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Background: Access to emergency care (EC) services is crucial for severe

anaemia outcome. Limited information exists on the association between

travel times to EC services and the presentation and severity of anaemia upon

hospital admission. Here, we investigate the association between travel time

and presentation of severe anaemia (compared to mild/moderate anaemia) at

admission in western Kenya.

Methods: Data from January 2020 to July 2023 from Busia County Referral

Hospital were assembled for paediatric admissions aged 1–59 months residing

in Busia County. Travel time from a patient’s village to the hospital was

calculated using a least cost path algorithm. Anaemia severity was categorised

as mild (Hb ≥ 7–<10 g dl−1), moderate (Hb ≥ 5–<7 g dl−1) and severe

(Hb < 5 g dl−1). We fitted a geostatistical model accounting for covariates to

estimate the association between travel times to EC services and severe

anaemia presentation.

Results: Severe anaemia admissions had the highest median travel time of 36 min

(IQR: 25,54) (p-value: <0.001). Compared to children living within a 30 min travel

time to the hospital, the adjusted odds ratio (AOR) of severe anaemia presentation

relative to mild/moderate anaemia was 2.44 (95% CI: 1.63–3.55) for those residing

within 30-59 min. For travel times of 60–89 min, the AOR was 3.55 (95% CI:

1.86–6.10) and for ≥90 min, the AOR was 3.41 (95% CI: 1.49–7.67).

Conclusion: Travel time is significantly associated with the severity of paediatric

anaemia presentations at hospitals. Addressing disparities in travel times such as

strategic bolstering of lower-level facilities to offer EC services, is crucial for

implementing new interventions and optimizing existing hospital-linked

interventions to enhance healthcare delivery.
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1 Introduction

Anaemia is a global public health problem (1, 2). In sub-Saharan Africa (SSA), it is

estimated that over 43 million children under the age of five in the community suffer

from a haemoglobin level (Hb) < 11 g dl−1 each year (3). The causes of anaemia in

these children are manifold (4, 5), including nutritional deficiencies (6, 7), inherited
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haemoglobinopathies (8, 9) and the constant threats posed by

bacteraemia (10) or parasitic infections, notably helminths (11)

and malaria (12, 13).

Clinical severe anaemia, defined as Hb < 5 g dl−1, is a life-

threatening event requiring emergency hospital care and blood

transfusion (14, 15). Survival in hospital depends critically on the

severity of the presenting illness, timeliness and reliability of

blood transfusion, and quality of supportive care (16, 17). Policy

recommendations emphasize the need to improve the quality of

emergency care (EC) services (18), ensure the availability and

safety of blood for transfusion (19–21), and optimise the

management of children post-discharge to prevent re-admission

and post-discharge mortality (22–24).

In Kenya, the prevalence of anaemia among children under

the age of 5 years was estimated at 45.5% in 2020 (25). The

national guidelines recommend blood transfusion for all severe

anaemia patients irrespective of other clinical manifestations

(26). However, the country not only falls short in the

required blood supply (27), but blood transfusion EC

services are also only available in higher-level hospitals, which

are few and primarily located in urban areas (28, 29). This

introduces accessibility inequities to this essential EC service,

affecting the management of severe anaemia in rural

communities that need prompt interventions and hospital-

linked aftercare.

Understanding the increased risk of poor outcomes resulting

from late presentation or prolonged distances/travel times to EC

services is an essential component of hospital-based care policy

and intervention (30). Studies have explored the relationship

between distance/travel time and hospital outcomes in several

African hospital settings, reporting an increased risk of adverse

outcomes associated with prolonged distances/travel times. These

include higher in-hospital paediatric mortality (31–34) and

disease severity (35, 36). Consequently, various efforts have been

undertaken to define travel time thresholds for different

conditions, for example, in emergency obstetric care for maternal

and neonatal health, the travel time threshold is often defined as

within 2–3 h (37–39), while for emergency and trauma-related

interventions, it is commonly referred to as the “golden hour”

(40, 41). However, there is a paucity of information specifically

related to anaemia and how travel time to EC services is

associated with its presentation and severity at hospital.

Time to intervention administration is a key determinant of

anaemia disease progression (16). Kiguli et al. (15) demonstrates

that 90% of deaths due to severe anaemia occurred within 2.5 h

of admission among admissions who do not receive blood

transfusion. However, with EC services being limited to only a

few high-level hospitals, severe anaemia patients might be forced

to spend extended travel times to receive the recommended

interventions. This phenomenon is known as distance decay in

healthcare utilisation where a reduction in health service access is

seen with an increase in distance or travel time (42, 43).

Therefore, longer travel time has been associated with delayed

care-seeking patterns (44, 45), which may result in patients

presenting with more severe anaemia by the time they reach

medical care.

