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The pelagic thresher shark (Alopias pelagicus) is globally endangered, threatened

by bycatch, and targeted in industrial and artisanal fisheries in Indonesia.

However, a lack of information about their ecology, particularly movement and

habitat use, hinders the development of science-based conservation measures

to protect the species. Here, we report our research, which is the first to use

a combination of satellite and passive acoustic telemetry to investigate the

movement and residency of the pelagic thresher shark within Indonesia’s waters,

especially in areas impacted by local fisheries. A total of 24 sharks were tagged

with archival satellite tags (n = 9), internal acoustic tags (n = 10), and both

tags (n = 5) in Selat Pantar Marine Protected Area (MPA). The tagged sharks,

dominated by females (71%) ranged in size from 125–180cm FL (mean ± SD:

161 ± 13). Seven of the fifteen acoustically tagged sharks were detected by the

receivers, while twelve of the fourteen satellite tags reported data. The satellite

tags stayed attached for 81–181 days, and the acoustic tag detection periods

ranged from 44–175 days. Horizontally, we found the satellite-tagged sharks

moved broadly, mainly o�shore, approximately 90 km from tagging locations.

They moved to areas between Banda, Flores, and Savu Sea regions, where

unregulated and unreported longline and gillnet fisheries are known to operate.

Meanwhile, the acoustically tagged sharks showed distinct diel patterns around

the Selat Pantar MPA’s coastal waters, indicating potential philopatric behavior.

Vertically, the sharks spent significantly (p < 0.001) more time in deeper water

during the day and moved to shallower water at night. The deepest dive

recorded was 1,889.5m, which is the deepest ever recorded from the species.

Our results suggest that area-based protection can be an e�ective nearshore

conservation tool as individuals appear to remain in relatively restricted areas

within Selat Pantar MPA for extended periods. However, fisheries regulation

aimed at restricting illegal longline and gillnet fishing is also necessary to protect

sharks when they move o�shore. Our findings have been communicated to the
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relevant governments, resulting in increased political will and new legislation to

protect them within the Selat Pantar MPA and connected waters of East Nusa

Tenggara.

KEYWORDS

endangered species, Lesser Sunda Islands, telemetry studies, Sunda Banda Seascape,

habitat use, Alor Island, pelagic thresher shark, shark conservation

1 Introduction

Indonesia is one of the largest shark fishing nations globally,

with more than 100,000 tons of sharks landed over the past 20

years (1). Sharks are high-value fisheries targets, making them

an essential source of income and protein for many coastal

communities across the archipelago (2, 3). In addition, the high

value of shark fins in international markets is a significant

driver of Indonesian shark fishing activities (4, 5), resulting in

high fishing pressures and significant declines in many shark

populations in Indonesia (6, 7). Unfortunately, the conservation

and management of sharks in this region remain challenging due

to unregulated small-scale fisheries, illegal fishing activities, and

insufficient control and monitoring (8, 9).

Conservation remains challenging for wide-ranging migratory

shark species, such as pelagic threshers, as they are exposed

to various impacts throughout their life stages (10). Effective

conservation and management action depends on adequate

knowledge of a species’ habitat use, distribution, and movement

patterns (11, 12). Most data on pelagic threshers’ life history

is based primarily upon specimens from capture fisheries, with

limited studies on age and growth, reproductive characteristics,

demographic analyses, and large- and small-scale movement

patterns (13–16). These knowledge gaps and information on spatial

overlap with key threats hinder science-based management and

conservation of the species.

The pelagic thresher shark (herein “pelagic threshers”) (Alopias

pelagicus) is listed globally as Endangered by the International

Union for Conservation of Nature (IUCN), with a decreasing

population trend within the Indian Ocean (17). The species

is epipelagic and wide-ranging, predominantly found offshore

over deep water in the tropical and subtropical waters of the

Indo-Pacific (16). In Indonesia, observations of this species

have been recorded in the Indian Ocean, from West Sumatera

to the south in Nusa Tenggara, the South China Sea, Pacific

Ocean, Makassar Strait, Sulawesi Sea, Banda Sea, and the Arafura

Sea (18) where they are targeted for their meat and valuable

fins (19).

