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Some numerical knowledge, such as the immediate recognition of small quantities, is observed
in animals. The development of arithmetical abilities found in man's evolution as well as in child’s
development represents a long process following different stages. Arithmetical abilities are
relatively recentin human history and are clearly related with counting, i.e., saying aloud a series
of number words that correspond to a collection of objects. Counting probably began with
finger sequencing, and that may explain the 10-base found in most numerical systems. From
a neuropsychological perspective, there is a strong relationship between numerical knowledge
and finger recognition, and both are impaired in cases of left posterior parietal damage (angular
or Gerstmann's syndrome). Writing numbers appeared earlier in human history than written
language. Positional digit value is clearly evident in Babylonians, and around 1,000 BC the zero
was introduced. Contemporary neuroimaging techniques, specifically fMRI, have demonstrated
that the left parietal lobe, particularly the intraparietal sulcus, is systematically activated during
a diversity of tasks; other areas, particularly the frontal lobe, are also involved in processing
numerical information and solving arithmetical problems. It can be conjectured that numerical
abilities continue evolving due to advances in mathematical knowledge and the introduction

of new technologies.
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INTRODUCTION

Calculation abilities have followed a long process from the initial
quantification systems up to modern algebra, geometry, and phys-
ics. Some rudimentary numerical concepts are observed in animals,
and there is no question that pre-historic man used some quanti-
fication. However, the ability to represent quantities, the develop-
ment of a numerical system, and the use of arithmetical operations
are found only in old civilizations.

This paper reviews the evolution of calculation abilities, includ-
ing numerosity and counting in non-human animals, calculation
abilities in primitive and modern humans, and links between lan-
guage and number concepts throughout human history. In addi-
tion, the paper reviews contemporary studies of the neurological
substrates of numerical abilities and discusses the implications
of technological advances with regard to continued evolution of
these abilities.

NUMERICAL CONCEPTS IN ANIMALS

The origin of mathematical concepts can be traced to sub-human
species. Throughout recent history different reports have argued
that animals (horses, rats, dogs, chimpanzees, dolphins, and even
birds) can use numerical concepts and perform arithmetical opera-
tions. Some of these reports represent evident charlatanry directed
to the general public. Some others, however, are rigorous and highly
controlled scientific studies (e.g., Rugani et al., 2009).

There is, in general, agreement that some rudimentary numeri-
cal concepts are observed in animals. These basic numerical skills
can be considered as the real origin of the calculation abilities found
in contemporary man. For instance, pigeons can be trained to peck a
specific number of times on a board, and rats can be trained to press
a lever a certain amount of times to obtain food (Koehler, 1951;

Mechner, 1958; Capaldi and Miller, 1988). It could be conjectured
that pigeons and rats can count, at least up to a certain quantity;
that is, they can recognize how many times a motor act — to peck
on a board or to press a lever — has been repeated. Whether or not
this behavior can really be interpreted as counting is nonetheless
questionable. However, this behavior is observed, at least after a
long and painstaking training. Nonetheless, these animal responses
(to peck or to press the lever) are not precise but just approximate.
In other words, when the rat is required to press the lever seven
times, the rat presses it about seven times (i.e., 5, 6, 7, 8 times).
As Dehaene (1997) emphasizes, for an animal, 5 plus 5 does not
make 10, but only about 10. According to him, such fuzziness in
the internal representation of numbers prevents the emergence of
exact numerical arithmetical knowledge in animals. Using highly
controlled and sophisticated designs, it has been pointed out that
chimpanzees can even use and add simple numerical fractions (e.g.,
1/2 + 1/4 = 3/4) (Woodruff and Premack, 1981). These observa-
tions support the assumption that some quantity concepts can be
found in different animals.

Counting (or rather, approximately counting) motor responses
is just a motor act as is walking or running. “Counting” lever press-
ings is not very different from estimating the effort (e.g., number
of steps or general motor activity) required in going from one
point to another. Counting in such a case could be linked to some
proprioceptive and kinesthetic information.

