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High-throughput, pan-leukocyte
biomarkers for the detection of
inflammation in human
breastmilk and stool

M. J. Dunnet®?, I. M. Morison?®, D. M. Bond'*' and T. A. Hore*!

!Department of Anatomy, University of Otago, Dunedin, New Zealand, ?Department of Biochemistry,
University of Otago, Dunedin, New Zealand, *Department of Pathology, University of Otago, Dunedin,
New Zealand

Background: DNA methylation can be used to track cellular identity. We have
previously developed a high-throughput, cost-effective DNA methylation
pipeline containing two loci, HOXA3 and MAP4K1, that can quantify leukocyte
proportion amongst a range of background tissues. Here, we apply this pipeline to
two clinically relevant tissue samples: breastmilk and stool.

Results: We report that our leukocyte methylation assay can quantify the
proportion of leukocytes in breastmilk, and find leukocyte levels fluctuate
dramatically in concert with infection severity. We benchmarked our
leukocyte methylation pipeline in stool samples against the commonly used
faecal calprotectin assay. Our results show a high concordance between the two
methods indicating the viability of our DNA methylation biomarkers in the context
of intestinal inflammation.

Conclusion: The data presented here emphasise the clinical applicability of our
high-throughput DNA methylation assay in the context of mastitis and intestinal
inflammation.

KEYWORDS

DNA methylation, biomarker, leukocytes, inflammation, mastitis, inflammatory
bowel disease

Introduction

DNA methylation is the covalent bonding of a methyl group to the 5’ carbon of a
cytosine nucleotide. DNA methylation is dynamically added and removed throughput
development; indeed, approximately 20% of all human autosomal CpG sites are
differentially methylated or unmethylated based upon cell type and stage of
development (Ziller et al., 2013). As such, cell-specific DNA methylation patterns can
be used to identify the cell-of-origin for a particular DNA molecule. In cases where there is
no genetic difference between healthy and diseased tissue or where information on cellular
origin is required, DNA methylation assays will likely be useful for detection, diagnosis, and
management decisions. For example, cell-free DNA (cfDNA), which can originate from

Abbreviations: CpG, CG dinucleotide; cfDNA, cell-free DNA; FCA, Faecal Calprotectin Assay; ROC,
Receiver Operating Characteristic; AUC, Area Under the Curve; IBD, Inflammatory Bowel Disease; IBS,
Irritable Bowel Syndrome; UC, Ulcerative Colitis; CD, Crohn's Disease; PEG, polyethylene glycol.
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apoptotic or necrotic cells, can enter the circulatory system and be
collected easily and non-invasively for diagnostic purposes. Analysis
of the methylation pattern of cfDNA in healthy individuals shows its
cellular origins: 55% from leukocytes, 30% from erythrocyte
progenitors, 10% from vascular endothelial cells, and 1% from
hepatocytes (Moss et al., 2018; Lam et al., 2020). In addition, in
cases of trauma, autoimmunity, ischaemia, infection, or cancer,
previously undetectable ¢fDNA molecules from affected organs
can be measured (Lehmann-Werman et al., 2016; Cisneros-
Villanueva et al,, 2022; Zemmour et al., 2018; Lehmann-Werman
et al,, 2018; Cheng et al., 2021).

Local inflammation is difficult to detect with cfDNA because of
the large amount of blood-cell-derived DNA already present in
plasma. Several deconvolution algorithms based on Illumina 450K
methylation array and EPIC array systems have been utilised for this
analysis; for example, EPIDish (Teschendorff et al, 2017), can
determine the proportion of leukocyte subpopulations from a
given sample. However, these systems require thousands of CpG
sites, are relatively expensive, and are low throughput. We have
previously described a high throughput, cost-effective, pipeline that
uses the locus-specific methylation to detect immune cells from a
mixed sample (Dunnet et al., 2022). This involves bisulfite amplicon
sequencing of HOXA3 and MAP4KI (Dunnet et al, 2022). To
expand on this work here, we examined the ability of this
pipeline to infer the level of inflammation from clinically relevant
samples, specifically, breastmilk and stool. These samples were
chosen because of their relevance to common inflammatory
conditions: mastitis and inflammatory bowel disease.

Mastitis is defined as the inflammation of the breast tissue,
which typically, but not exclusively, occurs during lactation (Boakes
etal,, 2018). The fraction of leukocytes markedly increases from less
than 5% in healthy mothers to up to 90% during mastitis (Hassiotou
et al,, 2013a). Flow cytometry approaches to measure the leukocyte
fraction in breastmilk have already been proposed as a diagnostic
tool to assess the health status of the mother/infant dyad (Hassiotou
et al,, 2013a). However, cellular composition in breastmilk is highly
dynamic and sampling may be required more frequently than flow
cytometry can conveniently provide.

Intestinal inflammation can be caused by a large number of
factors, including cancer (von Roon et al,, 2007), inflammatory
bowel disease (Laserna-Mendieta and Lucendo, 2019), and coeliac
disease (Ertekin et al., 2010). Detection of intestinal inflammation is
most commonly performed with the faecal calprotectin assay (FCA),
which measures the concentration of calprotectin, an antimicrobial
complex highly abundant in the granules of neutrophils and, to a
lesser extent in monocytes and macrophages (Odink et al., 1987;
Roseth PNSMKF, 1999). The amount of calprotectin is proportional
to the severity of an immune response, making it a useful non-
invasive marker for intestinal inflammation (Reseth et al.,, 1992).
While an extremely valuable tool, the FCA is limited in several ways.
Firstly, the FCA kits are proprietary, and the inter-kit variability is
large (Whitehead et al., 2013; Kittanakom et al., 2017; Labaere et al.,
2014). Second, the calprotectin complex degrades in stool after
48-72 h at room temperature and requires refrigeration to
remain stable (Labaera et al, 2014; Lasson et al., 2015; Oyaert
et al,, 2017). Finally, the age of the patient, medications they are
taking, and some pathologies (in particular, pancreatic insufficiency)
can result in variation in faecal calprotectin levels (Laserna-
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Mendieta and Lucendo, 2019; Degraeuwe et al., 2015; Henderson
et al., 2014; Padoan et al.,, 2018; Lundgren et al., 2019; Ellemunter
et al.,, 2017).

