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Introduction: The nocturnal behavior of many ungulate species has currently

not been sufficiently studied. However, the behavioral patterns of large

herbivores vary greatly between day and night, and knowledge about species’

behavior is not only scientifically interesting, but also required for successful

animal management and husbandry.

Material and methods: In the current study, the nocturnal behavior of 196

individuals of 19 ungulate species in 20 European zoos is studied, providing the

first description of the nocturnal behavior of some of the species. The

importance of a wide range of possible factors influencing nocturnal behavior

is discussed. Specifically, the behavioral states of standing and lying were

analyzed, evaluating the proportion and number of phases in each behavior.

The underlying data consist of 101,629 h of video material from 9,239 nights. A

deep learning-based software package named Behavioral Observations by

Videos and Images Using Deep-Learning Software (BOVIDS) was used to

analyze the recordings. The analysis of the influencing factors was based on

random forest regression and Shapley additive explanation (SHAP) analysis.

Results: The results indicate that age, body size, and feeding type are the most

important factors influencing nocturnal behavior across all species. There are

strong differences between the zebra species and the observed Cetartiodactyla

as well as white rhinos. The main difference is that zebras spend significantly less

time in a lying position than Cetartiodactyla.

Discussion: Overall, the results fit well into the sparse existing literature and the

data can be considered a valid reference for further research and might help to

assess animal's welfare in zoos.

KEYWORDS

animal behavior, REM sleep position, random forest regression (RFR), zoo animals,
Cetartiodactyla, Perissodactyla
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1 Introduction

There are over 250 species of odd-toed and even-toed ungulates,

and Africa in particular is home to around 100 representatives of

these orders (Ezenwa et al., 2006; IUCN, 2022). Ungulates are

moreover characteristic animals of the African landscape and also

include some of the most widely kept zoo animals (Rose and Robert,

2013), as well as the most prominent farm animals such as cattle,

sheep, pigs, or horses (FAO, 2013). As the African continent

consists of multiple habitats, including different climatic and

vegetation zones, African ungulates already show a great diversity

in body measurements or physiology.

The behavioral patterns of large herbivores are known to vary

greatly between day and night, while most ungulates show a diurnal

to crepuscular cycle, conditions under which they are most active

during the day (Bennie et al., 2014; Gravett et al., 2017; Wu et al.,

2018). For wild Arabian oryx, it is known that especially during the

colder months, sleep behavior shifts heavily into the night (Davimes

et al., 2018). Nevertheless, for many ungulate species, only very few

studies on the nocturnal behavior are available, both in the wild and

in zoos (Berger, 2010; Rose and Robert, 2013). In particular, the

sleeping behavior of many ungulates is poorly studied (Lyamin

et al., 2021). On the other hand, the nocturnal behavior of very

prominent ungulates like giraffes (Grzimek, 1956; Tobler and

Schwierin, 1996; Seeber et al., 2012; Sicks, 2016; Burger et al.,

2021), elephants (Gravett et al., 2017), or farm animals like cattle

(Ruckebusch, 1972; Ternman et al., 2014; Fukasawa et al., 2018) is

well studied. However, there are, to the best of our knowledge, many

other ungulates whose nocturnal behavior has not been analyzed

currently (Campbell and Tobler, 1984; Lesku et al. 2008).

The knowledge about species’ behavior is not only scientifically

interesting, but it is also crucial for successful animal management

and husbandry (Rose and Riley, 2021). This can lead to improved

holding conditions and thus can benefit animal welfare (Berger,

2010; Brando and Buchanan-Smith, 2018; Walsh et al., 2019; Rose

and Riley, 2021). Early detection of conspicuous behavioral patterns

may indicate reduced animal welfare due to disease or stress, and

zoos could quickly take countermeasures by measuring these

behavioral patterns. For instance, sleep is an important factor of

well-being (Hänninen et al., 2008; Fukasawa et al., 2018; Northeast

et al., 2020). In particular, the monitoring of rapid eye movement

(REM) sleep allows us to draw conclusions about stress in giraffes

(Sicks, 2016). Moreover, it is known to be a prognostic indicator

during infectious disease in rabbits (Toth et al., 1993). Knowledge

about a species’ expected behavior is required for those monitoring

tasks. However, observing nocturnal behavior is challenging,

especially in the wild. The analysis of animals’ behavior in zoos is

a helpful tool to generate broader knowledge and can be used as a

good basis and starting information for observations in the field

(Kleiman, 1992; Ryder and Feistner, 1995). Studies conducted in

zoos have some advantages because they provide consistent and

better access to animals and easier conditions for data collection

(Ryder and Feistner, 1995), which is critical for large-scale studies.

Of course, zoo animals have a quite different ecology from wild

living conspecifics. Therefore, it is possible that zoo animals show
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different activity budgets. However, many characteristics of zoo

animals and their wild conspecifics remain the same such that

observations in zoos help us to learn about the species’ behavior in

the wild (Rees, 2023).

In this research, a large-scale study was conducted to contribute

to the knowledge of the nocturnal behavior of African ungulates.

