from the declarative

memory. This depends on two components, a temporal and a

contextual one:

a. The Base-level activation is the component of a memory

chunk’s activation that reflects how frequently and

recently that chunk has been used or retrieved. It is

defined as (Equation 7):

Bj ¼ ln
X

n

i¼1

(t � ti)
�d

 !

(7)

where n is the number of past retrievals of chunk j, t is

the current time (time of the retrieval attempt), ti is

the time of the i-th previous retrieval of this chunk,

and d is the decay parameter. Within ACT-R’s

cognitive architecture, each chunk of knowledge

accumulates “base-level activation” from previous

retrievals. This accumulation decays over time, so

chunks that were frequently or recently accessed are

more likely to be retrieved again quickly.

b. The Matching Score Mt(sT , st), measures the contextual

similarity between the current state sT and the stored

state st) based on a distance metric (e.g., cosine,

Euclidean distance etc).

The activation is a real-valued combination of these components

with stochastic noise et added, modeling stochastic memory

recall. In our implementation, we set Bt ¼ 0 and et ¼ 0 to solely

leverage the current context without historical biases or

randomness. It is worth noting that the Matching Score can

become more expressive by penalizing mismatches during the

matching process or by using scaling factors for each component

depending on the hypothesis being tested.

2. Retrieval Probabilities: Activations are normalized using the

softmax function, producing probabilities that weigh past

instances in the blending equation. These probabilities reflect
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the stochastic nature of memory retrieval, representing the

likelihood of accessing specific information based on its

activation level.

3. Blending: Decision output is the weighted average of past

decisions yt , weighted by their relevance to the current

situation via retrieval probabilities. This outcome minimizes

directly the mean squared error between model’s estimation

and observed output. The process reflects the cognitive

mechanism of generalization and interpolation, modeling

how the mind combines multiple pieces of information to

produce a composite response when exact matches

are unavailable.

This approach conceptually aligns with Deep Q-Learning (34),

where action values are estimated by a parametric neural

network that approximates the Q value function. However, our

framework alternatively leverages the non-parametric, instance-

based regression native to our cognitive architecture. This enables

cognitively-plausible RL within the agent-based modeling

simulation while preserving cognitive interpretation of the

emerging behaviors. Unlike parametric models, which explicitly

assume a specific (e.g., linear or non-linear) relationship between

global and local information, our non-parametric approach

makes no such assumptions, allowing for greater flexibility in

capturing complex interactions among state features. Moreover,

our model does not require a dedicated training phase; it can

generate estimations with just a few instances, either pre-defined

or acquired through experience.

4 Epidemiological case study

In this section, we demonstrate our framework with a case

study on masking behavior during the COVID-19 pandemic. We

develop a utility-based model where agents make decisions about

mask-wearing based on balancing competing preferences. Each

agent receives inputs about the global pandemic status, such as

infection rates, and the local status through the proportion of

infected individuals in their neighborhood. Decisions are driven

by a utility function integrating factors such as conforming to

neighbors’ behaviors, discomfort from extended mask usage, and

personal infection risk tolerance. By adjusting only the utility

parameters (keeping all other parameters fixed for consistency

and easier interpretation), and embedding agents in different

social network topologies, we can model how various motivations

shape behavioral patterns over time. Using the instance-based

learning properties of the cognitive architecture, agents learn

optimal behaviors by drawing on memories of past outcomes.

These simulations reveal how population-level infection dynamics

emerge from individual decisions influenced by varying

motivations and social structures. Our framework enables testing

of behavioral mechanisms driving protective measures and

evaluation of policies to promote public health compliance

during pandemics.

4.1 Agent-based modeling in epidemiology

We employ an agent-based SEIR (Susceptible, Exposed,

Infectious, Recovered) epidemiological model, where agents

transition through SEIR states. The infectious period includes

pre-symptomatic, symptomatic, and asymptomatic phases, with

geometrically distributed durations specified in Table 1. The

model runs on daily timesteps, with infection spreading between

neighboring agents on a transmission network. After recovery,

agents maintain immunity for 75 days before becoming

susceptible again. Most of these disease parameters represent

characteristics typical of potential pandemic pathogens and are

similar to early COVID-19 variants. We chose low immunity

duration, a high reproduction number, and a high masking

efficacy so that we could observe many waves of infection over a

relatively short simulation interval and so that we could observe

changes in epidemiological outcomes due to masking behavior.