In the human brain Kansaku et al. (2006) identified a network
of areas involved in enumerating small numbers of auditory, visual,
and somatosensory stimuli, and in enumerating sequential move-
ments of hands and feet, in the bilateral premotor cortex, presup-
plementary motor area, posterior temporal cortex, and thalamus.
The most significant consistent activation across sensory and

Frontiers in Evolutionary Neuroscience

www.frontiersin.org

June 2010 | Volume 2 | Article 7 | 1



Ardila

Evolution of calculation abilities

motor counting conditions was observed in the lateral premotor
cortex. Lateral premotor activation was not dependent on move-
ment preparation, stimulus presentation timing, or number word
verbalization. Furthermore, movement counting, but not sensory
counting, activated the anterior parietal cortex.

Not only chimpanzees, but also rats and many other animals, can
distinguish numerosity (i.e., global quantification); for instance,
they prefer a bowl containing a larger number of nutritive elements
(such as chocolates or pellets) when selecting between two bowls
containing different amounts (Davis and Perusse, 1988). It may be
conjectured that global quantification (numerosity perception) and
counting (at least the approximate counting of motor responses)
represent kinds of basic calculation abilities found at the animal
level. Rats prefer a bowl containing 20 pellets to a bowl containing
only 10 pellets; however, they do not prefer a bowl containing 20
pellets to a bowl containing 21 pellets. Obviously, numerosity per-
ception is related to the size and shape of the visual image projected
to the retina. It can be assumed that 20 pellets in a bowl result in
a larger and more complex retinal image than 10 pellets. But the
visual image corresponding to 20 pellets is difficult to distinguish
from the visual image corresponding to 21 pellets.

CALCULATION ABILITIES IN PRE-HISTORIC MAN

Chimpanzees are capable of various forms of numerical compe-
tence, including some correspondence constructions (that is, com-
paring two collections of elements) for low quantities (Premack,
1976; Davis and Perusse, 1988). Most likely, these numerical abilities
also existed in pre-historic man. Homo sapiens antecessors may
have been capable of using correspondence constructions in some
social activities, such as food sharing. It has been proposed that
Homo habilis (ancestor of Homo erectus, living about 2.3 million
to 1.4 million years ago) needed to use correspondence construc-
tions when butchering large animal carcasses (Parker and Gibson,
1979). Distributing pieces of a divided whole (e.g., prey) into equal
parts required the ability to construct one-to-one correspondences.
Probably, Paleolithic man was able to match the number of objects
in different groups and, eventually, the number of objects in a col-
lection with the number of items in some external cue system, e.g.,
fingers or pebbles (incidentally, calculus means pebbles).

The immediate recognition of certain small quantities is found
not only in animals, but also in small children. Animals and children
can readily distinguish one, two, or three objects (Fuson, 1988;
Wynn, 1990, 1992; Cook and Cook, 2009). Antell and Keating
(1983) observed that newborn infants were able to discriminate
among visual stimulus arrays consisting of few a dots. It was found
that infants were able to discriminate between small numbers (2
versus 3) but not for larger sets. This ability for discriminating and
also representing and remembering small numbers of items has also
been reported by other authors (e.g., Starkey and Cooper, 1980).
Interestingly, evoked potentials at 3 months are already capable
of marking changes in the nature and number of a set of objects,
and these activation changes relate to the parietal lobe (Dehaene
and Dehaene-Lambertz, 2009). Noteworthy, in normally develop-
ing children and adults, the increase in arithmetic competence is
associated with shift of activation from frontal brain areas to pari-
etal areas. A shift of activation is also observed within the parietal
lobe from the intraparietal sulci to the left angular gyrus; experts’

arithmetic proficiency depends on a more extended activation than
the network found in beginners. In expert individuals with solid,
extensive mathematical training, specific brain activation changes
are also observed (Zamarian et al., 2009).