The behavioral poses “standing,” “lying—head up” (LHU), and

“lying—head down” (LHD) were analyzed. LHD is the typical REM

sleep posture and can be used to estimate REM sleep. The large

advantage in contrast to physiological measurements is that REM

sleep can be estimated by completely non-invasive methods on

video recordings. Although REM sleep can only be approximated by

its typical body posture, this approximation is known to be decent,

in particular for longer periods of LHD (Ternman et al., 2014;

Lyamin et al., 2021; El Allali et al., 2022).

The current study examined the nocturnal behavior of 19

species of the orders Perissodactyla and Cetartiodactyla in 20

zoos. A total of 9,239 nights of video recordings from 196

animals were analyzed. This dataset allows us to analyze the

importance of different factors influencing nocturnal behavior

using random forest regression followed by Shapley additive

explanation (SHAP) analysis. The extensive amount of data could

be analyzed using Behavioral Observations by Videos and Images

Using Deep-Learning Software (BOVIDS), a deep-learning software

package for pose estimation that was developed specifically for

this task (Gübert et al., 2022). Pose estimation is a machine

learning task that automatically identifies a pose, like standing or

lying, from given image material. For some of the species studied,

the current study provides the first description of nocturnal

behavior that we know of and greatly improves the available data

for other species.
2 Materials and methods

2.1 Ethogram

This study concentrates on a basic description of behaviors that

can be detected via pose estimation. Thus, the main behaviors

“standing” and “lying” are distinguished. Lying is furthermore split

up into LHU and LHD. If an animal is not present or the behavior

cannot be inferred from the recording, the category “out” is given.

The investigated behaviors are defined in the following ethogram

(Table 1 and Figure 1) based on Gübert et al. (2022).

LHD is the typical REM sleep posture and thus can be used to

estimate REM sleep. This is based on the fact that due to postural

atonia, the animal’s head needs to be rested in REM sleep (Lima

et al., 2005; Zepelin et al., 2005). It is a common method for

estimating REM sleep by the LHD position; recent studies using this

method include studies of Cetartiodactyla, like the common eland

(Zizkova et al., 2013), the giraffe (Seeber et al., 2012), the dromedary

camel (El Allali et al., 2022), and cattle (Ternman et al., 2014).

Moreover, LHD is also used to estimate REM sleep in various

studies on Perissodactyla’s behavior (Houpt, 1980; Pedersen et al.,

2004; Greening and McBride, 2022).
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2.2 Data collection

The data on which this study is based were collected by video

recordings during the colder seasons (September to May) between

2017 and 2021 in 20 European Association of Zoos and Aquaria

(EAZA) zoos in Germany (Zoologische Gärten Berlin (Tierpark and

Zoo), Zoo Vivarium Darmstadt, Zoo Dortmund, Zoo Duisburg,

Zoo Frankfurt, Zoom Erlebniswelt Gelsenkirchen, Erlebnis-Zoo

Hannover, Zoo Heidelberg, Kölner Zoo, Zoo Krefeld, Opel-Zoo

Kronberg, Zoo Landau in der Pfalz, Zoo Leipzig, Allwetterzoo

Münster, Zoo Neuwied, Zoo Osnabrück, Zoologischer Garten

Schwerin, Der Grüne Zoo Wuppertal) and the Netherlands

(Königlicher Burgers Zoo Arnheim).

Two different datasets were used in the study. The larger dataset

consisted of all evaluated data, i.e., 9,239 nights with a total of
Frontiers in Ethology 03
101,629 h. On this dataset, the behavioral poses standing and lying

were distinguished. On a subset of this dataset consisting of 6,265

nights with a total of 68,915 h, lying was distinguished into LHU

and LHD. Further details of the dataset can be found in the

Supplementary Material (S1 Table).

The recordings on the complete dataset include 196 individuals

and 19 ungulate species from the orders Perissodactyla and

Cetartiodactyla. In this study, the Perissodactyla include the

species plains zebra (Equus quagga), Grevy’s zebra (Equus grevyi),

and mountain zebra (Equus zebra) of the family Equidae as well as

the white rhino (Ceratotherium simum) of the family

Rhinocerotidae. Furthermore, the order Cetartiodactyla comprises

the family Giraffidae, including the okapi (Okapia johnstoni), and

the family Bovidae. The African bovids studied are the greater kudu

(Tragelaphus strepsiceros), sitatunga (Tragelaphus spekii), bongo
FIGURE 1

The three observed behavioral poses: standing (first column) and lying (second and third columns). Lying is distinguished further into lying—head up
(second column) and lying—head down (third column). The postures are shown by different species: waterbuck, bongo, mountain reedbuck (first
row), okapi, blesbok, greater kudu (second row), mountain zebra, white rhino, and plains zebra (third row).
TABLE 1 Ethogram of the studied ungulates, including the description of the three observed behavioral poses.

Behavioral pose Definition

Standing Standing The animal stands in an upright position. Other behaviors like feeding, resting, walking, or ruminating can occur simultaneously.

Lying Lying—head up
(LHU)

The animal is in sternal recumbency with the trunk touching the ground. Its head is lifted.