FIGURE 2

An overview of the CogIBL processes. CogIBL theory argues that implicit expertise is gained through the accumulation and recognition of previously

experienced events. Events are stored in the Declarative Memory and are retrieved, weighted accordingly, in order to generate the model’s response.
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The network consists of nodes (agents) and edges (contacts

between agents), with edge weights representing daily

transmission probabilities. The primary network in our study is a

synthetic socio-centric graph of Portland, Oregon developed by

the Network Dynamics and Simulation Science Lab at Virginia

Tech (87). This dataset contains is a representation of daily social

interactions in an urban setting and has previously been used to

model infectious disease transmission dynamics (88). Due to

computational constraints, we reduced the network to

approximately 10,000 individuals using an iterative clustering

method that preserves key structural properties, such as degree

distributions and demographic mixing matrices. Alternative

networks, including random unweighted graphs and Barabási-

Albert Scale-Free graphs, were generated to explore the impact of

network topology on disease dynamics and learning processes

(for more details refer to the Supplementary Material).

We calibrated network transmission by scaling edge weights to

achieve a target basic reproduction number (R0). Each edge

between susceptible and infectious agents has a weight-based

probability of transmission, with masking reducing both infection

and transmission risks. Social network data may not include low

probability contacts—such as the small chance that a single

person infects each other person in a crowded public space like a

concert venue or supermarket. To capture these interactions, we

allocate 20% of the R0 to random mixing. For random mixing,

we calculate the expected number of infections based on the R0,

number of infected people, number of susceptible people, and

aggregate mask wearing behavior. We then randomly assign

these expected infections to susceptible individuals throughout

the network. This hybrid approach combining network and

random transmission captures both structured social contacts

and stochastic community transmission.

4.2 CogIBL implementation

We implement the CogIBL framework outlined in Section 3.3

as the core decision-making mechanism for our agents in the

mask-wearing problem. An illustration is depicted in Figure 3

and a detailed mapping of the framework concepts to their

implementation, including states, weights, and outputs, is

provided in Table 2. At every timestep t, agents perceive the

current state of the system sT ¼ (Mlocal, Ilocal, Iglobal) of the

proportions of masked Mlocal and infected neighbors Ilocal, and

the global proportion of infected individuals Iglobal, combining

local and global information from the disease transmission

network. The agent then compares current state sT with

previously stored instances st using the similarity function

M(sT , st) defined in Table 2. Based on this similarity, activations

are computed and normalized to derive retrieval probabilities,

which are then used to blend prior outcomes and estimate the

action-value function Q(s, a), which quantifies how preferable it

is for the agent to (un)mask given the current state of the

pandemic. After an action, the agent receives a reward based on

criteria described in detail in Section 4.4. In our implementation,

we pre-populate all agents’ memories with the true utility values

for the extreme cases (boundaries) of each state variable,

assuming that humans operate within similar known bounded

ranges. This initialization constrains agents’ interpolated utility

estimations and resulting actions to remain within reasonable

bounds, even at the start of the simulation.

4.3 Decision making

We hypothesize that agents do not extensively plan for the

longer-term future when deciding whether to wear a mask.

Instead, they assess criteria relevant to the present moment,

based on the local and global pandemic information they receive.

To capture this short-term reward optimization, we assume each

choice as an independent trial and set the reward discount factor

g ¼ 0 to make rewards dependent solely on the immediate state

rather than future states. Each agent follows the policy defined in

Equation 5. For our purposes it was set to b ¼ 5 so the agents

are leaning towards exploitation. We allow agents to change their

policies every 7 days.