In this study, we model travel time to hospital using a least cost

path algorithm and explore its relationship with severe anaemia at

admission, based on the hypothesis that anaemic patients who live

in remote areas from the hospital are more likely to present with

severe anaemia than those who live in nearby villages.

Specifically, we utilise a Bayesian Model-Based geostatistical

(MBG) framework accounting for covariates and residual spatial

autocorrelation in anaemia burden to investigate the association

between travel time and the likelihood of presenting with severe

anaemia (over mild and moderate anaemia) at admission in a

malaria endemic region in western Kenya. Our results show that

scarcity of EC services for severe anaemia leads to (1) increased

travel times among anaemia patients and (2) increased risk in

the presentation of severe anaemia at admission. Lower-level

facilities can be supported to provide EC services for severe

anaemia patients to mediate the observed inequities in travel

times to EC services.

2 Methods

2.1 Study area and context

This study was a retrospective analysis of data collected at Busia

County Referral Hospital (BCRH) in western Kenya (Figure 1).

This hospital primarily serves residents of Busia County,

approximately 893,681 residents (46), and is the referral point for

lower-level facilities requiring specialised clinical care with the

right personnel, treatment and/or equipment including blood

transfusion services (28). Access to BCRH is possible via a

1,600 km road network comprising tarmac, gravel and earth

surface roads (47) (Figure 1). Since 2013, BCRH has been part of

a Clinical Information Network (CIN), which aims to improve

the quality of inpatient paediatric care through systematic

collection and use of clinical data (48–50). In 2019, surveillance

efforts at BCRH were enhanced to include more routine malaria

and haemoglobin testing, as part of the RTS,S malaria vaccine

implementation study (51).

Busia County (a subnational unit of decision making) is

characterised by sustained high intensity malaria transmission

(52, 53) and a high burden of severe malaria anaemia

presenting to the hospital (54, 55). Additionally, it is one of

the areas in Kenya with the highest burden of soil-transmitted

helminths and schistosomiasis among school-aged children

(56). According to the 2022 national demographic and

household survey, 15% of children aged under 5 years in Busia

County were stunted and 6.3% were wasted (57). There are no

empirical estimates of the gene frequency of haemoglobin S

(Hb S) in Busia County; however, in the neighbouring

counties (and Uganda), sickle cell trait (HbAS) was reported

to be between 16%–19% (58–60). A recent malaria household

survey in 2020 reported that the community anaemia

prevalence among children aged 6–59 months in Busia County

was 26.1% (Hb < 11 g dl−1), with moderate anaemia at

35.3% (Hb≥ 7 to <11 g dl−1) and severe anaemia at 1.1%

(Hb < 7 g dl−1) (25).
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2.2 Data collection

The paediatric ward surveillance system at BCRH utilises a

Paediatric Admission Record (PAR) form designed to

standardise the documentation of routine clinical, laboratory

and other investigations in the hospital. Nurses and clinicians

on duty use the PAR to document patient details at admission,

during hospitalisation and at discharge (or death). A trained

data clerk then abstracts all data from the patient file in

REDCap (49). The abstracted data includes patients’

demographics, residence details, anthropometric measurements,

medical history, clinical examinations, laboratory tests ordered

and their results, prescribed treatments and the final discharge

diagnosis. Haemoglobin (Hb) concentrations were measured

from capillary bloods at admission using a Hematology

Analyzer (Coulter Counter), with results recorded in g dl−1.

Final diagnoses were reviewed to identify children with

underlying conditions including genetic and congenital

abnormalities, HIV, tuberculosis, trauma, burns, accidental

poisoning, animal/snake/insect bites, epilepsy and carcinomas.

Residence details obtained at admission included various

administrative sub-divisions including sub-county, location, sub-

location, village name, nearest health facility, nearest markets and

nearest school (nearness was as perceived by the respondent).

This information was used to locate each child’s residence using

mapped national census enumeration areas (EA), which are

equivalent to small areas representing “villages” of approximately

100 households (46).

FIGURE 1

Study area: panel (a): Kenya counties highlighting western region. Panel (b): Busia County and neighbouring western Kenya counties. Panel (c):

Enumeration areas of Busia County.
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2.2.1 Anaemia definition

The Hb level was adjusted for altitude as recommended by

WHO (61, 62). The adjusted Hb concentration was used to

define three levels of clinically important hospitalised anaemia:

mild (Hb≥ 7 to <10 g dl−1), moderate (Hb≥ 5 to <7 g dl−1) and

severe (Hb < 5 g dl−1) (15).