Lying—head down
(LHD)

Cetartiodactyla: The animal is in sternal recumbency with the trunk touching the ground (like in lying—head up), but its head is
resting on the ground.
Perissodactyla: The animal is lying in lateral recumbency.
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(Tragelaphus eurycerus), common eland (Tragelaphus oryx),

b le sbok (Damal i s cus pygargus ) , common wi ldebees t

(Connochaetes taurinus), roan antelope (Hippotragus equinus),

sable antelope (Hippotragus niger), scimitar-horned oryx (Oryx

dammah), addax (Addax nasomaculatus), waterbuck (Kobus

ellipsiprymnus), mountain reedbuck (Redunca fulvorufula), and

African buffalo (Syncerus caffer), whereby within the last species

the two subspecies African savannah buffalo (S. caffer caffer) and

African forest buffalo (S. caffer nanus) are distinguished due to

morphological differences in body measurements. Finally, the data

also contain recordings of the Arabian oryx (Oryx leucoryx).

The video recordings were conducted by cameras capable of

night vision due to integrated infrared emitters (Lupus LE139HD or

Lupus LE338HD with the recording device LUPUSTEC LE800HD

or TECHNAXX PRO HD 720P). The resolution of the recordings

ranged from 704 × 576 px to 1920 × 1080 px, and the framerate was

1 fps. The chosen recording time was from 7 p.m. to 6 a.m., so that

no keepers were present during this time and all animals were

already in the stable for some time at the beginning of the recording.

Food was provided ad libitum. Furthermore, the natural light

conditions, which are known to be an important zeitgeber (an

external or environmental cue that synchronizes or entrains

rhythms in an animal), are comparable throughout the recording

period (Merrow et al., 2005). One recording from 7 p.m. to 6 a.m. is

called a “night,” and recordings on which an animal is not present

for at least 20% of the time were dismissed. Additionally, to study

quantities relating to the number of phases of a behavior shown for

one night, nights with at least three occurrences of “out of view”

were also dismissed. Ways of evaluating the video material are

explained in the next section “Software.” The data were recorded

continuously, so there is an exact time span for each behavioral

sequence (Martin and Bateson, 2015).
2.3 Software

To evaluate the video recordings, the software package BOVIDS

was used (Hahn-Klimroth et al., 2021; Gübert et al., 2022). As this is

a deep-learning-based approach, testing data need to be produced

manually. At least two nights per individual were evaluated

manually with the open-source software Behavioral Observation

Research Interactive Software (BORIS), version 7.7.3 (Friard and

Gamba, 2016). In total, 517 nights corresponding to 5,687 h of video

material were annotated manually. These manually annotated data

were the testing set. On this testing set, average f-scores of 0.992 ±

0.003 (lying), 0.979 ± 0.006 (standing), and 0.956 ± 0.006 (LHD)

were achieved. Detailed information on the performance is given in

the Supplementary Material (S2 Table and S3 Figure). The output of

BOVIDS is a continuous sequence such that every 7 s of a recording

was assigned a behavioral class. To minimize errors due to

automated analysis, BOVIDS applies a set of so-called post-

processing rules that dismiss short events. According to Gübert

et al. (2022), phases of lying and standing below 5 min are dismissed

as well as phases of LHD below 35 s.

For building and analyzing data scientific models, Python’s

scikit-learn library (Pedregosa et al., 2011) and the SHAP library
Frontiers in Ethology 04
(Lundberg and Lee, 2017) were used. Furthermore, data preparation

was conducted by using Python library pandas (McKinney, 2010;

Pandas Team, 2022). Regressions were done in R (R Core Team,

2014), and visualizations were prepared with ggplot2 (Wickham,

2016) or matplotlib (Hunter, 2007). For all figures and tables, a

scientific species name’s abbreviation was defined. It consists of the

first letter of the genus followed by the first three letters of the

specific epithet. In all tasks, an explained variance score, respectively

R2, was considered moderate if it exceeds 0.13 and strong if it

exceeds 0.26 (Cohen, 1988). Furthermore, the abbreviations SD,

SEM, and QD were used for the standard deviation, the standard

error of the mean, and the quartile deviation, respectively.
2.4 Data analysis

The behavioral poses were analyzed with respect to the

proportion per night and the number of behavioral phases.

Besides the description of the nocturnal behavior, the main goal

of the study was to identify relevant influencing factors, so-called

features, that notably influence the animal’s nocturnal behavior.

Note that “proportion of lying” implies “proportion of standing”

and that the “number of phases lying” estimates the “number of

phases standing” up to ±1, and thus, it suffices to study the

dependent variables “proportion lying,” “proportion LHD,”

“number of phases lying,” and “number of phases LHD.” Indeed,

as every lying phase is followed by a standing phase and vice versa,

the number of phases lying is equal to the number of phases

standing in the case standing–lying–standing–lying, overestimates

the number of phases standing by 1 in the case lying–standing–

lying, and underestimates the number of phases standing by 1 in the

case standing–lying–standing.