Oneness, twoness, and threeness seemingly are basic perceptual
qualities that our brain can distinguish and process without count-
ing. It can be conjectured that when pre-historic humans began to
speak, they may have been able to name only the numbers one, two,
and three, corresponding to specific perceptions. To name them was
probably no more difficult than naming any other sensory attribute
(Dehaene, 1997). Of note, all world languages can count up to three,
even though three may represent “many’, “several”, or “alot” (Hurford,
1987).“One”is obviously the unit, the individual (the speaker may also
be “one”). “Two” conveys the meaning of “another” (for example, in
English and also in Spanish, “second” is related with the verb “to sec-
ond”and the adjective “secondary”). “Three” may be a residual form of
“alot’, “beyond the others”, or “many” (for example, “troppo”, which in
Italian means “too much”, is seemingly related with the word three
-tre). In the original Indo-European language, spoken perhaps some

15000-20000 years ago, apparently the only numbers were “one”, “one
and another” (two), and “alot”, “several”, or “many” (three) (Dehaene,
1997). Interestingly, in some contemporary languages, two different
plurals are found: a plural for small quantities (usually two, sometimes
three and four) and a second plural for larger quantities; for instance,
in Russian, “one house” is “odin dom’, “two, three, or four houses” is
“dva, tri, cheterye doma” but “five houses” is “pyat domov”.

Of note, in different world languages, the word “one” does not
have any apparent relationship with the word “first”; and the word
“two” is also not related with the word “second”. “Three” may some-
times, but not always, hold some relationship with “third”. Beyond
three, ordinals are clearly associated with cardinal numbers. The con-
clusion is obvious: for small quantities (one, two, three), cardinals and
ordinals must have a different origin. For larger quantities, ordinal
numbers are derived from cardinals. As a matter of fact, one/firstand
two/second correspond to different conceptual categories.

It may be speculated that for pre-historic man the first per-
son and the second person in a line (or the first animal and the
second animal during hunting, or other similar concepts) do
not seem to be related with the number one and the number
two. For small children “first” has the meaning of “initial” (e.g.,
“I go first”) whereas “second” is related to “later” or “after” (e.g.,
“you go second”). These words have a temporal and also spatial
meaning, but not an evident numerical meaning. The associa-
tion between “one” and “first”, and “two” and “second” seems
a relatively advanced process in the development of numerical
concepts. That is, the numerical meaning of “first” and “second”
seems to appear after its temporal and spatial meaning. The
association between ordinals and cardinals becomes evident only
for larger quantities (more than three) and seems to represent a
later acquisition in human evolution and the complexization of
numerical concepts. Moreover, in many contemporary languages
(e.g., the Huitoto language, spoken by the Huitoto Indians in the
Amazonian jungle') there are no ordinal numbers. For “first”,
the Huitoto language uses “the beginning”; to express “second”
the word “another” is used.

'http://indian-cultures.com/Cultures/huitoto.html
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Arithmetical abilities are clearly related with counting.
Counting — not simply recording the approximate amount of
motor responses required for obtaining reinforcement, but actu-
ally saying aloud a series of number words that correspond to
a collection of objects — is relatively recent in human history.
Counting also occurs relatively late in child development. In
human history, as well as in child development, counting using
number words begins with sequencing the fingers (i.e., using a
correspondence construction) (Hitch et al., 1987). The name of
the finger and the corresponding number can be represented using
the very same word (that means the very same word is used for
naming the thumb and the number one; the very same word is
used to name the index finger and the number two, etc.). The fin-
gers [and toes; as a matter of fact, many languages such as Spanish
use a single word (dedo) to name both the fingers and toes] are
usually sequenced in a particular order. This strategy represents a
basic procedure found in different ancient and contemporary cul-
tures around the world (LevyBruhl, 1910/1947; Cauty, 1984; Klein
and Starkey, 1987; Dansilio, 2008). Interestingly, it has been dem-
onstrated that children with low arithmetical skills also present
a finger misrepresentation on the Draw-a-Person test (Pontius,
1989). This observation has been confirmed in different cultural
groups. By the same token, difficulty in recognizing and nam-
ing the fingers represents a reliable predictor of developmental
dyscalculia (Kaufmann, 2008).