The high-throughput DNA methylation biomarker pipeline we
have previously described (Dunnet et al., 2022) has the potential to
address limitations in the current diagnostic assays. In particular, the
ability to sample repeatedly, to avoid proprietary kits, and to
capitalize on the stability of DNA methylation have the potential
to improve the diagnostic capabilities for mastitis and intestinal
inflammation.

In this study, we sampled numerous breastmilk samples from
the same individual over the course of 1 month. We show the
proportion of leukocytes varied markedly, even within a 24-hour
period. The two biomarker loci, HOXA3 and MAP4KI, were
strongly correlated in milk samples, and the total level of
estimated leukocytes was consistent with instances of mastitis.
Furthermore, we examined the leukocyte proportion in stool
samples with associated faecal calprotectin scores. We observed
that the proportion of leukocyte-derived reads was extremely high
(>70%) in all samples with even slightly elevated faecal calprotectin,
suggesting that leukocyte DNA vastly exceeds epithelial cell DNA in
stool with even minor inflammation. Our high-throughput, cost-
effective DNA methylation assay has clinical relevance in the context
of mastitis and intestinal inflammation.

Methods

Human breastmilk sample collection and
cell isolation

Human breastmilk was obtained from a single donor with
informed consent per the New Zealand Human Tissue Act 2008.
Over 1 month, from the 22nd of November 2018 to the 21st of
December 2018, 1 mL of excess pump-expressed milk was collected
by the donor where possible. Pumping occurred either exclusively
from one breast or was a mixture of the two breasts; while breast of
origin was often recorded by the donor, in many cases it was not.
The start of the collection date was approximately 5 weeks
postpartum and seventy-five milk samples were collected in total.
Milk was stored at —20°C, or colder, until use.

Cell isolation was performed by centrifugation. First, milk
samples were centrifuged at 500 x g for 15 min to pellet the cells.
Next, milk fats and liquid were removed, and the pellet was
resuspended in 500 pL of 0.01 M PBS. Centrifugation and
washing were repeated an additional two times. Finally, the cells
were pelleted at 500x g for 15 min before resuspension in a lysis
buffer consisting of 8 uL of 0.01 M PBS, 8 uL of the Zymo 2x
M-Digestion Buffer, and 1 gL of 20 mg/mL Proteinase K (Zymo EZ-
96 DNA Methylation-Direct™ MagPrep Kit) and incubated at 50°C
for 20 min. Cell lysates were directly added to the bisulphite
conversion protocol (see below) with no additional handling.

Saliva cell isolation and DNA extraction

Saliva samples were collected as previously described (Dunnet
et al,, 2022; Theda et al, 2018). Briefly, in the 30 min prior to
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collection only water was consumed. Five mL of saliva was collected
via passive drool and transferred to a 15 mL plastic centrifuge tube.
The saliva was centrifuged at 400 g and supernatant removed to
isolate the cells. The cell pellets were resuspended and washed with
0.01 M PBS three times. DNA was extracted using the BOMB.bio
protocol 6.3: extraction of TNA from mammalian tissues
(Oberacker et al,, 2019) (bomb.bio/protocols/). DNA quality was
assessed by gel electrophoresis and concentration by the HS dsDNA
Qubit assay (Thermo Scientific).

K562 cell culture and DNA extraction

K562 cells were cultured as previously described (Pencovich
etal., 2011). The cells were lysed with 1 mL of GITC lysis buffer (4 M
GITC, 2% w/v SDS, 50 mM Tris-HCI pH 8.0, 0.1% v/v antifoam 204
(Sigma-Aldrich), and 20 mM EDTA). DNA extraction was
performed with the BOMB.Bio protocol 6.1: TNA extraction of
mammalian cells with GITC (Oberacker et al., 2019) (bomb.bio/
protocols/). DNA quality was assessed by gel electrophoresis and
concentration by the HSdsDNA Qubit assay.

Leukocyte isolation and DNA extraction

Leukocytes were isolated from saliva (see above) by sequential
cellular filtration as previously described (Dunnet et al, 2022).
Briefly, cellular isolates from saliva were first filtered through a
40-pum, then a 20-pum mesh filter to exclude buccal cells. The purity
of the isolated leukocytes was assessed by microscopy. We counted a
minimum of 100 cells across two fields per slide. We observed a
purity of >99% for each sample.

Stool sample preparation and DNA
extraction

The use of human stool samples was approved by the
(Health)
(approval number H21/138). Stool samples were obtained from
Southern Community Laboratories (SCL), Dunedin. SCL had
previously processed the stool samples for use in a FCA;

University of Otago Human Ethics Committee

specifically, they were homogenised and diluted in a proprietary
extraction buffer. After the faecal calprotectin samples were
received, they were heat-inactivated at 75 °‘C before DNA
extraction with the Zymo Research™ Quick-DNA Fecal/Soil
Microbe Miniprep Kit. DNA extractions were performed
starting at step four of the protocol (steps 1-3 are for
homogenisation). Furthermore, to improve overall DNA yield
per sample, the volume of homogenised stool sample and
genomic lysis buffer was increased four-fold from 400 pL to
1,200 pL to 1,600 puL and 4,800 pL, respectively. The entirety of
each sample was run through the extraction column over multiple
spin cycles. The remainder of the DNA extraction was performed
as above. Other than these modifications, extraction was carried
Total DNA
concentration was measured with the HS dsDNA Qubit assay,

out as per the manufacturer’s instructions.