The analyzed features per night are the month of the recording

(“month”), the species (“species”) of the observed individual, its sex

(“sex”), and its age group (“age”) encoded as juvenile, subadult, or

adult. The boundaries between these age categories are formed by the

time of weaning and the sexual maturity of the species and are

gathered from different sources (Grzimek, 2000; Puschmann et al.,

2009; Groves and Leslie, 2011; Rubenstein, 2011; Skinner and

Mitchell, 2011; Tacutu et al., 2013; Myers et al., 2021). The

according values are given in the Supplementary Material (S4 Table).

Furthermore, the indicator whether multiple species share a

stable building or if the building hosts only one species is called

“stable.” Moreover, the keeping zoo (“zoo”) was recorded. This

variable is highly dependent on multiple non-measured features of

the housing and husbandry like the feeding routine, the time being

on an outdoor enclosure during day, and the husbandry form like

multi-species exhibits. Also, “zoo” is statistically dependent on non-

measured conditions independent of housing like weather.

The feature “species” implies a variety of other features.

“Genus” and “family” are added as taxonomic features. “Food”

corresponds to the dietary type: grazer, browser, or intermediate.

Next, “species” contains information about the individual’s natural

habitat (“habitat”) ranging from open to closed environments

(IUCN, 2022). Last, “species” implies the average body

measurements; in particular, the shoulder height “SH” and the
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species’ average weight were used. All used values are given in detail

in the Supplementary Material (S4 Table). The habitat is given by a

number between 0 (open environments) and 3 (closed

environments) following the categorization of the International

Union for Conservation of Nature (IUCN) Red List of

Threatened Species (IUCN, 2022). The species’ average body

measurements and the dietary type are gathered from different

sources (Grzimek, 2000; Puschmann et al., 2009; Groves and Leslie,

2011; Rubenstein, 2011; Skinner and Mitchell, 2011; Tacutu et al.,

2013; Myers et al., 2021).

The underlying dataset is high dimensional and contains

numerical and categorical features. Furthermore, there is a large

multicollinearity of the features and there are combinations of

features that do not contain any sample. While dealing with such

complicated datasets was almost impossible for a long time,

increasing computational power and better understanding of

various data scientific concepts made a more data-driven

approach find its way into life science studies (Boulesteix et al.,

2012). For the dataset at hand, random forest regression was used

because it has very few assumptions on the underlying distributions

of the dataset. Further, it is robust to noisy measurements and

outliers, which is an important property as the raw data are

annotated by means of a deep-learning-based software package.

Finally, random forest regression allows deriving measures of

feature importance, which are a natural indicator of the influence

of single features (Fraser, 1965; Parveen et al., 2013; Beraha et al.,

2019). It is important to note that features that contribute

significantly to the result in classical statistical tests are also

considered relevant in random forest regression and vice versa

(Chicco and Jurman, 2021; Saarela and Jauhiainen, 2021).

Random forest regression is a predictive supervised learning

model. Thus, it computes an estimate of the dependent variable

based on the features. A random forest consists of several

independent random decision trees. To build one decision tree, a

bootstrap sample from the given data is drawn. At every node of the

decision tree, one feature is selected among a random collection of

features and the dataset is split optimally into two disjoint subsets

based on this feature’s value. Among the random collection of

features, the feature with the most optimal partition of the dataset is

chosen. This splitting procedure continues recursively on the two

subsets. In the contribution at hand, the random forest regressor

consists of 300 decision trees each. The minimum number of

samples per leaf and per split is set to 120, and the maximum

depth of a decision tree is 4 to prevent overfitting. The maximum

number of randomly selected features is set to 66% of the total

number of features. which is known to work well on smaller datasets

at the cost of higher computational time. The split’s performance is

measured with respect to Friedman’s mean squared error (MSE).

The goodness of fit of the random forest regressor is assessed by the

explained variance R2 between the model’s prediction and the

original data because the explained variance is known to work

decently with tree classifiers (Chen et al., 2020). Given the dataset,

R2 is defined as the corresponding mean of its bootstrap estimate

(Efron, 1979; Efron, 1981). In the modeling part, balancing the

influence that a single individual has on the model’s properties is

necessary. Thus, for random forest regression, equally many nights
Frontiers in Ethology 05
(n = 50) are sampled uniformly at random per individual. If more

nights are recorded, the sampling is without replacement to increase

data variability. In case that fewer nights are recorded, sampling is

conducted with replacement. To account for possible duplicates, the

values of the dependent variable, SH, and weight are distorted by

uniform Gaussian noise. This is a standard data augmentation

technique to produce synthetic data points (Beinecke and Heider,

2021). Further, this augmentation is known to increase the

generalization properties and thus the explanatory power of a

model (Shorten and Khoshgoftaar, 2019).

As a measure of feature importance, permutation-based feature

importance was chosen because it seemed most suitable on the

given dataset (Breiman, 2001). Every feature is assigned a value

between 0% and 100% such that the values sum up to 100%

representing importance—higher values imply higher importance.