Taking a typical example as an illustration, the Colombian
Sikuani or Guahibo Amazonian jungle Indians? count in the fol-
lowing way: the person (an adult when counting or a child when
learning to count) places his/her leff hand in supination; to point
to number one, the right index points to the left little finger, which
is then bent (Queixalos, 1989). The order followed in counting is
always from the little finger to the index. To point to number five,
the hand is turned and the fingers opened; for six, both thumbs
are joined, the left fingers are closed, and the right opened; they are
opened one after the other for seven, eight, nine and ten. Between 11
and 20, the head points to the feet and the sequence is re-initiated.
The lexicon used is:

kae (the unit, one)

aniha-behe (a pair, both)

akueyabi

penayanatsi (accompanied; that is, the fingers together)

kae-kabe (one hand)

Numbers from six to nine, are formed with “one hand and (a
certain number) of fingers”. Ten becomes “two hands”:

6: kae-kabe kae-kabesito-nua (one hand and one finger)

7: kae-kabe anih-akabesito-behe (one hand and a pair of fingers)
10: anih-akabe-behe (two hands)

“Two hands” is maintained between 10 and 20. Toes (taxawu-
sito) are added between 11 and 14; and “one foot” (kaetaxu) is
used in 15. Twenty is “two hands together with two feet”:

11: aniha-kabe-behe kae-taxuwusito (two hands and one toe)

12: aniha-kabe-behe aniha-tuxuwusito-behe (two hands and two
toes)

15: aniha-kabe-behe kae-taxu-behe (two hands and one foot)

*http://indian-cultures.com/Cultures/guahibo.html

16: aniha-kae-behe kae-taxu-behe kaetaxuwusito (two hands, one
foot, and one toe)
20: aniha-kabe-behe aniha-taxu-behe (two hands and two feet)

Fingers are named according to their order in counting (as men-
tioned above, counting begins always with the little finger of the left
hand). The Sikuani language possesses number words only up to
three (kae, aniha-behe, akueyabi). Four (penayanatsi = accompa-
nied, together) represents a correspondence construction. Strictly
speaking, the Sikuani language counts only up to three. From four to
twenty, they use a correspondence construction, not really counting;
and for higher quantities, they resort to a global quantification.

Sometimes not only the fingers (and toes) but also other body
segments may be used in counting: the wrist, the shoulders, the knees,
etc. (Levy-Bruhl, 1910/1947; Cauty, 1984; Dansilio, 2008). However,
sequencing the fingers (and toes) represents the most universal pro-
cedure in counting. Some languages (e.g., some Mayan dialects and
Greenland Eskimo) use the same word to denote the number 20
(that is, “all the fingers and all the toes”) and “a person”.

In different Amerindian languages, for higher than 10 or 20
figures, most often “many” is used (global quantification princi-
ple) (Cauty, 1984; Ifrah, 2000). Or, they can refer to other people’s
hands (correspondence construction) (e.g., thirty-five might be
something like “my two hands, my two feet, my father’s two hands,
my father’s one foot”). As mentioned, “twenty” sometimes becomes
something like “one person”, a sort of higher order numeral. It
is interesting to note that in some contemporary languages (like
English and Spanish) “one” means the unit, but it is also used as
a sort of indefinite personal pronoun. In English and Spanish we
can also use “one” as synonymous with “myself”. Twenty is found
to be the base number in the Mayan numerical system (Swadesh,
1967; Cauty, 1984). In many contemporary languages, a 10 and/
or 20 base is evident.

“Digit” (from Latin digitus) means both number and finger.
The correspondence construction between numbers and fingers is
evident. Latin number notation was originally Etruscan (Turner,
1984) and referred (as in other languages) to the fingers. One, two,
and three were written simply by making vertical strokes. In four,
the Latin system resorts to a simplification. Originally, four was
written IIII, but later on it became IV. Five (V) represented the
whole hand with the arm bent (that is, all the fingers of the hand),
and ten (X) the two arms crossed.

From a neuropsychological perspective, a strong relation-
ship between numerical knowledge, finger gnosis, and even lat-
eral (right-left) knowledge is evident (Ardila and Rosselli, 2002;
Kaufmann, 2008). Finger agnosia (and probably right-left discrimi-
nation disturbances) could be interpreted as a restricted form of
autotopagnosia (inability to recognize or localize the various body
parts) (Ardila et al., 1989, 2000).

It is not surprising to find that a decimal (or vigesimal, i.e., with
abase of 20) system has been most often developed. Simultaneously
or very close in time, decimal systems appeared in different coun-
tries (Sumer, Egypt, India, and Crete). Different symbols were used
to represent 1, 10, 100, and 1000 (Childe, 1936; Dansilio, 2008).