The pelagic threshers population in Indonesia is subject to

target capture by nearshore small-scale fisheries and bycatch in

offshore large-scale tuna and swordfish longline, gill net, and purse

seine fisheries (16, 20). As a result, populations are estimated

to have declined by more than 83% over the past two decades,

evidenced by decreasing catch and reduced sizes of captured

individuals (15, 21). To address offshore capture, the Indian Ocean

Tuna Commission (IOTC) prohibited the retention on board,

transshipping, landing, storing, and selling of pelagic threshers

through IOTC Resolution 12/09 (5).

Nearshore, pelagic threshers have been documented as targets

for small-scale fishing communities from the Alor archipelago

in East Nusa Tenggara, Indonesia, in a traditional fishery

that has operated for over 50 years (22) (Figure 1). A recent

study documented that 80% of the catches in this fishery

consist of pregnant females, indicating this region may serve

as a potential pupping ground (22). While the area has been

declared a Marine Protected Area (Selat Pantar MPA) (Ministerial

Decree No. 35/2015), its primary purpose is to protect shallow

coral reef habitats and regulate local fisheries and tourism

activities. Its potential importance in conserving threatened and

charismatic species, such as pelagic threshers, was not considered

in the designation of the MPA boundaries and zoning system.

Consequently, the efficacy of MPAs in protecting mobile and

vulnerable species such as pelagic threshers may be limited (23, 24).

This study aims to advance our understanding of the

movements and behaviors of pelagic threshers in the Alor region

(East Nusa Tenggara, central Indonesia) and identify potential

conservation opportunities for this region and Indonesia more

broadly. We combined satellite and passive acoustic telemetry data

to fill several knowledge gaps in the spatial movement ecology

of pelagic threshers, including (1) large-scale spatial movement

patterns, (2) fine-scale temporal and spatial movement patterns,

and (3) pelagic threshers’ potential conservation opportunities.

Understanding spatial use patterns can inform management

actions by evaluating the importance of specific sites or locations to

a species’ life history and ecology (25). Our research in Alor region

is an essential first step to informing conservation measures and

evaluating the potential for establishedMPAs like Selat Pantar MPA

to reduce fishing pressures on the populations of pelagic threshers

in Indonesia.

2 Materials and methods

2.1 Study area

Field research activities were conducted within the Selat Pantar

MPA, located in the Alor Regency, East Nusa Tenggara Province,

Indonesia (Figure 1). The Alor Regency is an archipelagic region

comprising 15 islands with nine inhabited islands. The largest

human population is located on the Alor Island. The regency’s

marine ecosystem hosts over 31 hard coral genera and reefs with

relatively high coral cover (26). The site is also oceanographically

distinctive, with regular upwelling (June–August) during the

southeast monsoon (27). Cold, nutrient-rich water from the

upwelling drives high chlorophyll-a concentrations, making the

area highly productive (28). Alor Regency sits between the Savu
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FIGURE 1

The study area is in Alor Island of Central Indonesia (A), more specifically, the Selat Pantar MPA area (B). The inset map highlights the boundaries of

the Selat Pantar MPA (B, light gray area) and its location in the Alor Regency. Red dots represent VR2W acoustic receiver locations, while yellow dots

represent the tagging locations of A. pelagicus for acoustic and satellite tags (C).

Sea to the South and the Banda Sea to the North. The waters

were declared protected under the Selat Pantar MPA, one of

the MPA networks within the East Nusa Tenggara Province that

encompasses more than 277,000 ha of protected waters (29–31).