The permutation-based importance of a feature is calculated as the

increase in the model’s prediction error after permuting the

feature’s values. If the increase is large, the feature is important

because the model’s performance relies on the feature. In contrast, if

shuffling the values does not change the model’s error, the feature is

said to be unimportant. When several features measure similar

effects, i.e., are highly correlated, feature importance is particularly

meaningful when the importance of a “cluster” of similar features is

defined as the sum of the importance scores of the contained

individual features and the importance of the cluster is

considered the relevant variable. Ward’s clustering algorithm is

applied to the similarity matrix of the features to identify these

clusters. There is no universal threshold above which a cluster is

considered relevant; in particular, such a threshold must depend on

the number of features. Indeed, given completely random data with

p independently sampled features and independently generated

labels, every feature will form its own cluster. Further, any cluster

is equally unimportant such that the cluster importance scores will

turn out to be approximately 1/p each. In the present study, eight

clusters are identified such that 1/p ~ 12.5%. Therefore, only

clusters that exceed this threshold are considered important.

It is well known that the feature importance can be misleading if

strongly correlated features are present (Breiman, 2001). To

determine the feature importance reliably and, primarily, to

increase model performance, different pre-processing methods are

well studied (Genuer et al., 2010; Gregorutti et al., 2017). One

popular approach is to “decorrelate” the data. The goal of the

decorrelation step is to turn the features into independent features.

Intuitively, the part of a feature that can be explained by combining

the other features is subtracted and the leftover is seen as the actual

contribution of the feature. This is sometimes called residual

learning in the machine learning context (Zhang and Chan, 2003;

Dezfouli et al., 2019; Verdinelli and Wasserman, 2021). In the

current study, the Gram–Schmidt decorrelation method was used

to decorrelate the dataset, which was established to decorrelate sets

of features rather recently (Hyvärinen and Oja, 1997; Zhang and

Chan, 2003). In this method, the residual expresses the part of a

feature that cannot be explained by a linear combination of the

covariances of the other features. A detailed comparison of this

decorrelation-based feature importance with other notions of

feature importance is given by Gerstorfer et al. (2023).
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Besides requiring a measure for feature importance, in the

second step, it becomes crucial to not only determine notable

features but to also explain their influence on the nocturnal

behavior. Recently, SHAP values were discovered as a method in

machine learning to identify the influence of features’ values on the

dependent variable (Lundberg and Lee, 2017). Those values are

based on Shapley values, an old concept in mathematical game

theory (Shapley, 1988). Formally speaking, the SHAP value is

computed as the mean marginal contribution of each feature value

across all possible values in the feature space. It is important to notice

that the SHAP approach describes the effects of the model and not

trends in the real raw data. This is good to identify effects that are not

directly visible in the data but hidden in a complex structure that can

be learned and used by the model. However, this approach clearly

yields to sane descriptions only if the model’s performance is decent.

SHAP values and their application in data scientific models are

recently well-studied and used in life science studies (Lundberg et al.,

2018). A detailed and formal introduction is given by Lundberg and

Lee (2017). In the current contribution, we visualize the SHAP values

as beeswarm plots, which we call SHAP plots. A SHAP plot contains

three dimensions of information given by the x-axis, y-axis, and a

color gradient. On the y-axis, the different features are given. If one

point of the dataset is drawn, it contains exactly one value per

feature. The value per feature is encoded by a color gradient from

small to large. In the case of non-ordinal features, different colors

represent different classes, but the gradient has no deeper meaning.

The x-position of a point corresponds to the point’s SHAP value.

Given a SHAP plot, the trends and effects of features can be found by

the means of finding clusters of colored points on the rows of the

SHAP plot. For instance, if higher values of a feature correspond to

lower SHAP values, the model suggests a negative trend and if

smaller values imply a lower SHAP value, the model suggests a

positive trend. But, also, if there is a well-separated clustering of

colors that is non-monotone, this corresponds to effects of the

feature. If multiple separated clusters of the same color appear,

effects cannot be described by the feature itself but also depend on

other features’ values.
3 Results

In the current study, three sets of results were obtained. These

are presented in the following subsections. The first subsection

provides a basic description of the nocturnal behavior of ungulates.

In the next subsection, a model of nocturnal behavior was

constructed and used to identify the most influential features.

Furthermore, a SHAP analysis was conducted to identify the type

of influence of each feature within the model. In the last subsection,

the trends of the features found important by the model were

examined on the actual dataset.
3.1 Description of nocturnal behavior

The activity budgets of the studied individuals are given in

Figure 2. The three zebra species clearly differ from all other species.
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They show a lower proportion of lying (21.4% to 32.2%). Although

the other species show a rather uniform picture with respect to the

distribution of lying and standing, it is noticeable that the species of

the genus Tragelaphus (67.8% in mean) as well as the okapi (60.0%)

show a slightly lower proportion of lying than the other

Cetartiodactyla (79.6% in mean), while the genus Hippotragus has

a higher proportion of lying (88.0% in mean). With respect to the

proportion of LHD, the white rhino shows the highest value

(18.3%). In contrast, the mountain zebra (1.5%) and Grevy’s

zebra (3.2%) have the lowest proportions of LHD, whereas the

proportion of LHD between all other species is comparable (min.

5% to max. 12.4%, in mean 9%).