and DNA quality was assessed by gel electrophoresis.
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Bisulfite conversion of DNA

Bisulphite conversion for all samples was performed with the
Zymo EZ-DNA Methylation Direct MagPrep kit per the
manufacturer’s instructions. This protocol suggests various initial
conversion parameters specific to the amount and quality of input
DNA. Lysates with breastmilk-derived DNA were converted under
standard conditions for optimal cytosine conversion: 8 min at 98°C
followed by 3 h and 30 min at 64°C. Stool-derived DNA samples
were converted for 8 min at 98°C followed by 3 h and 30 min at 53°C
to reduce DNA degradation at the cost of less efficient conversion.
Bisulfite converted DNA was quantified using the Qubit ssDNA
Qubit assay (Thermo Scientific).

Bisulfite amplicon sequencing

A dual-index, two-step PCR protocol was used to amplify
bisulphite-converted DNA with the KAPA HiFi HotStart Uracil
+ kit (Roche) as described here (Dunnet et al., 2022). Briefly, in the
first round of PCR, the target region is amplified with primers
containing an overhanging linker sequence. The second round of
PCR uses primers comprised of the complementary linker sequence
attached to the Illumina P5 and P7 adapters and TruSeq indexes.
Each PCR reaction contained the KAPA HiFi HotStart Uracil +
ReadyMix, 0.3 uM of each primer, and 200 ng of bisulphite-
converted DNA topped up to 25 pL with nuclease-free water. All
primer sequences are shown in Table 1.

Breastmilk-derived DNA was first amplified with the HOXA3_
long and MAP4K1_long primer pairs. The following cycle parameters
were used: 95°C for 2 min, 23 cycles of 98°C for 20 s, 59°C for 10's, and
72°C for 20 s. A final elongation step was performed for 5 min at 72°C.
Reactions were centrifuged briefly to remove condensate on the tube
walls. Next, the products were cleaned using solid-phase reverse
immobilisation of carboxyl-coated magnetic beads suspended in
standard PEG buffer (18% w/v polyethylene glycol 8000 (PEG),
1 M NaCl, 10 mM Tris (pH 8.0), 1 mM EDTA, 0.05% v/v Tween-
20), followed by two washes in 70% ethanol. The cleaned PCR
products were eluted in 11.5 uL of filter sterile Milli-Q” water. The
eluted DNA was combined with 12.5 uL of the KAPA HiFi HotStart
Uracil + ReadyMix and 0.5 pL of each indexing primer (Illumina
P5 and P7 adapters with TruSeq index combined with the
complementary linker sequence). Amplification was repeated as
above for an additional five cycles.

Saliva, K562, and human stool-derived DNA were amplified
with the MAP4K1_short primer pair. The same approach as above
was followed with modifications to thermocycling to improve PCR
efficiency. The first amplification step was performed with the
following parameters: 95°C for 2 min, 25 cycles of 98°C for 20 s,
59°C for 40 s, and 72°C for 40 s. A final elongation step was
performed for 5 min at 72 °C. The PCR product solid-phase
reverse immobilisation clean-up was performed similarly as
above. The second amplification step used the following
parameters: 95°C for 2 min, 5 cycles of 98°C for 20 s, 59°C for
40's,and 72°C for 40 s, followed a final 5 min elongation step at 72°C.

Prior to sequencing, all amplicons were cleaned using solid-
phase reverse immobilisation of carboxyl-coated magnetic beads
suspended in standard PEG buffer (as above). Sequencing was
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TABLE 1 The primer sequences used in this study. Bold text indicates linker sequences for bisulphite amplicon sequencing. Note that this linker sequence is

the reverse complement of the P5 and P7 adapters.

Primer ID

Sequence

Target
strand

Target location
(hg38)

Bisulfite HOXA3_long ACACTCTTTCCCTACACGACGCTCTTCCGATCTGGTTTTGTTTGGGTTAGT + chr7:27,113,959-27,114,117

Forward GGTAT

Bisulfite HOXA3_long Reverse = GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCCAACAAAAAAACCCCT + chr7:27,113,959-27,114,117
TTATAAA

Bisulfite MAP4K1_long

Forward ATATTTATT

ACACTCTTTCCCTACACGACGCTCTTCCGATCTTGTTTTTATATGGAAGTT

chr19:
38,596,411-38,596,696

Bisulfite MAP4K1_long GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAACAACTCAAAACC chr19:

Reverse TAACCC 38,596,411-38,596,696
Bisulfite MAP4K1_short ACACTCTTTCCCTACACGACGCTCTTCCGATCTTTAGAAATGTTAGGGGAT + chr19:38,596,606-38,596,816
Forward AAGGTTT

Bisulfite MAP4K1_short GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTTCCTCAAACTCAATAC + chr19:38,596,606-38,596,816
Reverse TACCACTC

Tllumina P5 adapter with AATGATACGGCGACCACCGAGATCTACACNNNNNNACACT N/A N/A

TruSeq index CTTTCCCTACACGACGCTCTTCCGATCT
Tllumina P7 adapter with

TruSeq index TTCAGACGTGTGCTCTTCCGATCT

CAAGCAGAAGACGGCATACGAGATNNNNNNGTGACTGGAG N/A N/A

performed on the Illumina iSeql00 as per the manufactures
instructions.