2.2.2 Data inclusion and exclusions

For this study, data covering January 2020 to July 2023 (42

surveillance months) for all children aged 1–59 months who

were residents of Busia County were extracted (n = 4,361)

(Supplementary Figure S1). This period represents a time when

more intensive haemoglobin surveillance and detailed patient

residence details were introduced (51). The admission cases

included in this study were selected to provide a focused

understanding of the relationship between travel time to hospital

and the severity of anaemia in children. Specifically, cases related

to animal/snake/insect bites, burns, malignancy/congenital

abnormalities, poisoning, surgery, and trauma/accidents were

excluded from the analysis (n = 665) as these conditions may not

be directly linked to the place of residence, as they are likely to

have occurred elsewhere (Supplementary Figure S1). Additionally,

264 admissions were excluded because Hb results were not

available, including 27 deaths which included 19 deaths on

arrival. There were no differences in any characteristics between

the children included in this analysis and those excluded

(Supplementary Table S1). Furthermore, children who were not

anaemic (Hb≥ 10 g dl−1) were also excluded from the analysis

(n = 1,245).

2.2.3 Travel time to hospital

The time taken to travel from the patient’s village (EA) of

residence was calculated using a least cost path modelling

approach in AccessMod software (alpha version 5.8.0) (63).

Briefly, road network, land use/cover, water bodies and protected

areas (Supplementary Notes 2) were merged to create a friction

surface (Supplementary Figure S2). Different speeds and modes

of travel (walking, motorcycle and vehicle transport) were

assigned to the friction surface based on previous literature

(64–66) (see Supplementary Table S2). The friction raster surface

was then combined with the least cost path algorithm (67) and

the location of BCRH to obtain a travel time raster indicating for

each pixel (grids of 12.5 m by 12.5 m) the lowest travel to time

to BCRH. Average travel times for each EA were extracted from

the travel time raster surface and assigned to all paediatric

admissions originating from the respective EAs (Supplementary

Figure S3).

2.3 Anaemia admissions spatial patterns

To visualise how travel time to EC services varies with anaemia

admissions, anaemia admissions rates per 1,000 children were

calculated for each EA over the 42-month period using

population estimates for children under five years old. The

probability of an EA having an anaemia admission is influenced

by the at-risk population density, assuming homogeneous risk.

Annual population estimates (unconstrained UN-adjusted)

during the surveillance period were derived from WorldPop

(https://www.worldpop.org/), which provides a 100 × 100 m

gridded population density (68) and used to obtain the total

under 5 population at risk denominator. Travel time was divided

into 15-minute bands, and the admissions rates per 1,000

children over the 42-month period categorised by anaemia

severity (mild, moderate, severe) within each band were

calculated. Our estimated admission rates, however, represent a

minimum measure of the true community burden of anaemia, as

anaemia events may have occurred outside BCRH, with the child

either recovering or dying at home. The 15 min travel time cut-

offs were specifically chosen to visualise distance decay patterns

in admission rates across the anaemia categories at a more

granular level.

2.4 Statistical analysis

2.4.1 Descriptive statistics
We compared patient and community-level factors across the

three anaemia classes (mild, moderate and severe) using Fisher’s

exact test for categorical variables and Kruskal–Wallis rank sum

test for continuous variables. Additionally, a 95% Confidence

Interval (CI) for proportions was estimated using Wilson test for

categorical variables. The median and interquartile range (IQR)

were calculated for continuous variables.

Patient-level factors included age, categorised into yearly age

groups, and gender. Mid-upper arm circumference (MUAC) was

recorded, and nutritional status was defined as well nourished

(Z-score >−1), mildly malnourished (−2 <Z-score≤−1),

moderately malnourished (−3 < Z-score≤−2) and severely

malnourished (Z-score≤−3) (69). Children who received BCG,

Penta 1 and Penta 3 vaccines were defined as having a good

vaccination history. We also included whether malaria was

diagnosed at discharge, history and/or diagnosis of Sickle Cell

Disease (SCD), admission day (weekday/weekend) and season

(wet/dry); season was associated with rainfall data with wet

season typically occurring from April to June and from October

to December. These patient-level factors were selected because

they have been identified as potential confounders in the

literature (7, 13, 33, 55, 70, 71).

Given the significance of malaria in hospitalised anaemia cases

in Busia County (54, 55), we adjusted for community-level

variations in malaria infection risk using an EA-specific

prediction of Plasmodium falciparum prevalence in children aged

2–10 years (PfPR2–10). These predictions were derived from a

temporal-spatial model based on malaria prevalence estimates

from surveys [details provided in Alegana et al. (53)].

Admissions were assigned the average PfPR2–10 for their

respective EA over the four years preceding the surveillance

period (Supplementary Notes 3 and Supplementary Figure S4).