The number of phases of lying and LHD per night are visualized

in Figures 2C, D. All species similarly often lie down per night with

a mean of 5 phases, ranging from 3 to 7 phases. Noticeably, the

smallest number of phases is shown by the mountain zebras (3

phases) and Grevy’s zebras (3.5 phases) as well as the okapis (4

phases). In contrast, the largest number of lying phases is found

within the genus Tragelaphus except the sitatunga (6 to 7 phases).

The number of phases LHD is much more variable between species

and varies from 3 to 16 phases. In accordance with the proportion,

the mountain zebras (3.4 phases) and Grevy’s zebras (4.7 phases)

show the fewest phases of LHD, while the other species exhibit at

least 7 such phases.
3.2 A model of nocturnal behavior

Based on the above observation that the zebra’s behavior differs

strongly from those of the Cetartiodactyla, we decided to model the

influencing factors on nocturnal behavior only for the observed

Cetartiodactyla to detect subtle effects. The nocturnal behavior is

modeled by means of random forest regression. Some of the

analyzed features are strongly correlated and Ward’s clustering

algorithm determines the clusters “age,” “sex,” “stable,” “month,”

“zoo,” “taxonomy” (consisting of “genus” and “family”), “natural”

(consisting of “food” and “habitat”), and “size” (containing “weight”

and “SH”). The random forest models perform well as indicated by

the explained variance scores R2 of 0.5 (proportion lying), 0.45

(proportion LHD), 0.29 (number of phases lying), and 0.55

(number of phases LHD).

The importance of any feature is given in Figure 3; for more

detailed information, please refer to the table of values in the

Supplementary Material (S5 Table). The individual’s age is highly

relevant for all behavioral parameters. Furthermore, the cluster

“taxonomy” is considered relevant for proportion lying and the

number of phases LHD. In both cases, the relevance is due to the

family while the genus cannot be considered important. Moreover,

the animal’s size is relevant regarding the number of phases lying

and LHD. Finally, the cluster “natural” is considered important with

respect to the proportion of lying. Here, the dietary type (“food”)

shows a larger relevance. Remarkably, the housing conditions

(“stable” and the non-measurable factors “zoo”), the sex, and the

cluster “stable” do not show any relevance in the model.

Besides determination of the features’ importance, the model can

be used to determine the effects of the single features on the model’s
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FIGURE 3

Feature importance of the clusters found by Ward’s clustering algorithm on the Cetartiodactyla’s data. Ward’s clustering algorithm identified the
eight clusters (age, sex, taxonomy, natural, size, stable, month, zoo) given on the y-axis. The feature importance scores were measured by random
forest regression with the Gram–Schmidt decorrelation method. The x-axis reports the feature importance score of any feature. The dashed line
marks the threshold of 12.5% from which on a cluster was considered influential. The influential clusters are age, size, taxonomy, and natural.
A B

DC

FIGURE 2

Description of the nocturnal behavior of the analyzed species’ adult individuals. The activity budget shows the proportion of the behaviors (A) standing
and lying and (B) with lying split up into lying—head up (LHU) and lying—head down (LHD). The underlying data are normalized to the behavioral
states excluding Out. The number of phases (C) lying and (D) LHD are given in the second row of the figure. The families (Bovidae, Giraffidae, Equidae,
and Rhinocerotidae) are highlighted. Species are abbreviated by the first letter of the genus followed by the first three letters of the specific epithet.
The sample sizes and the values forming the basis of this figure are given in the Supplementary Material. Data were collected in 20 European zoos in
September to May 2017 to 2021. The three zebra species show a lower proportion lying than the Cetartiodactyla and the white rhinos. White rhinos
have the largest proportion of LHD, the three zebra species have the lowest proportion, whereas the proportions of LHD between all Cetartiodactyla
are comparable. Nevertheless, all species similarly often lie down per night, but the number of phases LHD is much more variable between species.
Correspondingly to the proportion LHD, the zebra species show the fewest phases of LHD.
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prediction. Figure 4 contains the SHAP plots for all four behavioral

parameters. In the following, only the effects of previously found

relevant clusters are presented. Regarding the individual’s age, the

model predicts that juvenile individuals have higher proportions of

LHD and lying and show more phases of LHD than adult and

subadult individuals. A clear difference between subadult and adult

individuals is only predicted for proportion lying: subadult individuals

lie more than adult individuals. Regarding the taxonomy, a clear

distinction between Giraffidae and Bovidae is predicted for the

proportion and the number of phases lying. On a more fine-grained

level, the values of the genus Tragelaphus are apart from the other

Bovidae’s values; animals of the genus Tragelaphus show a smaller

proportion of lying but a higher number of lying phases. With respect

to the “natural” cluster, a distinction between the different dietary

types becomes explicitly visible for the parameters regarding lying.

Browsers are predicted to have more lying phases. Also, there is a small

visible trend that indicates that grazers show a larger proportion lying

than browsers. Regarding the cluster “size,” the model predicts an

almost monotone decrease in the proportion LHD and the number of

phases LHD with increasing size. This effect is visible with respect to

the number of phases LHD for SH and weight, while it is only visible

for SHwith respect to the proportion LHD.Moreover, a small increase

in the proportion lying as well as the number of phases lying is

predicted with increasing SH.
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3.3 Examination of trends

In this subsection, those clusters identified to be important by

the model are analyzed in detail on the raw data. In contrast to the

previous section, the full dataset is used, and the analysis is

independent of the model.