There is, however, an interesting and intriguing exception:
Sumerian and later Babylonians (about 2,000 BC) developed not
only a decimal but also a sexagesimal system: a symbol represented
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60 or any 60-multiple and another different symbol represented the
number 10 and any 10-multiple. Thus, for example, the number
173 was then represented: 2 X 60 (the symbol for 60 repeated
twice) + 5 X 10 (the symbol for 10 repeated five times) + 3 (a sym-
bol for units repeated three times). A base of 60 has remained for
some contemporary time measures (e.g., minutes and seconds).
Twelve is also frequently maintained as a “second-order” unit (e.g.,
a dozen). Evidently, 60 results from “five times twelve”. Five obvi-
ously is “one hand”, and the question becomes, where does 12 come
from? What are the two additional units? It might be speculated
that 12 means the 10 fingers plus the two feet — or even the two
elbows or the two shoulders or the two knees (individuality of
components is easier to appreciate in the hands than in the feet).
But this is only speculation, although it is feasible according to our
knowledge about counting procedures used in different cultural
groups (Levy-Bruhl, 1910/1947; Ifrah, 2000; Dansilio, 2008).

Maya Indians developed a similar system, but had 20 as a base
(Leon-Portilla, 1986). They used different symbols to represent 20,
400 (20 x 20), and 8000 (20 x 20 X 20) (Cauty, 1984).

Thus, reviewing the history of numerical concepts, it is found
that world languages developed a base 10 (10 fingers) or 20 (10
fingers plus 10 toes) or even five (five fingers) to group quantities.
In some contemporary languages a residual 20-base can be found
(e.g.,in French 80 can be “four twenties”). In many contemporary
languages, different words are used between 1 and 10. Between 10
and 20, the numerical systems usually become irregular, unpre-
dictable, and idiosyncratic. From 20 onward, numbers are formed
simply with the words “twenty plus one”, “twenty plus two”, etc.
Some contemporary languages still use a five-base in counting. For
instance, in the Amerindian language Tanimuca in South America’,
speakers count up to five. Between five and 10, numbers are “five
one”, “five two”, and so on.

FURTHER DEVELOPMENTS OF ARITHMETICAL ABILITIES
Writing numbers appeared earlier in history than writing language.
Some cultures (e.g., Incas) developed a number representing sys-
tem, but not a language representing system (Swadesh, 1967). As
mentioned before, “calculus” means pebble. Pebbles, marks, knots,
or any other element were used as a correspondence construction to
record the number of elements (people, cows, fishes, houses, etc). In
Sumer, the first number writing system has been found (about 3,000
BC) (Childe, 1936; Ifrah, 2000): Instead of using pebbles, fingers,
or knots, it was simpler just to make a mark (a stroke or a point)
on the floor, on a tree branch, or on a board if one wanted to keep
the record. In Egypt, India and later in Crete, a similar system was
developed: units were represented by a conventional symbol (usu-
ally a stroke) repeated several times to mean a digit between one
and nine; a different symbol was used for 10 and 10-multiples.

Positional digit value is clearly evident in Babylonians, and
around 1,000 BC the zero was introduced. Positional value and zero
are also evident in Maya Indians (Leon-Portilla, 1986). Egyptians
and Babylonians commonly used fractions. Small fractions (1/2,
1/3, and 1/4) are relatively simple numerical concepts, and even
chimpanzees can be trained to use small fractions (Woodruff and
Premack, 1981).

*http://www.ethnologue.com/show_family.asp?subid=931-16

As pointed out, recognition of individual marks or elements
up to three is easy: It represents an immediate perception read-
ily recognizable. Beyond three, the number of marks (strokes
or dots) usually has to be counted and errors are more likely.
Furthermore, it is rather time-consuming and cumbersome to
be constantly counting marks. Interestingly, the different digit
notational systems always represent one, two and three with
strokes (or points, or any specific mark). In other words, the
numbers one, two and three are written making one, two or
three strokes. But beyond these figures, digit writing may give
way to other strategies. In our Arabic digit notation system,
“one” is a vertical line whereas two and three were originally
horizontal lines that became tied together by being handwritten
(Ifrah, 2000). This observation may be related with the inborn
ability to perceptually recognize up to three elements. Beyond
three, errors become progressively more likely. Perceptually dis-
tinguishing eight and nine strokes is not as easy as distinguishing
between two and three strokes. The introduction of a different
representation for quantities over three was a useful and practi-
cal simplification.