Bioinformatic and statistical analyses

Raw read adapter and quality trimming were performed with
Cutadapt and TrimGalore (v.0.6.7) (Martin, 2011). Reads were
mapped to a custom “genome” consisting of only the amplicon
sequence using Bismark (v0.14.3) (Krueger and Andrews, 2011).
The sequences used for mapping were obtained from the UCSC
genome browser (HOXA3_long: chr7:27,113,957-27,114,300
(hg38); MAP4KI_long:  chr19:38,596,411-38,596,696  (hg38);
MAP4K]_short: chr19:38,596,606-38,596,816 (hg38)). Heatmaps,
linear regression, bionomical regression, cell-of-origin read
classification, and ROC curve generation were performed with
custom R scripts and the pROC package. The cut-off for a read
to be classified as leukocyte derived was >6 methylated CpG sites for
the HOXA3_long amplicon, >3 for the MAP4KI_long amplicon,
and >4 for the MAP4K1_short amplicon. All statistical analyses were

performed in R.

Results

DNA methylation at the HOXA3 and MAP4K1
loci can determine the proportion of blood-
derived cells in human breastmilk.

Human breastmilk contains three principal cell populations
(Ziller et al, 2013): blood-derived cells, comprised of both
mature leukocytes and hematopoietic stem cells (Moss et al.,
2018), breast-derived cells, comprised of lactocytes, myoepithelial
cells, and progenitor cells; and (Lam et al., 2020) probiotic bacteria
(Witkowska-Zimny and Kaminska-El-Hassan, 2017). In a healthy
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mother/child dyad, the proportion of leukocytes is high in the
colostrum (between 13% and 70%), defined as the first milk until
approximately 4 days postpartum, but rapidly decreases after that to
less than 1% of the total cells in breastmilk (Hassiotou et al., 2013a;
Witkowska-Zimny and Kaminska-El-Hassan, 2017). In contrast,
when either the mother or child is ill, leukocyte proportions increase;
during mastitis, leukocytes can constitute upwards of 90% of total
breastmilk cells (Hassiotou et al., 2013a). Therefore we first aimed to
determine if the previously described HOXA3 and MAP4KI DNA
methylation biomarkers (Dunnet et al., 2022) can accurately
deconvolute blood-derived cells from breast-derived cells in
human breastmilk. Seventy-five breastmilk samples from a single
individual were gathered over the course of 1 month with various
levels of meta-data (Figure 1A). Samples were recorded as
originating from either the left or right breast during the first
week of collection; samples after week one were either pooled
together from both breasts or had no associated information. We
examined DNA methylation at the HOXA3 and MAP4KI loci and
applied a previously described leukocyte estimation pipeline for each
sample (Dunnet et al., 2022). Reads were either highly methylated or
highly unmethylated with considerable concordance between both
loci (R* = 0.95, Figures 1B, C), suggesting both biomarkers function
similarly in breastmilk.

Next, we examined the leukocyte proportions from samples with
available meta-data on the breast of origin (Figure 2). During the
time these samples were taken, there was mastitis in the left breast
and an injury to the right breast resulting from breastfeeding. We
observed a high proportion of leukocytes in the left-breast-
associated milk throughout the week and elevated leukocyte
proportions in right-breast-associated milk occurring at the peak
of mastitis in the left breast and during the injury to the right breast
(Figure 2A). Outside of these time points, the number of leukocytes
in the right breast decreased to approximately 60% of the total cell
population. These results suggest that during mastitis, the
proportion of leukocytes is elevated primarily in the infected
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breast; however, a severe infection can produce elevated leukocyte
proportions in both breasts regardless of where the infection
is located.

Throughout the month-long period of sample collection, we
observed a high proportion of leukocytes. Indeed, the mean
leukocyte estimation across the collection period was 72.3% for
HOXA3 (median 76.6%) and 70.9% for MAP4KI (median =
73.8%); the sample with the lowest leukocyte proportion was
estimated at 23.5% by HOXA3 and 21.6% by MAP4KI.
Nevertheless, this was not unexpected because of continued
mastitis in the left breast and damage to the right breast.
Interestingly, leukocyte estimates did not shift dramatically on a
day-to-day basis when either the breast of origin was known or
the samples were comprised of milk from both breasts (Figures 2A, C);
however, we observed striking changes between milk samples
collected on the same day when breast-of-origin meta-data was
not available (maximum difference of 69%, Figure 2D, see
methods). Therefore, we hypothesise that these rapid changes in
cellular composition are partly the result of milk samples obtained
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from different breasts. Indeed, the cellular composition of breast milk
is dynamic and changes based on the period of lactation, infection
status, and infant feeding habits (Hassiotou et al., 2013a; Witkowska-
Zimny and Kaminska-El-Hassan, 2017; Riskin et al, 2012). It is,
therefore, unsurprising that each breast’s cellular composition can
differ depending on circumstance, especially in cases of infection.

Validation of a MAP4K1 bisulfite amplicon for
application with stool-derived human DNA

Total genomic DNA extracted from stool samples contains an
amalgamation of bacterial-, fungal-, viral-, and host-derived DNA. In
healthy individuals, the human component constitutes less than 1% of
the total DNA (Vincent et al., 2015). In contrast, chronic intestinal
inflammation damages the surrounding tissues and subsequently results
in cell death (Anderton et al., 2020), leading to the hypothesis that more
host-derived DNA will be present in the stool. Indeed, it has been shown
that both mitochondrial DNA and genomic DNA amounts increase
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FIGURE 2

Tracking leukocytes in breastmilk over time (A) The proportion of leukocytes in milk from either the left (red line) or right (blue line) breast over

1 week as measured by HOXA3 (top) and MAP4K1 (bottom). Dotted vertical lines indicate the timepoint of events (Ziller et al.,, 2013): onset of flu-like
symptoms as a result of left breast mastitis (Moss et al., 2018), peak of left-breast mastitis, including fever (Lam et al., 2020), injury to the right breast as a
result of breastfeeding. (B) Scatterplot of HOXA3 vs. MAP4K1 methylation (top) and leukocyte estimate (bottom) for each sample with breast-of-
origin meta-data. (C) Proportion of leukocytes measured by HOXA3 and MAP4K1 from milk known to be pooled from both breasts. (D) Proportion of
leukocytes measured by HOXA3 and MAP4K1 from milk where breast of origin (or its mixing) was not recorded.