Residence type (urban or rural) was also included as these areas

differ in terms of ease of access to EC services, including available
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transportation options. Each EA was classified as either urban or

rural based on the average nighttime light (NTL) values from the

2019 satellite image by the Defense Meteorological Satellite

Program (DMSP) Operational Linescan System (OLS) (https://

eogdata.mines.edu/products/dmsp/). NTL was used as a proxy

for both urbanicity and economic status (72, 73). EAs with

NTL > 0 were classified as urban, while those with NTL = 0 were

deemed rural.

2.4.2 Geostatistical modelling

The analysis focused on assessing the association of travel time

to EC services on the presentation of severe anaemia compared to

both mild and moderate anaemia. The outcome variable was

categorised into two groups: severe anaemia and other

(a combination of mild and moderate anaemia admissions).

Travel time was categorized into 30 min intervals, considering

the current 1–2 h threshold for emergency services and the high

mortality rate within 2.5 h of admission for severe anaemia.

Currently, there are no clear travel time thresholds specific to

anaemia, except time-to-blood transfusion after admission, for

example, Thomas et al. (74) and Maitland et al. (16) investigate

differences in the risk of mortality in the case of immediate

blood transfusion or delayed transfusion. Therefore, the 30 min

interval [routinely used in general emergency care thresholds

(75–77)] used here reflects the acute nature of severe anaemia

before hospitalisation. Our aim was to test the robustness of

existing policy thresholds and provide a conservative travel time

estimate for acute severe anaemia. All covariates were modelled

as categorical variables; PfPR2–10 was modelled as a continuous

variable. A univariate frequentist logistic regression model was

used to select the covariates to be included in the final model.

The selection was based on p-value threshold of P < 0.2

(Supplementary Notes 4 and Supplementary Table S3).

We assessed the presence of spatial autocorrelation while

accounting for potential confounders using a variogram

(Supplementary Notes 5 and Supplementary Figure S5). Given

spatial autocorrelation, we employed a Bayesian Model-based

geostatistics (MBG) framework (78) with a focus on explanatory

modelling and not predictive modelling (79, 80). This approach

allowed us to account for potential confounders and residual

spatial autocorrelation when assessing the role of travel time to

EC services on the presentation of severe anaemia.

All covariates were defined as fixed effects denoted by bjxj,

where xj is the set of covariates (including travel time) and bj

the set of corresponding coefficients. The random effect was

defined as v(sk) and ei representing the residual spatial variation

with respect to EA sk and margin of error, respectively. Let Yik

be an admission i from village sk such that Yik ¼ 1 if the

admission had severe anaemia and Yik ¼ 0 if the admission had

mild/moderate anaemia and let pik be the probability of an

admission having severe anaemia. Then, Yik � Bernoulli (pik)

and is computed as

logit (pik) ¼ b0 þ

Xp

j¼1

bjxj þ v(sk)þ ei

where v(sk) � N(0, s2
v) and s2

v was assumed to follow the Matèrn

covariance structure such that for two EAs si and sj,

s2
v(si, sj) ¼

s2

2n�1G(n)
(kh)nKn(kh) where h is the Euclidean distance

between centroids for EAs si and sj, v s the smoothness

parameter, k is the range parameter, s2 is the marginal variance,

Kv is the modified Bessel function of the second kind, and G(�)

denotes the gamma function. The model was fitted using the

Integrated Nested Laplace Approximation and Stochastic Partial

Differential Equation (INLA-SPDE) framework with non-

informative priors (81–84). Given the continuous nature of the

surveillance during the study period, it is possible that some

children were readmitted at different time points. However, we

could not differentiate between initial admissions and

readmissions due to lack of a unique admission identifier in the

data, thus, each admission was treated as an independent

observation in all the analysis.

All analyses were conducted in R software version 4.4.0

(2024-04-24 ucrt) using “gtsummary” and “INLA” packages for

descriptive and goestatistical modelling, respectively. Map

visualisations were done on ArcMap 10.8.2 (ESRI Inc., Redlands,

CA, USA).

3 Results

3.1 Description of patient and community-
level characteristics

The analysis included 2,187 admissions with Hb less than 10 g

dl−1 aged 1–59 months residing in Busia County for the period

January 2020 – July 2023: 1,151 (52.6%) were classified as mild

anaemia, 402 (18.4%) as moderate anaemia and 634 (29.0%) as

severe anaemia. Severe anaemia admissions had the highest

median travel time of 36 min (IQR: 25,54), followed by moderate

anaemia admissions with a median travel time of 26 min (IQR:

9,43) and mild anaemia admissions had the shortest median

travel time of 17 min (IQR: 6,33) (p-value: < 0.001) (Table 1).