4.4 Reward function

At every step, the agents receive a scalar reward value as

feedback for their action. We assume that mask-wearing is a

behavior that depends on a multitude of factors which have to

do with the internal reward system of each individual rather than

external factors. For this, we define an intrinsic reward function

TABLE 1 Epidemiological ABM parameters.

Variable Value Source

Disease state duration

Exposed 2 days Based on durations of early COVID-19 variants

(76–78)

Presymptomatic

infectious

3 days Based on durations of early COVID-19 variants

(76–78)

Symptomatic

infectious

8 days Based on durations of early COVID-19 variants

(76–78)

Asymptomatic

infectious

8 days Based on durations of early COVID-19 variants

(76–78)

Sterilizing immunity 75 days Shorter than typical COVID-19 immunity

periods so that we could observe many waves

over a short time (79)

Transition probabilities

Asymptomatic

proportion

0.2 Based on asymptomatic proportion of early

COVID-19 variants (80–82)

Disease transmission

Basic reproduction

number

5 Higher than typical COVID-19 reproduction

number so that we could observe many waves

over a short time (83, 84)

Random mixing

proportion

20% Accounts for low probability interactions

Initial exposed

proportion

1% Initial condition

Masking effectiveness 80% Higher than typical masking effectiveness, so

that we could observe changes in

epidemiological outcomes due to masking

behavior (85, 86)
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that we provide to agents based on evaluating their current state

and actions regarding mask-wearing decisions. This scalar utility

results from the weighted sum of three key reward components:

R(s, a) ¼ �w1 � DPþ w2 � CR þ w3 � RR (8)

The reward components are defined as follows:

• Discomfort penalty (DP): This penalty represents the relative

agent’s discomfort with mask-wearing. DP is defined as

DP ¼ �a

• Conformity reward (CR): This reward promotes an agent’s

conformity to the mask-wearing behaviors of neighboring

agents. CR is defined as CR ¼ 1� ja�Mlocalj where Mlocal
is the proportion of masked neighbors.

• Risk reduction reward (RR): This reward promotes an agent’s

perception of infection risk reduction from wearing masks. RR

is defined as RR ¼ a(1�mf )(c � Ilocal þ (1� c � Iglobal)),

where mf is the masking factor indicating the propensity of

virus transmission when an agent wears a mask (mf ¼ 0

means 0 probability of virus transmission), c a constant that

represents how much an agent values infections in its

neighborhood, and Ilocal and Iglobal the proportion of

infections in agent’s neighborhood and the whole

network respectively.

By tuning the relative weights of these utility factors, we can elicit

varying motivational drivers that produce emergent mask-wearing

behaviors. The agents learn probabilistic mask-wearing policies to

maximize their utility over time using the rewards from their

decisions in the changing pandemic environment.

5 Results

We analyze outcomes under different configurations of the

conformity, discomfort, and risk reduction weights composing

the mask-wearing utility function. Experiments compare two

underlying social network topologies over which the disease

simulation occurs. For each parameter combination and network,

simulations are initialized identically and run until conclusion of

the pandemic wave.

5.1 Modeling behavior

Figure 4 compares epidemic dynamics and masking behavior

in the Portland network under two behavioral scenarios. The

FIGURE 3

Example of agent’s decision-making in epidemiological ABM simulation.

TABLE 2 Mapping of concepts from the proposed framework to the actual
implementation of the mask-wearing decision-making problem.

Framework
concept

Implementation
details

Explanation/notes

Memory instances Stored experiential records

(chunks)

Represent decision-making

situations, behaviors, and

outcomes.

Inputs s st ¼ (Mloc, Iloc, Iglobal) Combines local mask-

wearing rates, local

infections, and global

infections.

Weights w(:) P ¼ softmax(At) Probabilities derived from

activations At .

Outcomes Rj R(st , at ) (Equation 8) Reward function evaluating

discomfort, conformity, and

risk.

Activation At M(sT , st ), Bt ¼ et ¼ 0 Similarity of memory

instances.

Decision policy p P(ajs) ¼ softmax(bQ(s, a)) Maps state-action pairs to

probability of masking.