based on the severity of inflammatory bowel disease (IBD)-related
intestinal inflammation (Casellas et al., 2004; Vrablicova et al., 2020).
We hypothesized that under inflammatory conditions, DNA from
neutrophils that have migrated into the intestinal lumen, could be
detected with our DNA methylation assay. We obtained 48 faecal
samples that had previously undergone FCA testing for our analysis.
We initially examined a subset of these samples with the HOXA3 and
MAP4K]I (Dunnet et al., 2022) amplicons described above; however, we
were unable to obtain sufficient amplicon copies for sequencing within
30 PCR cycles. Over-amplification with more than 30 cycles can lead to
clonal amplification of only a few DNA molecules, leading to a
misinterpretation of DNA methylation patterns. As a result, shorter
amplicons were designed to improve PCR yield (Table 1; Bisulfite
MAP4KI_short). We sequenced leukocyte and K562 DNA (the latter
is unmethylated in the HOXA3 and MAP4KI loci of interest (Dunnet
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et al,, 2022)) to ensure the DNA methylation patterns are consistent
between the short and long amplicons. As expected, we observed that
leukocytes were highly methylated (84.9%), while K562 DNA was
virtually devoid of DNA methylation (4.6%) (Figure 3A). The near
absence of methylation of K562 cells parallels the methylation of these
loci in colonic epithelial cells (Dunnet et al., 2022). The two cell types
cluster separately from one another based upon the number of
methylated CpG sites per read (Figure 3B). To classify reads as
either derived from mature leukocyte DNA or K562 DNA we
employed a binomial logistic regression model and constructed a
receiver operating characteristic (ROC) curve using the ‘pROC’
package in R. The optimal threshold for leukocyte classification
was if >4 of seven CpG sites were methylated (sensitivity =
98.3%, specificity = 99.98%, Figure 3C). Furthermore, the area
under the ROC curve was 0.998, indicating that the methylation
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leukocyte and K562 DNA mixes. The dotted red line indicates a perfect fit, the solid grey line indicates the observed trendline, and the horizontal dotted
grey line indicates a 50% leukocyte estimate. (F) Bar chart of leukocyte estimates from two-fold, serially diluted saliva-derived DNA.

patterns obtained from this amplicon perform exceptionally
well at distinguishing blood leukocyte-derived DNA from
K562 DNA (Figure 3D).

We next asked if the short MAP4K1 PCR showed preferential
amplification of methylated or unmethylated alleles and if leukocyte
estimates are consistent across differing amounts of input DNA. We
combined blood leukocyte derived DNA and K562 DNA at a 50:
50 ratio and observed a leukocyte estimate of 51.5%. With leukocyte
and K562 DNA alone we observed leukocyte estimates of 98.3% and
0.2% respectively (Figure 3E). Finally, we performed a two-fold
serial dilution with saliva-derived DNA (a combination of salivary
leukocytes and buccal epithelium (Theda et al., 2018)) and observed
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consistent levels of leukocyte estimates until 0.98 ng of DNA, where
the result became discordant (Figure 3F). This suggests the assay can
accurately determine the proportion of leukocyte-derived DNA with
as little as 2 ng of input DNA.

MAP4K1 DNA methylation can identify
intestinal inflammation as measured by
faecal calprotectin

To determine if our bisulfite amplicon sequencing pipeline could
be used to detect intestinal inflammation we applied the pipeline
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Comparison of the MAP4K1 bisulfite amplicon sequencing assay to the FCA. (A) Scatterplot of leukocyte estimates based on MAP4K1 methylation in
stool samples vs. associated faecal calprotectin score. (B) ROC curve for the MAP4K1 bisulfite amplicon sequencing assay using FCA as the

reference standard.

(with the shorter MAP4KI amplicon) to stool samples that had
previously undergone a FCA. The cutoff for a positive faecal
calprotectin test result in the laboratory we obtained samples
from is 50 pg/g. However, various cut-off thresholds have been
suggested in the literature to best balance sensitivity and
specificity (Jha et al., 2018; Rogler et al., 2013; Ricciuto and
Griffiths, 2019). The reference interval of calprotectin is
10-100 pg/g for Caucasians, depending on the kit (Bjarnason,
2017), although the interval between 50 and 100 pg/g is thought
to have some diagnostic value (Ricciuto and Griffiths, 2019). In
contrast, a calprotectin score of up to 200 pg/g can be considered
normal for people of African-Caribbean descent (Bjarnason,
2017). Furthermore, thresholds as high as 250 ug/g have been
shown to markedly increase specificity at the cost of sensitivity
(Jha etal., 2018; Rogler et al., 2013). For this reason, we examined
the leukocyte estimates in three discrete bands: calprotectin
scores less than 50 pg/g (low), between 50 and 250 pg/g
(moderate), and greater than 250 pg/g (high). Low, moderate,
and high calprotectin samples had mean leukocyte estimates of
51.8% (S.D. = 28.4%), 77.9% (S.D. = 22.9%), and 94.2% (S.D. =
4.2%), respectively (Figure 4A). The percentages of leukocyte-
derived DNA in stool from low calprotectin samples were
extremely variable, ranging from 3.4% to 88.7%. In contrast,
leukocyte estimates in moderate and high samples were
extremely similar and all above 70% (with the exception of
one moderate sample with a calprotectin level of 52 ug/g and a
leukocyte estimate of 11.4%). We observed a statistically
significant difference between groups when either 50 pg/g (one
tailed t-test, p-value = 4.7E-03) or 250 ug/g (one tailed t-test,
p-value = 0.02) were used as the threshold for a positive test;
however, there was no significant difference between moderate
and high calprotectin samples (one tailed t-test, p-value = 0.07).
Our results suggest that human DNA in stool from even a mildly
inflamed intestine, as measured by faecal calprotectin, is almost
completely derived from leukocytes. In a low inflammatory
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environment, the proportion of leukocytes in stool is
extremely variable, although this might be the result of a
relatively small amount of colonic epithelial cells being
sloughed out of the lumen.