Only 34.9% of severe anaemia admissions were within 30 min of

travel time to BCRH compared to 55.7% and 71.8% of moderate

and mild anaemia admissions, respectively (p-value: < 0.001)

(Table 1). The proportion of admissions within 30–59 min of

travel time was 23.0% for severe anaemia, 34.3% for moderate

anaemia, and 47.6% for mild anaemia. Cumulatively, within the

1-hour travel time to BCRH (including both within 30 min and

30–59 min), 82.5% of severe anaemia admissions occurred,

compared to 90.0% for moderate anaemia and 94.8% for mild

anaemia admissions (p: <0.001) (Table 1).

For individual-level characteristics, severe anaemia admissions

aged ≤1 year was significantly lower (43.0%) compared to mild

(68.5%) and moderate (53.8%) anaemia admissions (Table 1). Good

vaccination history was >90% across the three anaemia classes, with

moderate anaemia having the highest proportion, 96.5%, followed

by severe anaemia at 95.3% and mild anaemia at 92.4% (p-value:

0.003). The proportion of admissions with a malaria diagnosis was

highest among severe anaemia admissions at 53.8% compared to

36.6% and 33.5% among moderate and mild anaemia classes,
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respectively (p-value: <0.001). Similarly, SCD was more prominent

among severe and moderate anaemia admissions, 23.8% and 26.6%

respectively, compared to only 8.1% among mild anaemia

admissions (p-value: <0.001). Finally, a significantly higher

proportion of severe anaemia admissions occurred on weekdays

(82.0%) compared to mild and moderate anaemia classes (Table 1).

For community-level characteristics, severe anaemia

admissions resided in areas with higher malaria transmission,

with a median PfPR2–10 of 38% (IQR: 30,48) compared to

moderate and mild anaemia admissions with a median PfPR2–

10 of 33% (IQR: 29,47) and 31% (IQR: 28,42) respectively

(p-value: <0.001) (Table 1). A significantly higher

proportion of severe anaemia admissions resided in rural

areas, 87.2% (p-value: <0.001) compared to the other anaemia

classes (Table 1).

3.2 Anaemia admission spatial patterns by
severity

The median EA admissions rates per 1,000 persons over 42

surveillance months was 3.7 (IQR: 0.2, 38.6), 2.8 (IQR: 0.4,

49.7) and 3.7 (IQR: 0.3, 121) for severe, moderate and mild

anaemia admissions, respectively, with markedly varying spatial

patterns (Figure 2). Among mild anaemia admissions, EAs

proximal to BCRH had high rates (darker shades) and a

decreasing trend in rates is observed in EAs distal to BCRH

(Figure 2, Panel a). A similar trend is observed among

moderate anaemia admissions (Figure 2, Panel b). In contrast,

there is no decreasing trend in admission rates among severe

anaemia admissions, which were less concentrated around

BCRH (Figure 2, Panel c).

Differences were observed in admission rates per 1,000 children

over 42 surveillance months at BCRH by travel-time bands across

the anaemia severity classes (Figure 3). Specifically, admission rates

of mild anaemia admissions drop from ≈9 to ≈1.6 admissions per

1,000 persons/42 surveillance months for admissions within

15 min and those within 60 min of travel time to BCRH

(Figure 3, Panel A). Rates of moderate anaemia admissions

follow a similar pattern to mild anaemia, declining from ≈2.4 to

≈0.9 within 30 and 60 min of travel time to BCRH (Figure 3,

Panel b). In contrast, for severe anaemia admissions, rate per

1,000 persons over 42 surveillance months increases from ≈1.5

to ≈3.2 for admissions within 15 min and those within 30 min

and no marked decrease is observed at longer travel times

(Figure 3, Panel c).

TABLE 1 Characteristics of paediatric anaemia admissions to busia county referral hospital January 2020-July 2023.

Characteristic Overall Mild (Hb≥ 7
to < 10 g dl−1)

Moderate (Hb≥ 5
to < 7 g dl−1)

Severe
(Hb < 5 g dl−1)

p-value

N (%, 95% CI) N (%, 95% CI) N (%, 95% CI) N (%, 95% CI)

Total: N (%) 2,187 (100%) 1,151 (52.6%) 402 (18.4%) 634 (29.0%)

Travel Time (mins): Median (IQR) 25 (9, 41) 17 (6, 33) 26 (9, 43) 36 (25, 54) <0.001

Travel Time Classes (mins)

<30 1,271 (58.1%; 56–60%) 826 (71.8%; 69–74%) 224 (55.7%; 51–61%) 221 (34.9%; 31–39%) <0.001

30–59 705 (32.2%; 30–34%) 265 (23.0%; 21–26%) 138 (34.3%; 30–39%) 302 (47.6%; 44–52%)