The numerical system, along with measurement units, were
developed departing from the body dimensions (fingers, hands,
arm, steps, etc.). This tendency to use the human body not only to
count but also as measure units is still observed in some contem-
porary measurement units (e.g., foot).

Adding, subtracting, multiplying and dividing were possible
in the Egyptian system, but of course, following procedures quite
different from those procedures we currently use. Egyptians based
multiplication and division on the “duplication” and “halving”
method (Childe, 1936). Interestingly, this very same procedure
(duplicating and halving quantities) is also observed in illiter-
ate people when performing arithmetical operations. Thus, to
multiply 12 X 18 in the Egyptian system the following procedure
was followed:

1 18
2 36
*4 72
*8 144
Total 216

(The number 18 is duplicated one or several times, and the
amounts corresponding to 12 (4 + 8 in this example) are selected
and summed up: 72 + 144 = 216. To divide, the inverse proce-
dure was used. Therefore, the procedure used to divide 19 by 8
would be:

1 8
*2 16
2 4
*4 2
*8 1

Thatis,2+4+8 (2+ 1/4+ 1/8), which is 2.375

In brief, different steps were followed in the development of
arithmetical abilities: representing quantities, initially as corre-
spondence constructions (i.e., one mark represents one element),
later new marks were added to represent larger quantities (usually
10); providing a positional value to the marks; using fractions; and
computing quantities (adding and subtracting; and later multiply-
ing and dividing).
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THE NEUROSCIENCE OF CALCULATION ABILITIES

Since primary acalculia (a basic defect in computational ability) was
initially described by Henschen (1925) it has been associated with
left posterior parietal damage (e.g., Mazzonietal., 1990; Ardila etal.,
2000; Mayer et al., 2003). Furthermore, it was suggested that differ-
ent cerebral pathways are responsible for processing rote numerical
knowledge (e.g., multiplication tables) and semantic knowledge of
numerical quantities. Dehaene and Cohen (1997) have proposed
thataleft subcortical network contributes to the storage and retrieval
of rote verbal arithmetical facts, whereas an inferior parietal network
is dedicated to the mental manipulation of numerical quantities.

Neuroimaging techniques (e.g., fMRI) have been used to analyze
the pattern of brain activity during diverse calculation tasks. It
has been demonstrated that different brain areas are active dur-
ing arithmetical tasks, but the specific pattern of brain activity
depends on the particular type of task that is used. At minimum,
the following brain areas become activated during calculation: the
upper cortical surface and anterior aspect of the left middle frontal
gyrus (Burbaud et al., 1995); the supramarginal and angular gyrus
(bilaterally) (Rueckert et al., 1996); the left dorsolateral prefron-
tal and premotor cortices, Broca’s area, and the inferior parietal
cortex (Burbaud et al., 1999); and the left parietal and inferior
occipitotemporal regions (lingual and fusiform gyri) (Rickard
et al., 2000). The diversity of brain areas involved in arithmetical
processes supports the assumption that calculation ability repre-
sents a multifactor skill, including verbal, spatial, memory, body
knowledge, and executive function abilities (Ardila and Rosselli,
2002). Dehaene et al. (2004), however, proposed that regardless
of the diversity of areas that become active during arithmetical
tasks, the human ability for arithmetic is associated with activation
of very specific brain areas, in particular, the intraparietal sulcus.
Neuroimaging studies with humans have demonstrated that the
intraparietal sulcus is systematically activated during a diversity of
number tasks and could be regarded as the most crucial brain region
in the understanding and use of quantities (Ashkenazi et al., 2008).
These observations have been supported using brain electrostimu-
lation (Roux et al., 2009). Other brain areas, such as the precentral
area and the inferior prefrontal cortex, are also activated when
subjects engage in mental calculations. Rosca (2009) has proposed
that there exists a fronto—parieto—subcortical circuit responsible for
complex arithmetic calculations and that procedural knowledge
relies on a visuo-spatial sketchpad that contains a representation
of each sub-step of the procedure.