Age is found to have a large impact on all behavioral

parameters. The according trends are given in Figure 5 for those

observed species for which data of multiple adult and non-adult

individuals are present. With increasing age, the proportion of

lying, proportion of LHD, and the number of phases LHD decrease.

Regarding the cluster “taxonomy,” trends are already described in

subsection “Description of nocturnal behavior.”

The feature “food” distinguishes between browsers,

intermediates, and grazers. Figure 6 visualizes the differences

between the different digestion types. As the family was found to

have a large influence on the behavior, the okapis are marked

accordingly. Within the other species, browsers show a little bit

smaller proportion of lying than grazers but more lying phases.

Similarly, the same difference regarding the proportion LHD

between browsers and grazers is indicated by the data.

Finally, the features of the cluster “size” show a notable influence

on the nocturnal behavior. The influence of the animal’s weight and

its SH was analyzed in detail by linear regression models. As most
FIGURE 4

Trends as examined by a SHAP analysis of the random-forest-based model on the Cetartiodactyla’s data. The feature’s value is indicated by the color
gradient from small (blue) to large (gray). On the x-axis, the SHAP value is given. A positive SHAP value indicates that the feature’s value has a positive
influence on the model’s prediction; a negative SHAP value indicates that the model’s prediction is reduced. The y-axis reports the features. The
features of the clusters identified as important previously, age, taxonomy, food (feeding type), and size, show clear trends. Juvenile individuals have
higher proportions LHD and lying and show more phases of LHD than adult and subadult individuals. Regarding the taxonomy, okapis (family Giraffidae)
have a higher proportion lying and a larger number of phases lying than Bovidae. The genus Tragelaphus is predicted to have a smaller proportion lying
but a higher number of lying phases than the other Bovidae. Browsers tend to have more lying phases than grazers and intermediates, and grazers are
predicted to have a larger proportion lying than browsers. The model finally predicts an almost monotone decrease in the proportion LHD and the
number of phases LHD with increasing size.
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behavioral studies consider the weight rather than SH, a visualization

for the feature weight is given in Figure 7. There is a moderate

negative correlation between the animal’s size and both proportion

LHD and the number of phases LHD; i.e., the larger a species, the less
Frontiers in Ethology 09
time it spends on LHD. For completeness, all correlation coefficients

with respect to SH are negative and the coefficients of determination

R2 read <0.01 (proportion lying), 0.31 (proportion LHD), <0.01

(number of phases lying), and 0.17 (number of phases LHD).
A

B

FIGURE 6

The trends of the influencing factor “food” on the features (A) proportion lying and proportion lying—head down (LHD) as well as (B) number of phases
lying and number of phases LHD. On the x-axes, the species are given, and the three possible values of the feature food (browser, intermediate,
grazer) are reported. Species are abbreviated by the first letter of the genus followed by the first three letters of the specific epithet. The data comprise
only adult individuals. Sample sizes are given in the Supplementary Material. Data were collected in 20 European zoos in September to May 2017 to
2021. Browsers tend to have a little bit smaller proportion lying than grazers but more lying phases. The same differences are indicated regarding the
proportion LHD.
FIGURE 5

The trends of the influencing factor “age” on the features proportion lying, proportion lying—head down (LHD), number of phases lying, and number
of phases LHD. The species’ mean and the SEM are given. Only species of the order Cetartiodactyla with at least two age categories and at least two
individuals per age category are shown: bongo (Tragelaphus eurycerus), common eland (Tragelaphus oryx), blesbok (Damaliscus pygargus), and
common wildebeest (Connochaetes taurinus). Species are abbreviated by the first letter of the genus followed by the first three letters of the specific
epithet. Exact sample sizes are given in the Supplementary Material. Data were collected in 20 European zoos in September to May 2017 to 2021.
With increasing age, the proportion lying, the proportion LHD, and the number of phases LHD decrease.
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4 Discussion

In this contribution, the nocturnal behavior of 19 ungulate

species was studied. The study contains, for some observed species,

the first description of nocturnal behavior that we know of, both in

the wild and in zoos. While the number of individuals per species

varies (see S1 Table), the study was based on the evaluation of 196

individuals recorded over 47 nights on average and thus provides a

good description of ungulates’ nocturnal behavior.
4.1 Description of nocturnal behavior

Regarding the general description of nocturnal behavior,

existing studies are partly hard to compare to the current study

(Santymire et al., 2012; Owen-Smith and Goodall, 2014; Davimes

et al., 2016). First, if sleep is measured physiologically, some studies

do not distinguish between REM sleep and non-REM sleep, but they

report the total sleep time (TST), which cannot be estimated by

video recordings. Second, some behavioral studies define sleep as

lying with closed eyes and do not refer to the typical REM sleep

position. Third, even the comparison of values for lying is hard

between some studies as they distinguish between standing, lying,

and ruminating and the latter can be done while standing or lying

such that the time lying cannot be inferred.