Blending Q(s, a) ¼
P

j Pj � Rj(s, a) Weighted average of past

rewards.
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area plot shows the number of nodes in infectious states over time,

and the proportion of mask-wearing is shown as a line plot on a

secondary axis. The top panel shows the case where agents

incorporate both local and global information in their decision-

making. Here, masking behavior fluctuates more frequently, as

individuals respond to varying local infection levels in their

neighborhoods. These asynchronous behaviors lead to more

irregular epidemic waves. In contrast, the bottom panel shows

the evolution of the pandemic when agents respond exclusively

to global infection information. In this scenario, masking

behavior is highly synchronized across the network: once the

global signal crosses a threshold, agents tend to increase masking

in unison. This results in higher and more sustained masking

levels overall, producing smoother epidemic waves.

Figure 5A shows masking assortativity plots using the Portland

network for two conditions: the base case in which individuals

have access to local and global information and a scenario where

they can only observe the global state. These plots show how the

masking behavior of a node’s neighbors changes as a function of

that node’s behavior across the entire duration of the simulation.

The upward-sloping line for the local information condition shows

that masking is assortative: that masking behavior clusters together

with some regions of the network masking and other regions not

masking. The gradient of the line is 0.54, implying for each day an

agent spent masking, their neighbors will, on average, spend 0.54

days masking. The Pearson correlation coefficient is 0.76,

indicating that the vast majority of the variation in individual

masking behavior is captured by the behavior of neighbors (and

vice-versa). In contrast, under the global only condition

(Figure 5B), there is weak disassortativity, with gradient of 0.05

and a Pearson correlation of 0.09, suggesting that agents mask

largely independently of their neighbors. This difference in

behavioral coordination is reflected in epidemic outcomes: The

local+global condition yields a Final Epidemic Size (FES) of 36.1%,

a peak incidence of 523, and a time to peak of 19 days. Under the

global-only condition, the FES rises to 43.3%, peak incidence

reaches 544, and the peak occurs earlier at 18 days. Additional

simulation runs with varying parameter settings and their

corresponding outcomes (FES, peak incidence, and time to peak)

are reported in the Supplementary Material.

Coordination of masking behavior is real-world phenomena:

some communities have high levels of masking while others have

low levels of masking, even when facing similar pandemic

conditions. There was large variation in masking adoption across

FIGURE 4

Epidemic evolution in the Portland network under two behavioral scenarios. The top panel shows the case where agents respond to both local and global

information (c ¼ 0:8,w1 ¼ w2 ¼ 0:5,w3 ¼ 7:5). The bottom panel shows the dynamics when agents base mask-wearing decisions only on global infection

information (c ¼ 0:0, w1 ¼ 0:5, w2 ¼ 0:0, w3 ¼ 7:5). In each panel, the stacked area plot shows the number of agents in each infectious state

(Presymptomatic, Infectious Symptomatic, Asymptomatic), while the dashed black line represents population-wide mask-wearing probability over time.
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US states, and people rural areas tended to wear fewer masks than

those in urban areas (89). Differences in the adoption of

preventative measures can potentially lead to differences in

outcomes: such as the high case rates observed in rural areas

(relative to urban areas) (90). Agent-based network approaches

like the one we use in this paper are able to capture these local

variations, whereas population based approaches like system

dynamic models using differential equations, cannot.

6 Advantages and extentions of CogIBL
in epidemiological models with human
behavior

CogIBL was directly tailored for the specific application of

modeling mask-wearing behavior, but its versatility makes it

applicable to a wide range of scenarios. In this section, we

outline its key advantages and potential extensions for future work:

Cognitive salience: Similar to the concept of gradient-based

salience (91), we can define cognitive saliences (92). These

saliences measure the sensitivity of the value function to variations

in input state features (e.g., proportion of infected neighboring

nodes). The method provides an interpretation of agent’s decisions

by identifying the most influential inputs driving behavior.