Traditionally, calculation defects have been associated with pos-
terior left parietal damage (Henschen, 1925; Boller and Grafman,
1983), and frequently included in the so-called Gerstmann’s (or
angular gyrus) syndrome. Symptoms of Gerstmann’s syndrome
(acalculia with agraphia, disorders in right-left orientation, and
finger agnosia) (Gerstmann, 1940) can be found during direct cor-
tical stimulation in the angular gyrus region (Roux et al., 2003).
Using fMRI, it has been observed that the left angular gyrus is not
only involved in arithmetic tasks requiring simple fact retrieval,
but may show significant activations as a result of relatively short
training of complex calculation (Delazer et al., 2003).

Colvin et al. (2005) investigated numerical abilities in a split-
brain patient using experiments that examined the hemispheres’
abilities to make magnitude comparisons. One experiment

examined the ability to enumerate sets of stimuli, and another two
experiments required judgments about two concurrently presented
stimuli that were either identically coded (i.e., two Arabic numerals,
two number words, or two arrays of dots) or differently coded (e.g.,
an Arabic numeral and a number word). Both hemispheres were
equally able to enumerate stimuli and make comparisons between
numerical representations regardless of stimuli coding. However,
the left hemisphere was more accurate than the right when the task
involved number words.

Cohenetal. (2000) reported a patient with a lesion in the left per-
isylvian area who showed a severe impairment in all tasks involving
numbers in a verbal format, such as reading aloud, writing to dicta-
tion, or responding verbally to questions of numerical knowledge.
In contrast, her ability to manipulate non-verbal representation of
numbers, i.e., Arabic numerals, was comparatively well preserved.
This observation supports the proposal that language and calcula-
tion disorders can be dissociated (Basso et al., 2000). Some authors
have assumed that language and numerical concepts are differently
organized in the brain and follow distinct developmental patterns
in children (Gelman and Butterworth, 2005). Other authors have
suggested that calculation and language are mediated by partially
different and also partially overlapped brain systems (Baldo and
Dronkers, 2007). Semenza et al. (2006) have emphasized that cal-
culation and language usually share the same hemisphere.

In summary, diverse brain areas are activated during the per-
formance of different arithmetical tasks, although contemporary
evidence suggests that the intraparietal sulcus seems to the play the
most crucial role. During the learning of new calculation abilities,
additional brain areas become involved and the specific pattern of
brain activity depends on the particular type of test that is used.
It can be assumed that during human history, the development
of new numerical abilities was correlated with the involvement
of new brain areas during the performance of progressively more
complex numerical tasks.

CONCLUSION

Arithmetical abilities and number representation have existed
for only some 5000-6000 years. Most likely, during the Stone-
Age, only simple counting up to three and, of course, “bigger”
and “smaller” (magnitude judgment) concepts were present.
Global quantification is observed at the pre-human level.
Correspondence constructions allowed increasing the amount
of numbers to be used. The most immediate correspondence
construction is performed with the fingers. Finger knowledge
and counting represent, to a certain extent, the same cognitive
ability, as is still evident in some contemporary languages, such
as Sikuani.

Counting, finger gnosis, and even lateral spatial knowledge may
presenta common historical origin. Seemingly, calculation abilities
were derived from finger sequencing. Number representation and
arithmetical operations are observed only since some 5000-6000
years ago. Currently, calculation abilities are rapidly evolving due
to the introduction of modern technology and resulting cognitive
demands. Right-left discrimination (as well as the use of other
spatial concepts) most likely was present in pre-historic man,
because requirements of spatial abilities may have been very high,
even higher than in contemporary man (Hours, 1982; Ardila and
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Ostrosky, 1984; Ardila, 1993). Rightleft discrimination and finger
gnosis are strongly interdependent, and even they can be inter-
preted as components of the autotopagnosia syndrome. It seems, in
consequence, that there is a rationale for finding a common brain
activity for finger gnosis, calculation, and right-left discrimination
(and in general, spatial knowledge mediated by language) (Ardila

and Rosselli, 2002).

Contemporary neuroimaging techniques, specifically fMRI, have
demonstrated that the left parietal lobe, particularly the intrapari-
etal sulcus is systematically activated during a diversity of number
tasks; other areas, particularly the frontal lobe, are also involved
in processing numerical information and solving arithmetical
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