60–89 160 (7.3%; 6.3–8.5%) 37 (3.2%; 2.3–4.4%) 36 (9.0%; 6.4–12%) 87 (13.7%; 11–17%)

>= 90 51 (2.3%; 1.8–3.1%) 23 (2.0%; 1.3–3.0%) 4 (1.0%; 0.32–2.7%) 24 (3.8%; 2.5–5.7%)

Age Categories (yrs)

<1 624 (28.5%; 27–30%) 388 (33.7%; 31–37%) 100 (24.9%; 21–29%) 136 (21.5%; 18–25%) <0.001

1 653 (29.9%; 28–32%) 401 (34.8%; 32–38%) 116 (28.9%; 25–34%) 136 (21.5%; 18–25%)

2 362 (16.6%; 15–18%) 164 (14.2%; 12–16%) 69 (17.2%; 14–21%) 129 (20.3%; 17–24%)

3 279 (12.8%; 11–14%) 112 (9.7%; 8.1–12%) 60 (14.9%; 12–19%) 107 (16.9%; 14–20%)

4 269 (12.3%; 11–14%) 86 (7.5%; 6.1–9.2%) 57 (14.2%; 11–18%) 126 (19.9%; 17–23%)

Gender: Female 902 (41.2%; 39–43%) 467 (40.6%; 38–43%) 165 (41.0%; 36–46%) 270 (42.6%; 39–47%) 0.7

Nutrition Status

Well nourished 833 (41.6%; 39–44%) 446 (43.7%; 41–47%) 159 (41.8%; 37–47%) 228 (37.8%; 34–42%) 0.06

Mildly Malnourished 703 (35.1%; 33–37%) 344 (33.7%; 31–37%) 126 (33.2%; 28–38%) 233 (38.6%; 35–43%)

Moderately Malnourished 287 (14.3%; 13–16%) 130 (12.7%; 11–15%) 65 (17.1%; 14–21%) 92 (15.3%; 13–18%)

Severely Malnourished 180 (9.0%; 7.8–10%) 100 (9.8%; 8.1–12%) 30 (7.9%; 5.5–11%) 50 (8.3%; 6.3–11%)

Vaccination history 2,055 (94.0%; 93–95%) 1,063 (92.4%; 91–94%) 388 (96.5%; 94–98%) 604 (95.3%; 93–97%) 0.003

(Received BCG, Penta 1 & Penta 3)

Malaria Diagnosis 874 (40.0%; 38–42%) 386 (33.5%; 31–36%) 147 (36.6%; 32–42%) 341 (53.8%; 50–58%) <0.001

Sickle Cell Disease (SCD) 351 (16.0%; 15–18%) 93 (8.1%; 6.6–9.8%) 107 (26.6%; 22–31%) 151 (23.8%; 21–27%) <0.001

Admission Day: Weekday 1,716 (78.5%; 77–80%) 877 (76.2%; 74–79%) 319 (79.4%; 75–83%) 520 (82.0%; 79–85%) 0.015

Season: Wet 1,129 (51.6%; 50–54%) 589 (51.2%; 48–54%) 225 (56.0%; 51–61%) 315 (49.7%; 46–54%) 0.13

PfPR2−10% Median (IQR) 33 (29, 46) 31 (28, 42) 33 (29, 47) 38 (30, 48) <0.001

Residence type: Rural 1,548 (70.8%; 69–73%) 700 (60.8%; 58–64%) 295 (73.4%; 69–78%) 553 (87.2%; 84–90%) <0.001

Nutrition status: n = 184 admissions were missing MUAC (131 in mild, 22 in moderate and 31 in severe anaemia classes).
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3.3 Travel time and severe anaemia
presentation

In the univariate analysis, eight covariates were found to be

statistically significant (P < 0.2): age, nutritional status,

vaccination history, malaria diagnosis, SCD, admission day

(weekday/weekend), community predicted PfPR2–10 and residence

type (Supplementary Notes 4 and Supplementary Table S3).

Presence of residual spatial autocorrelation was evidenced by a

variogram (Supplementary Notes 5 and Supplementary Figure S5).

After adjusting for age, nutritional status, vaccination history,

malaria diagnosis, SCD, admission day (weekday/weekend),

community predicted PfPR2–10, residence type and residual

spatial autocorrelation, travel time was significantly associated

with increased odds of severe anaemia presentation over other

anaemia classes (Table 2). The likelihood of severe anaemia

relative to mild/moderate anaemia increased with longer travel

times. Specifically, for children residing within 30–59 min to

BCRH, the adjusted odds ratio (AOR) was 2.44 (95% CI: 1.63–

3.55), 60–89 min the AOR was 3.55 (95% CI: 1.86–6.10) and

≥90 min the AOR was 3.41 (95% CI: 1.49–7.67) compared to

children living within 30 min of travel time (see Supplementary

Notes 6 and Supplementary Table S4 for AOR of covariates).