Learning and adaptability capabilities: As a non-parametric

instance-based learning model, CogIBL does not require a typical

training phase like parametric models do, reducing the

computational overhead during simulations. Instead, it keeps the

“training data” within its memory repository, allowing it to adapt

dynamically to new situations. This is particularly useful in

implementing cognitively-plausible algorithms for decision

making as the model acquires experience and learns from it by

interacting in real-time with the other agents in the agent-based

simulation. Learning relies on comparing new experiences to the

agent’s memory rather than propagating gradients through layers

of predefined parameters, as its typical with neural networks.

This mirrors human-like rapid decision adjustment based on

accrued observations.

Scalability: To accommodate large datasets, CogIBL

computations can be vectorized and parallelized, supported by

techniques such as approximate2 k-nearest neighbors (93–95) for

efficient scalability.

Language capabilities: Park et al. (96) implemented structurally

similar memory and retrieval mechanisms to accommodate

generative agents (GA) with language capabilities using Large

Language Models (LLMs). Both GAs and CogIBL store past

experiences as memory instances and retrieve relevant information

based on similarity and context. This similarity extends to language

capabilities, as CogIBL can incorporate components for natural

language reasoning and be integrated with LLMs, as discussed in

(97). This integration enables agents to be equipped with realistic

behavioral profiles and simulate human-like cognition, decision-

making and linguistic interactions. Recent work demonstrated

simulations involving up to a million agents (98), where natural

language serves as a medium for reasoning, planning, and

interaction with other agents, allowing large-scale modeling of

human behavior, such as misinformation propagation or adaptive

responses to social phenomena. Williams et al. (99) demonstrated

the use of GA variations in epidemiological networks and agent-

based simulations.

Data-driven processes: CogIBL, as a statistical learning

model, enables high-fidelity simulation of human behavior by

incorporating empirical data from survey responses (100), social

media or other sources, directly into agents’ memory structures.

FIGURE 5

Assortativity in Portland network. (A) Local infection parameter c ¼ 0:8, w1 ¼ w2 ¼ 0:5 and w3 ¼ 7:5. (B) Local infection parameter c ¼ 0:0, w1 ¼ 0:5,

similarity parameter w2 ¼ 0:0 and w3 ¼ 7:5.

2Approximate means that for a given search, the neighbors returned are an

estimate of the true k-nearest neighbors.
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This allows agents to begin simulations with realistic initial

experience based on real-world observations rather than abstract

rules or assumptions.

Non-linearity: Linear smoothers assume a linear relationship

between predicted outputs and training outputs, with weights

w(x, x0) determined solely by input similarity. In contrast, bilateral

filters (101) introduce non-linearity by making the weights

dependent not only on the input features but also on the output

values (e.g., w(x, x0, y, y0)), resulting in a non-linear relationship

between predicted and training outputs. This non-linear property

is particularly relevant in epidemiological settings where the same

decision might have drastically different impacts under varying

circumstances. For instance, while masking during an influenza

outbreak might have minimal effect on an agent’s fitness, the same

behavior during a Spanish flu outbreak could significantly improve

outcomes. From a CogIBL perspective, even if the experiential cues

(e.g., infected neighbors) are identical, the action’s value can vary

dramatically depending on the severity of the disease (e.g., mild

illness vs. severe sickness). This ability to account for such non-

linear relationships enhances the realism and flexibility of the

framework in complex decision-making scenarios.

Collective decision-making: The RL capabilities can be

extended to multi-agent reinforcement learning (MARL) to

account for both individual incentives and community interests,

or balance personal and group preferences. For example, in an

agent-based simulation, an individual agent may prioritize

personal incentives, but during working hours at a care facility, it

can adopt safety protocols to protect the well-being of the

community. These extensions align with the ‘utility calculus’

concept, where agents are seen as utility maximizers, and with

social affiliation concepts, which integrate interpersonal and

collective utilities and individuals adopt the goals and needs of

others to maintain relationships (102, 103). This approach

resonates with group and multi-level selection theories in

evolutionary game theory, where cooperation within a group

enhances the overall fitness of the community, even if it may not

maximize individual fitness (104–106). The properties of CogIBL

can be extended to incorporate alternative smoothing approaches

inspired by linear filters like the mean filter (107), and nonlinear

ones such as the bilateral and the non-local (108) filters. For

example, in scenarios where individuals lack relevant experiences

and are uncertain about decisions, the blending mechanism in

Section 3.3 can be modified to allow agents to adopt the average

behavior of their peers (similar to a mean filter) or weigh actions

based on similarity to their context or role (analogous to bilateral

filters). By enabling decisions to depend on community dynamics

rather than solely on past experiences, CogIBL provides the

flexibility to model socially influenced decision-making, where

behaviors are shaped by neighborhood or group interactions.