2.2 Data collection

2.2.1 Shark capture and handling
Each pelagic thresher was captured with the assistance of Alor

shark fishers using traditional deep-fishing techniques. The high

pelagic threshers catch rate by local fishers in Alor allowed us

to handle the sharks and deploy tags. The fishing areas were

in the Selat Pantar MPA between Pura Island and Kalabahi

Bay (Figure 1) (8.3042 ◦S, 124.3854 ◦E). Fishers captured pelagic

threshers using custom fishing gear consisting of 5–6 hooks

decorated with sparkling strings and chicken feathers on lines 200–

300m deep anchored with rocks wrapped in dried coconut leaves

(22). Thresher sharks hunt using their elongated caudal fin to stun

prey (32), a behavior that has been well known to local shark fishers

in Alor to result in foul-hooking of a pelagic thresher’s caudal fin

when it attempts to stun the hooks baited with traditional visual

lures. Once sharks were captured, fishers removed the hooks from

the tail, and a team of free divers transported the shark to the

side of the research vessel, keeping the shark submerged. Sharks

were immobilized alongside the vessel using two belts around the

back of the pectoral and caudal fins and positioned upside down to

induce tonic immobility (33). Immobilized sharks were measured

for fork length (FL) using a meter tape, and sex was visually

determined (e.g., presence or absence of claspers) (34). Following

the measurements, each shark was tagged using a satellite tag,

acoustic transmitter, or both while still in the tonic position. Animal

tagging was conducted under UC Santa Cruz Institutional Animal

Care and Use Committee Protocol Crold2006_r1.

2.2.2 Satellite tag and acoustic transmitter
deployments

Satellite tagging was initially conducted in September 2018

and May 2019 (Table 1). Subsequently, we conducted satellite

and acoustic tagging in September-November 2020 and March

2021. These months were chosen to provide tracking data during

and after the Alor shark fishing season, generally from February

through September, with peaks in March and April (22).
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TABLE 1 Summary of A. pelagicus tracked with MiniPAT satellite tags.

Shark No. PTT Sex Fork length
(cm)

Tag deploy date Tag pop-up date Tracking
period (days)

Number of days
used for

day/night plots

1 151350 F 150 05-September-2018 01-March-2019 178 4

2 157852 M 180 13-March-2019 24-August-2019 166 0

3 177027 F 151 05-May-2019 25-July-2019 89 0

4 177028 F 137 05-May-2019 29-October-2019 181 36

5 178891 M 125 06-May-2019 28-July-2019 81 27

6 178892∗∗ F 170 07-May-2019 01-November-2019 181 180

7 201381(d) M 140 25-September-2020 04-Jan-2021 103 45

8 202817(d) F 160 29-September-2020 19-December-2020 82 62

9 202818(d) F 180 07-October-2020 03-April-2021 181 69

10 202819∗(d) F 165 08-October-2020 - - -

11 201372 M 160 23-November-2020 20-May-2021 180 62

12 201373 M 170 23-November-2020 01-May-2021 153 85

13 201374∗∗ F 125 23-November-2020 30-March-2021 128 62

14 201371∗(d) F 180 23-November-2020 - - -

Platform Transmitting Terminal (PTT) is the unique Argos ID number for each tag. Sex: M (male), F (female). ∗Indicates that a tag did not report, ∗∗indicates that a tag was recovered, (d) the

shark was double-tagged with acoustic transmitter.

We used pop-up satellite archival MiniPAT tags (Wildlife

Computers, Inc.) to track pelagic threshers’ vertical and horizontal

movements. Each tag was attached to a titanium dart via a 12-cm

long stainless-steel tether designed by the manufacturer specifically

for tag attachment to sharks. Each tag was deployed using a spear

pole, and the titanium dart was penetrated laterally on the left or

right side of the dorsal fin. Depth data were binned into 0–2m,

3–5m, 6–10m, 11–20m, 21–50m, 51–100m, 101–200m, 201–

300m, 301–400m, 401–600m, and 601–2,000m depths. The tags

were programmed to stay on the sharks for 180 days to collect

and archive data, including ambient temperature, depth, and light

level geolocations, before automatically detaching (or prematurely

releasing), floating to the surface, and transmitting summarized

data via satellite.

To monitor the residency and visitations of thresher sharks to

shallow coral reefs, we used V16–6H coded acoustic transmitters

(Innovasea, Halifax, Canada), operating at 69 kHz frequency and

transmitting pings randomly every 60–120 s. Before deployments,

the transmitters were sterilized using alcohol 70%. The sterilized

transmitters were then inserted into the peritoneal cavity by

making a 2–3 cm incision from the midline of the abdominal wall,

which was subsequently closed with 2–3 stitches using dissolvable

sutures (Ethicon PDS II Violet 2–0) and surgical needle 50mm ½

circle cutting, Spring Eye (SE-MH 50). After the internal tagging

surgery, five sharks were double tagged with external MiniPAT

satellite tags. In other cases, sharks were only outfitted with a

satellite tag (and no acoustic tag) due to the limited number of

available tags.