4 Discussion

Travel time to hospital services is significantly associated with

severity of anaemia presentation at admission (Table 1; Figure 3).

Population-adjusted rates of admissions with severe anaemia

indicate that these admissions are more distal to emergency care

services than those with mild or moderate presenting anaemia

(Figure 2). Importantly, adjusting for factors which may

confound this relationship using a Bayesian MBG model

confirmed that travel times greater than 30 min are associated

with a 2-fold increase in the likelihood of severe anaemia

compared to mild-moderate anaemia and a greater than 3-fold

increased likelihood if greater than 60 min (Table 2).

The classic distance decay curve was observed in attendance

(for moderate and mild anaemia) with increasing travel time

(85). Treatment-seeking decays more rapidly after travel times of

approximately 45 min (Figure 2), which emphasises the relevance

of travel time in care-seekers’ decision making process on where

and if to seek care. More specifically, the observed decreasing

trend in the spatial patterns for mild-moderate anaemia

admission rates among distal EAs (Figure 2) can be attributed to

the high density of lower-level health facilities (86) in the longer

travel time locations that provide alternative treatment options as

mild/moderate anaemia cases do not require blood transfusions.

For mild-moderate anaemia admissions with longer travel times,

this can also be interpreted as individual perception on quality of

care at BCRH compared to existing alternatives. However,

without additional data, we are unable to definitively conclude

that this is the only explanation for the observed trend.

In contrast, the lack of a decreasing trend in admission rates

among severe anaemia patients can be associated with a lack of

treatment alternatives, as the high-level interventions required

(blood transfusion) are only available at higher level facilities

FIGURE 2

Spatial distribution of anaemia admission rates per 1,000 children aged under five years over 42 months of surveillance at BCRH by EA. EA shades

represent anaemia admission rates where the darker the shade, the higher the admission rates. Panel (a): Mild anaemia, Panel (b): Moderate

anaemia, Panel (c): Severe anaemia.
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(28). As such, severe anaemia patients visit BCRH to compete for

the existing EC blood transfusion services. In addition, the lower

admission rates observed among EAs proximal to BCRH for

severe anaemia patients may be indicative of prompt care-seeking

behaviour, which prevents the progression of anaemia to a

severe form.

Disease events that involve rapid haemolysis are critically

dependent on the time taken to reach emergency care services,

including blood transfusion. Prolonged travel times have been

described as a deterrent to seeking care as distal populations

from EC services tend to seek care only when the disease has

progressed to a severe form (45, 87). Consequently, admissions

with longer travel times present later at BCRH compared to

those from more proximal areas. Furthermore, pre-referral care,

notably for severe malaria, remains inadequate in Kenya (88),

ambulance services in remote, rural areas are non-existent (89)

thus, more communities in these areas may take longer to secure

financial resources to pay for public transport. Our findings are

consistent with other studies which have interrogated the role of

travel time to hospital care and in-patient severe disease and

mortality outcomes (31–34, 36), in summary, individuals who

live further away from emergency care services have a poorer

presentation and prognosis. We acknowledge that access to EC

services is a more complex phenomenon and travel time alone is

not the only determinant for improved health outcomes, for

instance, improving road quality may have an impact on reduced

travel times and consequently improved health outcomes.

However, it is also essential to increase the availability of

emergency care services in facilities closer to at-risk populations

(Supplementary Notes 7 and Supplementary Figure S6) as

evidenced in the implementation of community-based EC

interventions for other illnesses (90, 91). Most of the overall

anaemic admission population were children aged less than 3

years. However, 25% of children were aged 3 years or older, and

highest among those with severe anaemia (36.8%) (Table 1).

Furthermore, malaria was a final diagnosis in 40.0% of all

anaemic admissions but significantly higher in those with

severe anaemia (53.8%) (Table 1). As previously reported for

Western Kenya, severe anaemia is a dominant disease

phenotype for life-threatening malaria (54, 55). This is further

supported by our observation that predicted malaria

prevalence in the origin communities of those who presented

with severe anaemia experienced higher levels of transmission

FIGURE 3

Anaemia admission rates per 1,000 children aged under five years

over 42 surveillance months at BCRH by travel time bands in

minutes. Panel (a): Mild anaemia, Panel (b): Moderate anaemia

Panel (c): Severe anaemia.

TABLE 2 Association between travel time to EC among children with
severe anaemia compared to other (mild/moderate) anaemia.