We next examined how well the methylation assay could
function as a diagnostic marker. Since we did not have access to
the clinical outcomes of each patient, we used the calprotectin level.
With a 50 ug/g threshold, the FCA has a sensitivity and specificity of
approximately 97% and 80%, respectively (Laserna-Mendieta and
Lucendo, 2019; Degraeuwe et al., 2015; Henderson et al., 2014), so
while not perfect, offers some indication of assay applicability. We
constructed an ROC curve and observed an area under the curve of
0.847, indicating an high level of agreement between assays
(Figure 4B). Using these data, the optimal threshold for the
methylation assay to identify elevated FCA is a leukocyte
estimate of >54.9%, with a sensitivity of 0.94 and specificity of
0.67. While promising, future studies will need to apply this in the
context of clinical outcomes.

Discussion

In this proof-of-concept study we have applied two previously
identified pan-leukocyte biomarkers (Dunnet et al., 2022), one each
at the HOXA3 and MAP4KI loci, to clinically relevant tissue
samples: breastmilk and stool. With high-throughput sampling of
breastmilk, we have shown that the proportion of leukocytes is
extremely variable over short periods of time and between each
breast. In the process, we have incorporated a new primer set into
the pipeline, highlighting its ease of use and modifiability. Finally, we
have demonstrated that even slight intestinal inflammation results
in the majority of stool-derived DNA to be of leukocyte origin.
Overall, our results show the assay pipeline can accurately and
precisely determine the proportion of leukocytes from low
levels of DNA.
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TABLE 2 Total reagent cost of performing the HOXA3 and MAP4K1 bisulfite amplicon sequencing assay. Per-sample costs are calculated as the total cost of
purchasing the reagent divided by the proportion of the reagent used for a single reaction. Kit prices are at retail price. All costs are in New Zealand
Dollars (NZD).

Reagent Use Total cost Number of reactions  Cost per sample
Zymo Research™ Quick-DNA Fecal/Soil Microbe Miniprep Kit = DNA extraction $604.00 50 $12.08

Zymo EZ-DNA Methylation Direct MagPrep kit (4 x 96 reactions) | Bisulfite conversion  $1,349.00 384 $3.51

PCR reagents PCR amplification $540.00 100 $5.40

iSeq100 v2 cartridge and flow cell DNA Sequencing $990.00 1 varies

TABLE 3 The cost per sample of the HOXA3 and MAP4K1 bisulfite amplicon sequencing assay. Breastmilk cell lysis is performed in conjunction with the
bisulfite conversion as part of the Zymo EZ-DNA Methylation Direct MagPrep kit. All costs are in New Zealand Dollars (NZD).

Number of Per sample Per sample Per sample PCR Per sample DNA Total per
multiplex DNA bisulfite amplification cost sequencing cost sample
sequencing extraction cost conversion cost cost
samples

Stool 50 $12.08 $3.51 $5.40 $19.80 $40.79
100 $12.08 $3.51 $5.40 $9.90 $30.89
250 $12.08 $3.51 $5.40 $3.96 $24.95
500 $12.08 $3.51 $5.40 $1.98 $22.97

Breastmilk 50 - $3.51 $5.40 $19.80 $28.71
100 - $3.51 $5.40 $9.90 $18.81
250 - $3.51 $5.40 $3.96 $12.87
500 - $3.51 $5.40 $1.98 $10.89

Demonstration of cost-effectiveness

Cost-effectiveness is crucial in screening assay design; an
assay that is too expensive to run has limited clinical value
regardless of its performance metrics. The total reagent cost
of performing either the HOXA3 or MAP4K]I dual-index PCR
is the sum of costs for DNA extraction, bisulfite conversion,
PCR amplification, and DNA sequencing per sample (Tables 2,
3). The per-sample cost is dramatically reduced as more
individual samples are multiplexed together; thus, the high-
throughput nature of the assay enables consumable cost
reduction, down to $23 NZD per stool sample or $11 NZD
per breastmilk sample.

High-throughput assaying of leukocyte
fractions in human breastmilk

Leukocytes comprise a relatively small proportion of cells
within human breastmilk. For example, in colostrum,
leukocytes make up 8%-10% of total cells but are drastically
reduced to approximately 1% of cells after 1-week post-partum
(Hassiotou et al., 2013a; Trend et al., 2015). However, the fraction
of leukocytes increases during illness to the mother or child, with
the highest increase attributed to mastitis, where the percentage
can exceed 90% (Hassiotou et al., 2013a). Thus, leukocyte
proportions are an adequate measure of the overall health of

the mother/infant dyad.
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We applied the HOXA3 and MAP4KI DNA methylation
biomarkers (Dunnet et al., 2022) to milk samples collected from
one individual during a lengthy bout of mastitis and were able to
track increases and decreases in the leukocyte fraction with
considerable consistency between the two biomarker loci. At
times during the study period, leukocyte proportions approached
normal baseline levels (Figure 2D); however, mostly we recorded
high leukocyte production on account of the ongoing infection
and injury.

Over the timepoints where breast-of-origin for milk samples
could be tracked, we observed clear differences in leukocyte
proportions. The primary site of mastitis (the left breast)
maintained very high leukocyte levels throughout the peak of
infection and in the days immediately following. Interestingly
however, milk from the unaffected right breast produced greater
than 90% leukocytes at the peak of the infection in the left breast
(Figure 2A), but this dropped to 60% in the days immediately
following infection.