After tagging, sharks were given 10–30 s of recovery swimming

in the water, assisted by one of our research team members, and

released. The time from transporting, securing, and releasing the

shark on the boat ranged from 10 to 15 min.

2.2.3 Acoustic receiver deployments
We deployed eight acoustic receivers (VR2W 69 kHz,

Innovasea, Halifax, Canada) across the Selat Pantar MPA

(Figure 1) to monitor the acoustically tagged pelagic threshers.

The sites where the acoustic receivers were deployed were selected

based on pelagic thresher shark sightings reported by local dive

centers. We deployed five acoustic receivers from September–

October 2020 (Anemone City, Anemone Carpet, Reta, West

Strait, Munaseli), and three additional acoustic receivers (Matab,

Harilolong, and Cathedral) were deployed in November 2020

(Table 2). All receivers were covered with electrical insulation tape

to prevent biofouling and attached to 15–20mm diameter ropes

with cable ties. Depths of the receiver locations ranged from 30

to 41m, and receivers were anchored to large coral colonies and

floated ∼2m from the substrate. The data from the receivers were

downloaded for 4–6 months until the end of March 2021.

2.3 Data analyses

2.3.1 MiniPAT data analysis
We generated movement tracks from light-based geolocation

data using the Wildlife Computers GPE3 program (35). GPE3

combines light-level data, satellite-based sea surface temperature

measurements, tag-recorded sea surface temperature, bathymetry,

tag-recorded maximum depth, and a movement speed constraint

into a hidden Markov model to generate location probabilities at

12-h intervals (36). User inputs include the known tagging location

at the start of the track (the first satellite communication after

the tag detaches is considered the end of the track), any known

locations during the tag deployment, such as acoustic detections of

double-tagged sharks at acoustic receiver stations, and a movement
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TABLE 2 Summary of acoustic receiver deployments in Selat Pantar MPA.

Receiver
location

Anemone
Carpet

Anemone
City

Harilolong Munaseli Reta Matab∗ West
Pantar

Cathedral

Deployment date 26-September-

2020

29-September-

2020

25-November-

2020

05-October-

2020

01-October-

2020

24-November-

2020

01-October-

2020

28-November-

2020

Recovery date 11-November-

2020

23-March-

2021

30-March-

2021

25-March-

2021

14-

November-

2020

- 22-March-

2021

23-March-

2021

Tracking period

(days)

46 175 125 171 44 - 172 115

Total detected

sharks

1 4 4 2 0 - 0 0

Total detections 1 197 273 5 0 - 0 0

No. detection days 1 31 53 2 0 - 0 0

Detection Index (%) 2.2 17.7 42.4 1.2 0 - 0 0

No. visitations 0 23 62 1 0 - 0 0

Mean visitation

duration (mins)

0 23.1 15.2 9.2 0 - 0 0

Max. visitation

duration (mins)

0 119 79 9.2 0 - 0 0

This includes receiver location, deployment and recovery date, tracking period, and detections. ∗Indicates the receiver was lost.

speed, defined as the standard deviation of a normal distribution of

possible diffusion rates to constrain distances between subsequent

locations (35). We tested three different movement speeds for each

tag: 1.5 m/s, 2 m/s, and 3 m/s. GPE3 outputs include a model score,

with a higher score indicating a better model fit to the light-level,

SST, and depth observations recorded by the tag (35). We analyzed

each tag with the three-movement speeds and selected the 2 m/s

speed as our top score model for each tag for data analysis.

GPE3 outputs include maximum likelihood positions, and

probability surfaces that incorporate the complete position

uncertainty from the hidden Markov model. We combined the

probability surfaces for each tag, following the method described in

Stewart et al. (36) to calculate residency distributions for each shark

across the tag deployment period. We averaged the probability

surfaces, estimated them at 12-h intervals, and scaled them so that

the total probability of the combined surface was summed to one.

We then used this combined probability surface to calculate 50%,

75%, and 95% credible intervals, which should be interpreted as

the smallest area within which a shark would be found with 95%,

75%, or 50% probability during the tag deployment period. Finally,

we combined the probability surfaces from all tags using the same

approach to generate a population-level residency distribution.