On the presented data, a striking difference was observed

between the three zebra species on the one hand and the

members of the order Cetartiodactyla on the other hand

(Figures 2A, B). Ruckebusch (1972) examined the nocturnal
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behavior of farm animals including, among others, horses, and

cows. His evaluation of standing and lying fits well into our

findings. Horses lie 20% of the night, and the three zebra species

lie 25.6% on average. Cows were observed to lie 87.5% during the

night, and in the current study, Bovidae lie up to 88.6% of the time.

Similarly, Ruckebusch (1972) found cows to be in the REM sleep

position 6.3% of the time while Bovidae’s values in the current study

range from 5.0% to 12.4% and the number of phases of REM sleep

(0.83 per hour) compare well to the median values in the current

study (0.64 to 1.4 phases per hour). Only the three observed zebra

species spend a bit less time in the REM sleep position (1.5% to

6.8%) than the horses (7.8%), but the typical number of such phases

of horses per hour (0.9) is comparable with the one of the three

zebra species (0.3 to 0.9). The observation that zebras spend a lot

more time standing and less time lying than the observed

Cetartiodactyla is not surprising if the digestion type is

considered as an explaining factor. Zebras, as hindgut fermenters,

need to devote more time to feeding and foraging due to a need for

greater food intake than ruminants (Owen-Smith and Goodall,

2014). The studied Cetartiodactyla, as ruminants, spend more time

resting as ruminating occurs a lot while lying down (Janis, 1976).

A recent study of two male free-roaming blue wildebeest was

conducted by Malungo et al. (2021). The wildebeest were found to

be in REM sleep 1.6% of the time divided up into 0.6 ± 0.04 phases

per hour. Although the sample contains only two individuals, the

values are in accordance with the current findings based on 12 adult

individuals (2.9% to 12.8% and 0.35 to 1.17 phases per hour).

Similarly, Davimes et al. (2018) found one Arabian oryx to be in

REM sleep 1.5% ± 2.5% of the time with about 0.54 ± 0.15 phases
A

B

FIGURE 7

Linear regression models between the species’ weight and (A) the proportion lying and proportion lying—head down (LHD) and (B) the number of
phases lying and number of phases LHD. The coefficient of determination is reported on the top right in every subfigure. The families Giraffidae and
Bovidae are highlighted. Species are abbreviated by the first letter of the genus followed by the first three letters of the specific epithet. Exact sample
sizes are given in the Supplementary Material. Data were collected in 20 European zoos in September to May 2017 to 2021. A moderate negative
correlation between the animal’s size and both the proportion LHD and the number of phases LHD is found.
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per hour, which compares well to the observations of Bovidae’s

behavior in the present study. To summarize, findings of other

studies regarding ungulates fit well into our description of nocturnal

behavior, and therefore, the presented data can be seen as a valid

reference for further studies on ungulates.
4.2 Influencing factors on Cetartiodactyla’s
nocturnal behavior

The random forest model performs well on the given dataset.

The explained variance scores clearly exceed the threshold for a

strong relation between the model’s predictions and the raw data

(Cohen, 1988). Moreover, there is a very good fit between the trends

on the relevant features in the model that were measured by the

SHAP analysis and the trends described on the raw data. In

conclusion, the model seems to adequately describe the nocturnal

behavior of the analyzed Cetartiodactyla and the classification of the

relevant factors influencing the nocturnal behavior can be

considered reliable.

The individual’s age was found to be the most dominating

influencing factor of nocturnal behavior. Particularly, young

individuals spend much more time lying and in the REM sleep

position than adult animals (see Figure 5). This is not surprising as

age has been proven to influence the activity/rest cycles of different

mammals (Siegel, 2005; Ruckstuhl and Neuhaus, 2009), and age is

known to be an influencing factor of REM sleep in mammals and

birds (Ruckstuhl and Kokko, 2002; Cajochen et al., 2006;

Steinmeyer et al., 2010; Rattenborg et al., 2017; Burger et al., 2021).

Furthermore, the animal’s size was identified as an important

influencing factor. We decided to focus on the animal’s weight as

this is a well-analyzed factor in literature (Allison and Cicchetti,

1976; Siegel, 2005; Lesku et al., 2008; Gravett et al., 2017). It is

known that there is a strong negative correlation between a species’

average weight and its REM sleep time. This correlation was

observed on a very macroscopic level, from mice to African

elephants (Siegel, 2005). On this scale, it is not possible to draw

conclusions for species that are comparable in weight. However, the

current study observes this effect on a very microscopic level. In

particular, the more closely related analyzed species with

comparable sizes show the same negative correlations.
4.3 Conclusion

The present study is a large-scale study on the nocturnal

behavior of various ungulates; more precisely, it describes the

basic behaviors standing, lying, and being in the REM sleep

position. To our knowledge, it provides the first description of

nocturnal behavior for some species and extends the database for

the other species significantly. The results fit well into the sparse

existing literature. Thus, the data can be considered a valid reference

for further research. Such data are not only relevant for scientific

purposes but can also help to assess animal’s welfare in zoos. The

most important influencing factors on nocturnal behavior were
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determined as the individual’s age, the species’ body measurements,

the taxonomic relation, and the feeding type.
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