7 Discussion

In this work, we introduce a novel computational framework that

integrates machine learning and cognitive modeling into agent-based

simulations. Unlike parametric methods, the proposed approach

leverages the IBL capabilities of the ACT-R architecture to

approximate utility functions without requiring extensive training,

enabling agents to adapt in real time to changing conditions in a

cognitively plausible manner. The core components of the

framework simulate human-like cognitive processes by modeling

decision-making, memory retrieval, and learning mechanisms

inspired by psychological theories. The application of this

framework to mask-wearing behavior during the COVID-19

pandemic highlights its ability to capture adaptive behaviors in

epidemiological contexts, providing insights into the relationship

between individual decisions and population-level dynamics.

Our simulation of adaptive mask-wearing behaviors across

networks led to several findings. When individuals learn from the

local information (neighbors’ masking behavior and infection rates),

they develop assortative masking behavior, similar to patterns

observed across the US in the COVID-19 pandemic. This variation

in preventive actions across the network caused the disease to spread

differentially in different parts of the network, effectively damping

oscillations in the number of cases. In contrast, when individuals

were only able to react to global infection rates, case oscillations

persist unchecked, potentially overwhelming healthcare resources.

These contrasting disease transmission regimes demonstrate how

individual responses to local conditions can significantly alter macro-

level disease dynamics, highlighting the importance of incorporating

adaptive behavior in epidemiological models.

The use of the cognitive architecture provides multiple

advantages for epidemiological modeling over conventional

reinforcement learning. First, the instance-based approach rapidly

adapts to new pandemic data without requiring extensive offline

dataset training, enabling real-time responsiveness. Second, by

incorporating ACT-R cognitive principles, the model’s

mechanisms and behaviors can be interpreted through

established psychological theory. Third, this framework efficiently

scales to thousands of socially-interacting autonomous agents,

capturing phenomena like shared identity formation and

conformity pressures during crises. This scalability allows us to

examine how individuals balance personal choices against group

dynamics–a critical consideration for developing context-sensitive

public health policies. These capabilities make our framework

suitable for creating interpretable, scalable simulations of human

decision-making in epidemiological contexts.

To our extent of knowledge, this work, is among the first to

explore how adaptive mask-wearing behavior and social networks

shape the dynamics of a pandemic like COVID-19, and there are

several limitations. First, we only explore mask wearing behavior.

Future models could explore how short-term masking decisions

impact longer-term measures like vaccination, or population-level

policies like social-distancing. Second, we rely on on synthetic

networks, which might not capture all the structural features

relevant to COVID-19. Further work could look at cases where

the percolation of behaviors (e.g., mask-wearing) and disease

occur on different networks, or integrate real-world survey into

network construction. Third, we do not allow for variation in

risk perception and utility functions between individuals or over

time. Future work could allow for variation in risk perceptions

which are transmitted across contacts, or which are intrinsic to
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the individual, such as fatigue in complying with preventative

measures. Finally, we do not calibrate our model to real-world

data, limiting the applicability of our findings to policy.

In conclusion, we believe that our framework can unlock further

applications of cognitively plausible machine learning methods in

epidemiological simulations with high fidelity. By equipping agents

with adaptive, interpretable decision-making capabilities grounded

in psychological principles, the framework enables the exploration

of complex behavioral dynamics. This work provides a robust

foundation for designing and evaluating public health

interventions, contributing to the development of more effective,

data-driven solutions to pressing epidemiological challenges.
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