Travel Time
(mins)

N (%) Crude OR
(95% CI)

AOR
(95% CI)

<30 1,271

(58.1%)

Ref Ref

30–59 705 (32.2%) 3.56 (2.89–4.39) 2.44 (1.63–3.55)

60–89 160 (7.3%) 5.66 (4.02–8.00) 3.55 (1.86–6.10)

≥90 51 (2.3%) 4.22 (2.38–7.46) 3.41 (1.49–7.67)
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(Table 1). Aside from malaria, it is notable that 16% of all

anaemic admissions had a reported underlying diagnosis of

Sickle Cell Disease, representing an important cause of

anaemia requiring hospitalisation. In this area of Kenya,

reported SCD was lowest in the mild anaemia class (8.1%)

compared to both the moderate (26.6%) and severe (23.8%)

anaemia classes. Both malaria and SCD are significant causes

of moderate and severe hospital presentations of anaemia in

this area and not restricted to the very young.

Identifying children with severe anaemia in hospital serves

as the entry point for recently promoted post-discharge

malaria chemoprevention strategies where children are

provided monthly presumptive anti-malarial drugs (22, 24).

An important consideration is how the intervention is

provided (92). Most patients in our study would be more

distal to centralised health services and thus more

marginalised from facility-based chemoprevention and would

depend on an effective, linked community-based aftercare

service. However, more general post-discharge clinical review

and investigation would continue to be compromised by

distance. Similar constraints will apply to SCD patients related

to access to hospital services for diagnosis, long-term care

options and antimalarial and antimicrobial prophylaxis (93).

Busia County represents a rural setting in a low-and-middle

income country with challenges in both the availability of EC

services and limited access to the existing services.

Consequently, the results of this work are generalisable to

similar settings in sub-Saharan Africa that face similar EC

challenges (90, 94). Furthermore, the implications can be

generalised not only to anaemia specific interventions but also

to other interventions such as post-discharge malaria

chemoprevention programs where travel times/distance to care

has been described as a barrier (24).

4.1 Strengths and limitations

Previous studies on the association between travel times to EC

services and hospital health outcomes have not always adjusted for

underlying drivers of the health outcomes (33, 34, 36) and/or

residual spatial autocorrelation in the outcome at fine spatial

resolution (31, 32). We have used a geostatistical model to

overcome these inherent problems in explanatory modelling

when assessing the role of travel time. We have achieved this by

adjusting for the community-level factors such as malaria

endemicity (PfPR2–10) and residual spatial autocorrelation likely

to characterise the association between travel time to EC and the

severity of anaemia. This model allowed for a more robust

definition of the increased risk of severe anaemia presentation at

hospital with increasing travel time, independent of the

contextual risk factors. Further, we used a robust and well-

established approach to estimate travel time that accounted for a

hybrid mode of transport adjusting for topography, travel

barriers and travel speeds relative to the use of simplistic

Euclidean distance or provider-to-population ratio (95).

While we were able to adjust the model for malaria and

urbanisation at the level of the child’s residence, we were not

able to adjust for equivalent, high-spatial resolution

community-level factors, such as socio-economic status (SES)

and helminth prevalence. Socio-economic factors such as

household income, guardian’s education level and healthcare

knowledge/practices have been shown to influence both

healthcare seeking behaviours and disease severity at

admission (32, 45, 96, 97). Not accounting for such factors

may have confounded the observed association of travel time

and disease severity as patients from lower income households

may face additional barriers to timely healthcare access,

independent of travel time. Furthermore, this may have led to

bias where population from lower-income households

consistently locate in an area with longer travel time and are

characterized with distinct health seeking behaviours,

preferences and knowledge compared to households located

close to the main hospital. In addition, although we adjust for

community-level malaria prevalence, this may introduce the

risk of ecological fallacy, where the association observed at the

community level does not necessarily apply to individuals

within that community. We could not also define the

aetiologies of the child’s anaemia on admission without more

comprehensive haematological profiling. Further, data on

anaemic admissions from other competing facilities in the area

was unavailable for analysis. As such, the study could not

assess hospital competition to EC services which is an

important factor to consider in assessing the significance of

travel time to EC services (98). Consequently, the study

represents a minimum measure of the true community burden

of anaemia, as anaemia events may have occurred outside

BCRH. Lastly, travel time was not based on observational data

and did not account for seasonality or traffic delays, which, if

present, affect travel speeds (99). However, as this is a

predominately rural area, the effect of traffic is negligible and

thus our estimates are plausible and representative of dry

weather season (100).

5 Conclusion

Travel time to EC services is significantly associated with the

degree of severity of paediatric anaemia at presentation in

hospital. This study highlights how the scarcity of emergency

care services for severe anaemia leads to increased travel times

among severe anaemia patients. The findings from this study can

be used to inform strategic bolstering of lower-level facilities to

offer severe anaemia interventions to improve healthcare delivery

in resource-limited settings.
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