Previous studies have shown that the levels of leukocytes in
breastmilk increase when either the mother or infant is unwell and
are dependent on the illness (Hassiotou et al, 2013a).
Gastrointestinal infections and vaginal thrush in the mother
induce small increases in leukocyte fraction, as do infant-only
infections. However, illness in the mother can induce an increase
in leukocyte fractions (Hassiotou et al., 2013a). When the mother
has mastitis, leukocyte proportions in the unaffected breast have
been reported to increase above baseline levels (Hassiotou et al.,
2013a). In our time series, the unaffected right breast had a greatly
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elevated proportion of leukocytes, perhaps indicative of a non-
symptomatic infection or injury in that breast.

Leukocyte fractions in breastmilk have been suggested as a
diagnostic marker to assess the health of mother/infant dyads
(Hassiotou et al., 2013a). However, cellular composition studies
employing flow cytometry often only examine milk from one or two
timepoints (Riskin et al., 2012; Indumathi et al., 2013). One study on
mastitis follows a case/control study design but does not explore the
initiation and recovery from mastitis (Riskin et al, 2012).
Furthermore, longitudinal studies frequently collect samples
weeks apart (Hassiotou et al, 2013a; Trend et al, 2015;
Hassiotou et al., 2013b; Nyquist et al., 2022). Given that the
cellular components of human breastmilk are dynamic based on
the stage of lactation (Trend et al., 2015), degree of breast fullness
(Hassiotou et al., 2013b), infant feeding habits (Witkowska-Zimny
and Kaminska-El-Hassan, 2017), the health of the mother infant
dyad (Hassiotou et al., 2013a), and that the macronutrients within
breastmilk are variable throughout the day (Hahn-Holbrook et al.,
2019; Paulaviciene et al., 2020), it is not unexpected that the cell
proportions of breastmilk change on a near daily basis. Indeed, the
breastmilk samples employed in this study were collected almost
daily over a 1-month period where continuous collection enabled
the tracking of marked leukocyte dynamics within very short
High-throughput DNA
methylation biomarkers sampling of

timeframes. technology such as
can enable extensive
breastmilk to characterise the cellular dynamics before, during,
and after mastitis events with minimal cost and resources. While
the process of bisulphite conversion and DNA sequencing is more
time-consuming than flow cytometry for individual samples, batch
testing of hundreds of samples simultaneously affords considerable
efficiency of testing. As such, there is potential for this technology to
be applied in a population-wide screen to track breast-related illness
in lactating mothers or to further the understanding of the events
leading up to mastitis provides more opportunities to prevent severe

illness and guide treatment protocol.

Benchmarking a DNA methylation-based
assay for the detection of leukocytes in stool
against the faecal calprotectin assay

Stool is a tissue source for identifying intestinal tract pathologies
and the clinical benefits of the FCA are well documented. For
example, it may be used to aid diagnosis of infection (Sykora
et al, 2010; Shastri et al., 2008), colorectal cancer (von Roon
2007), disease (Ertekin 2010),
inflammatory bowel disease (IBD) (Laserna-Mendieta and
Lucendo, 2019; Ayling and Kok, 2018). While FCAs often do not
determine the cause of inflammation, they are extensively used

et al, coeliac et al, or

because of their ability to distinguish between IBD and functional
bowel disorders, such as irritable bowel syndrome (IBS) (Banerjee
et al.,, 2015).

Inflammatory bowel disease describes a group of chronic
inflammatory diseases affecting the gastrointestinal tract. There
are two main types of IBD: ulcerative colitis (UC) and Crohn’s
disease (CD). Ulcerative colitis explicitly occurs in the colon and
manifests as inflammation of the mucosal layer, while CD can
present in any area of the gastrointestinal tract and is
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distinguished by granulomatous inflammation that can penetrate
deep into the surrounding tissues (Ayling and Kok, 2018; Matsuoka
and Kanai, 2015; Baumgart and Carding, 2007). In contrast, IBS has
no identifiable pathophysiological features, and accordingly, no
inflammation (Saha, 2014). Despite this, abdominal pain and
diarrhoea are common symptoms in both IBD and IBS.
Therefore, an endoscopy, occasionally followed by a histological
examination of biopsied tissue, is required to diagnose IBD
(Bharadwaj et al., 2018). Unfortunately, endoscopies are time-
consuming, highly invasive for the patient (with some risk of
complications), and require healthcare resources (Fisher et al,
2011). Using faecal calprotectin to distinguish between IBD and
IBS minimises unnecessary endoscopies by screening prospective
patients and monitoring patient remission to ensure that current
treatment regimens are effective (Ayling and Kok, 2018; van
Rheenen et al, 2010). Several meta-analyses have reported high
sensitivities and excellent negative predictive values for the FCA
(reviewed in Laserna-Mendieta and Lucendo (2019)) for diagnosing
and monitoring IBD.