We generated day/night depth plots using the “RchivalTag”

package in R (37, 38) to account for the percentage of vertical

shark distribution during the day and night hours for each tag.

Note that depth plots were made by including the “min.perc = 99”

argument to restrict the histogram data to datasets with sufficient

data coverage. This is particularly important for summary data

calculated from transmitted time series data since the latter can

contain many transmission gaps, depending on the deployment

duration and the number and resolution of data sets selected

for transmission. Therefore, even if the tracking periods were

longer, depth plots were made only from periods with at least 99%

data coverage.

We used the Shapiro-Wilk normality test to study the normality

of the data. In all cases, data followed a non-normal distribution. A

Welch Two Sample t-test was used to test significant differences

between depths for each tag during day and night times. In

addition, the range (min and max), mean, and standard deviation

(SD) of depth were calculated for each tag nighttime and daytime

period (day vs. night). Furthermore, linear models were also used to

test significant differences between daytime periods (day vs. night)

for depth and SST.

Finally, we calculated the percentage of area occupied by shark

positions inside of the designed MPAs following two different

approaches: (1) calculating the percentage of overlapping area

with MPAs, based on daily maximum likelihood areas, and (2)

calculating the proportion of the total merged likelihood surface

that falls within MPAs. This analysis yielded a metric of the efficacy

of MPAs to protect the main areas of distribution for thresher

sharks based on the percentage of area occupied by sharks.

2.3.2 Acoustic data analysis
The acoustic data, consisting of the date and time stamps

of acoustic detections and transmitter ID, were analyzed to

characterize the visitation pattern of the pelagic threshers around

the receivers by calculating the duration of visitations at each

receiver. A visitation involving a minimum of two acoustic

detections started when a receiver detected the transmitter and

ended when the receiver did not detect the transmitter for 1 h

or when the transmitter was detected by another receiver (39).

The analysis was undertaken using the “VTrack” R package (40).

Moreover, the hourly total number of acoustic detections recorded

by each receiver was calculated to investigate the diel visitation

pattern at each receiver. The hourly number of detections were

grouped into daytime (06:00–18:00 local time) and nighttime

(18:00–06:00) detections. The hourly number of detections from
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each transmitter at each receiver was plotted using the “ggplot2” R

package (41) to visualize the detection and residency patterns over

the study period.
We used Residency Index (RI) to examine the detection

level of each tagged pelagic thresher by all acoustic receivers.
We also used Detection Index (DI) to explore the extent to
which each receiver records acoustic detections. These two metrics
were calculated using formulas adopted from Setyawan et al.
(42). We calculated the RI for each pelagic thresher using the
following formula:

RI =
No. of days a transmitter was detected by acoustic receiver array

No. of days between the tagging date and the last detection
× 100

Furthermore, we calculated the DI for each acoustic receiver
site using the following formula:

DI =
No. of days recording detections

No. of days between first deployment and last detection
× 100

3 Results

3.1 Archival satellite tag
horizontal movements

We tagged 14 pelagic threshers with MiniPATs (nine females

and five males), five of which were double tagged with internal

acoustic tags (four females and one male). Full deployment details

of satellite tags are reported in Table 1. The lengths of tagged

sharks ranged from 125 to 180 cm FL (mean ± SD: 158 ± 16 cm),

and tagging durations ranged from 81 to 181 days. Eleven out of

14 MiniPATs successfully transmitted archival data to the Argos

system, and two tags from Shark #6 and #10, were successfully

recovered, providing access to the full archived time series of depth

and temperature data.

Reconstructed tracks from archival tags showed that the tagged

sharks generally remained within ∼90 km of the tagging location

(Figure 2). Generally, the tagged sharks accessed three seas: Savu

Sea, Banda Sea, and Flores Sea (Figure 3). All but one tagged shark

(shark #2) spent a large portion of the tag deployment between

the Savu Sea and the Timor Sea, indicated by the extent of their

50% probability distributions, which has the highest probability of

occupancy (see Figure 2). Similarly, all but one tagged shark #4 had

a very high probability of occurrence in the Savu Sea. Meanwhile,

sharks #3, #6, and #13 moved further north than other tagged

individuals into the Banda Sea before returning south toward Alor

and the original tagging location.

A range of 5 to 20% of the thresher shark’s surface

probability overlapped with the designated MPA areas

(Supplementary Table S1, Surface Probability 3).

3.2 Vertical movements

The depths at which tags detached from the sharks ranged from

8m to 1,688m. The vertical movement data from transmitted depth

histograms, compressed depth time series, and the uncompressed

depth time series from recovered tags collectively show that tagged

pelagic threshers spent significantly more time (p < 0.001) in

deeper waters during daytime hours and moved into shallower

depths at night (Table 3). Tagged pelagic thresher sharks spent

much of their time between 20 and400m depth, rarely coming into

shallow near-surface waters (Figure 4, Supplementary Figure S1).

Shark #7 moved to the deepest depth of 1,889.5m during the night

on January 6, 2021, and the tag was released from 1,688 ± 8m on

the same date due to exceeded depth limit.

Two tags were recovered, providing access to the complete,

uncompressed depth and temperature data time series at three-

second intervals. Data from two recovered tags revealed both

sharks exhibited diel vertical migrations, accessing mesopelagic

zones during the day and epipelagic zones at night. Full tracking

periods showed that both sharks made continuous oscillatory dives

from 50m to 300–400m depth during the day. Shark #6 made a

single rapid deep dive to 560.5m for one night but still spent most

of its time in shallower water≤100m during the night (mean± SD:

51.7± 42.3).

The mean temperature experienced by tagged pelagic thresher

sharks during nighttime was significantly warmer (p < 0.001) than

during the daytime (Table 3), likely related to their diel vertical

migration patterns. The sharks spent 81% of the time in the warmer

water at night >21◦C, and 54% in the colder water <20◦C during

the day. The lowest temperature was 3.4◦C (mean± SD: 21± 5.9),

recorded during the deepest dive at 1,889.5m (mean ± SD: 155.62

± 253.5).

3.3 Acoustic detection pattern and
residency

A total of 15 pelagic threshers were tracked using passive

acoustic telemetry to examine residency in Selat Pantar MPA

between September 2020 and March 2021 (Table 4). The sharks

ranged in size between 140 and180 cm FL (mean ± SD: 161 ± 13)

and were dominated by females (80%). The acoustic array detected

only seven of 15 tagged sharks (Table 2). Those seven sharks had

detection periods of 44–175 days (mean± SD: 121± 57). Four out

of eight receivers recorded a total of 476 acoustic detections, while

four receivers recorded zero detections (Table 2).

There was a high degree of individual variability in acoustic

detections and residency of tagged sharks (Table 3, Figure 5). Of

the seven detected sharks, three had <5 detections, therefore

we excluded them and only calculated RIs for four sharks with

sufficient number of detections. The RIs ranged from 16.1% to

32.4% (mean ± SD: 22.8 ± 7.3). The RI of sharks tracked for more

than 4 months (n= 2) were 18.5% and 24.3% registered by females

sized 180 cm (Shark #9) and 160 cm FL (Shark #8), respectively. On

average, the sharks spent between 4 and 20min within range of an

acoustic receiver during a visitation, while the maximum length of

visitations for each shark ranged from 4 to 119min (mean± SD: 43

± 45) (Table 4). The longest visitation of 119 mins was recorded by

shark #8 at Anemone City (Figure 5).

Most of the detections were recorded by the receivers at

Anemone City (n = 197; 41%) and Harilolong (n = 273; 57%)
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FIGURE 2

All surface tracks from A. pelagicus tagged with miniPAT tags were combined to visualize the potential key aggregation sites across eastern

Indonesia’s waters, encompassing the Banda, Flores, and Savu seas and their respective Fisheries Management Area (FMA). Tagged sharks also

showed a particular movement around the Timor Sea, which belongs to the national waters of Timor Leste. Polygons represent probability density

surfaces for all tags from a given deployment location. Light to dark shades represent 95%, 75%, and 50% probability contours. The 95% contour

represents the smallest area where tagged animals were expected to spend 95% of their time.

(Table 2). These two receivers detected four tagged sharks, while

Munaseli detected only two. The receivers at Anemone City and

Harilolong also recorded the highest DI of all sites, with 18 and 42%,

respectively. Additionally, Anemone City recorded 23 visits, just

slightly over a third of the number of visits recorded by Harilolong.