Rational for benchmarking a new intestinal
inflammation detection tool

While the FCA has clinical utility when IBD is suspected, several
limitations exist. Most commercial assays recommend >50 ug/g of
calprotectin as the threshold for a positive test (Ayling and Kok,
2018). However, young children and adults over 65 have a higher
baseline faecal calprotectin level. An initial meta-analysis suggested
that the sensitivity of the FCA was significantly reduced in paediatric
populations (van Rheenen et al., 2010). Contrary to this, more recent
meta-analyses demonstrate that paediatric sensitivity is high
(0.97-0.98) but specificity is reduced in comparison to adults for
a 50 pg/g cut-off (Laserna-Mendieta and Lucendo, 2019; Degraeuwe
etal., 2015; Henderson et al., 2014). The FCA has a lower sensitivity
for adults over 65, resulting in lower diagnostic accuracy in this
demographic (Padoan et al., 2018). Several studies have proposed
various increases to cut-off thresholds in these groups, but these
have not yet been implemented in a clinical setting (Padoan et al.,
2018; Joshi et al.,, 2010; Mindemark and Larsson, 2012; Ezri and
Nydegger, 2011). The exact reason elderly individuals have an
increase in faecal calprotectin is currently unknown; however,
one possible explanation is ‘inflammaging’ - an age-associated
low-grade chronic inflammation in the absence of infection
(Leonardi et al., 2018). In our study, methylation-based analysis
detected a leukocyte signal in faecal samples that had a negative FCA
result. Our previous work (Dunnet et al., 2022) showed specificity of
the methylation pattern to leukocytes, whereas calprotectin is
relatively specific to neutrophils raising the possibilities that we
have detected non-neutrophlic leukocytes, such as monocyte/
macrophages, eosinophils or lymphocytes. Alternatively the
negative FCA result might reflect some of the factors that result
in its low sensitivity.

The stability of faecal calprotectin over time has been extensively
studied since the test was first proposed. An initial study reported
that faecal calprotectin is stable at room temperature for up to 7 days
(Roseth et al.,, 1992). Since then, several studies have shown that
calprotectin is significantly degraded after 48-72 h at 20°C (Haisma
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et al., 2019; Lasson et al., 2015; Oyaert et al., 2017). Storage at 4°C
significantly reduces sample degradation for up to a week (Haisma
et al., 2019). Calprotectin stability may prove problematic when
samples must be transported long distances to testing facilities (for
example, from rural communities) unless samples can be chilled
during travel. In contrast, DNA methylation is a very stable
epigenetic mark, although DNA itself is susceptible to hydrolysis
when stored in an aqueous solution. However, storage of DNA in an
appropriate buffer
degradation. For example, in an experiment measuring DNA
stability in stool samples, Olson et al. (2005) (Olson et al., 2005)
show no DNA loss after 144 h of storage (the longest time point

conservation can drastically decrease

measured) at room temperature in three of four buffers tested. Their
data suggest that DNA can be stable at least twice as long as
calprotectin at room temperature.

Measuring faecal calprotectin is performed with an enzyme
immunoassay, and each manufacturer uses unique proprietary
antibodies. Different FCAs correlate well to patient outcomes, but
absolute values cannot be compared between assays (Laserna-
Mendieta and Lucendo, 2019; Ayling and Kok, 2018). For
example, one study showed a 3.8-fold difference in the amount
of calprotectin measured by different assays in a quality assurance
scheme sample (Whitehead et al., 2013), while significant inter-assay
differences have been observed in paediatric and adult IBD cases
(Kittanakom et al., 2017; Labaere et al., 2014). Therefore, to achieve
accurate follow-up testing during patient treatment, medical testing
facilities must use a standardised FCA (Ayling and Kok, 2018).
Alternatively, this may be alleviated with an open-source PCR-based
DNA methylation assay where primer sequences and reaction
conditions are known.

Calprotectin is also elevated in patients with pancreatic
insufficiency (such as those with cystic fibrosis) (Ellemunter
et al.,, 2017). This is likely due to a reduction of trypsin, which
readily degrades calprotectin (Dumoulin et al., 2015). Here, a
DNA methylation-based approach to identify leukocyte DNA
might provide a more accurate representation than faecal
calprotectin.

In healthy individuals, host DNA in stool is thought to
predominately originate from sloughed colonic epithelial cells
(He et al., 2019); however, cancers of the intestinal tract also
shed DNA into the intestinal lumen (Whitney et al., 2004).
Amplification of stool-derived DNA has been proposed as a
non-invasive  cancer  detection  tool  (Mojtabanezhad
Shariatpanahi et al., 2018). We hypothesized that the MAP4KI
pan-leukocyte DNA biomarker coupled with the our high-
throughput pipeline would detect an increase in leukocytes
during inflammation which may be clinically relevant. Indeed,
the high level of agreement between our pipeline and the FCA
emphasises its clinical potential. We have shown that under even
mild inflammatory states (as assessed by FCA), DNA from
leukocytes is the dominant fraction of human-derived DNA.
Interestingly, low calprotectin stool samples (under 50 pg/g)
exhibited extremely variable proportions of leukocytes. This
observation could be the result of a relatively low amount of
sloughed epithelial cells such that even minor increases in
leukocytes dramatically alters the overall proportion of cell
types in each sample. Alternatively, this could be attributed to
imprecisions in either the faecal calprotectin or DNA methylation
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assays. Patients with high levels of intestinal inflammation contain
increased human DNA in their stool (Vincent et al., 2015), so it is
likely the assay will perform better under higher levels of
inflammation where more DNA is accessible for amplification.
The FCA has high negative predictive value, but has been reported
to generate a significant number of false positives (Freeman et al.,
2021). As such, one possible application of our pipeline is for it to
be used in tandem with the FCA to reduce the number of false
positive results and subsequently the number of patients requiring
an endoscopy.

Conclusion

In conclusion, we have applied a high-throughput, cost-effective
DNA methylation biomarker pipeline to identify leukocytes from a
mixed tissue. By employing a rapid sampling approach, we show
that leukocyte proportions in breastmilk vary greatly with short
periods of time. Leukocyte proportions in breastmilk are a useful
health indictor of the mother/infant dyad, so a rapid sampling
approach may provide the most accurate clinical information in
this context. In addition, we have also shown that leukocyte-derived
DNA can be detected in stool using our pipeline. We observed that
even with low levels of intestinal inflammation as measured by faecal
calprotectin, leukocyte-derived DNA dominates the human DNA
fraction in stool samples.
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