Despite this, the mean and maximum duration of visitations at

Anemone City (mean, max: 23 and 119min) was higher than at

Harilolong (mean, max: 15 and 79min) (Table 2). The receiver at

Anemone Carpet did not record any visitations as there was only

one detection recorded at this site throughout the study period.

3.4 Seasonality and diel pattern

The visitation patterns varied temporally during the study

period among Anemone City and Harilolong. Anemone City

recorded most visitations from Shark #8 and #18 in October–

November 2020 and occasionally recorded visitations for the rest

of the study period. In comparison, the receiver at Harilolong

recorded visitations almost continuously between December 2020

and March 2021 from four tagged sharks (#19, #9,# 8, #21)

(Figure 5), although we note that it was not deployed until the end

of November 2020.

Sharks #8 and #9 showed slightly different patterns of visitation.

Although the acoustic array recorded no visitation at the beginning

of tagging, Shark #9 was primarily detected by the receiver at

Harilolong from mid-December 2020 to the end of March 2021.

Meanwhile, Shark #8 registered several visitations in October–

December 2020 at Anemone City before being detected almost

entirely by the receiver at Harilolong for the rest of the study period

(Figure 5). Sharks #16 and #18 also registered some visitations at

Anemone City in October 2020.

The number of detections during the day (247 detections)

was slightly higher than that at night (229 detections) (Figure 6).

Despite the limited number of detections recorded by the acoustic

array, the receivers at Anemone City and Harilolong showed a

distinct diel pattern of detections (Figure 6). Most detections at

Anemone City occurred during the day between 10:00 and 14:00,

peaking at 13:00. In contrast, the detections at Harilolong were

recorded between 19:00 and 03:00, peaking at 21:00–23:00, with

only a handful of detections recorded during the day at 12:00–

16:00.
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FIGURE 3

All tracks from the A. pelagicus tagged with MiniPAT tags. Colors indicate the monthly track trajectory–probability of surface at 50, 75, and 95% level

represented by gray shade contour. Polygons represent probability density surfaces for each tag from a given deployment location. Light to dark

shades represent 95%, 75%, and 50% probability contours. The 95% contour represents the smallest area where tagged animals were expected to

spend 95% of their time. Sharks #9 and #10 were omitted due to insu�cient geolocation data. Maps and probability density surfaces were created

using R.

4 Discussion

Tagging studies offer an opportunity to provide essential

information about the habitat use, movement, and residency of

marine migratory species (42–44). Previous studies using telemetry

approaches to evaluate the movements of elasmobranch species

in Indonesia have focused only on whale sharks (Rhincodon

typus) and manta rays (Mobula spp.) (45–47). Our study is

the first to provide information on pelagic thresher sharks’

movements and residency behavior in Indonesia. Despite low

acoustic detection rates at our array in the Selat Pantar MPA,

a small proportion (∼20%) of satellite tag-based locations

were within the MPA boundaries. Furthermore, the tagged

sharks also exhibit a high degree of residency in the Savu

Sea and the neighboring Flores Sea, with occasional long-

distance movement to the Banda Sea. The results suggest that

strengthening the regional area-based management approach

in these connected waters could effectively conserve pelagic

thresher sharks.

4.1 Horizontal and vertical movements

Banda, Flores, and the Savu seas are administered under

Indonesia’s Fisheries Management Areas (FMA) 714, 713, and

573, respectively. The FMA is regulated within Indonesia’s

Exclusive Economic Zones (EEZ) to support capture fisheries and

aquaculture and maintain stocks’ sustainability, including high-

value stocks, CITES-listed, endemic, and highly threatened species

(48). The FMA 713 and 714 notably have the largest dedicated

marine conservation areas, spanning 63 sites and 6.4 million ha to

protect critical marine habitats and megafaunas such as cetaceans,

sea turtles, and elasmobranchs (49).

Our study highlighted areas used by the pelagic threshers,

centered around the Savu Sea in the Indian Ocean. The Savu Sea

is characterized by complex bathymetry, internal tides, vertical

mixing, and seasonal upwelling from deep waters, resulting in

abundant food sources for marine organisms (50). The region is

a vital hotspot because marine megafauna, such as cetaceans and

mobulids, also forage there seasonally (51–53). Pelagic threshers
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spent a substantial amount of time within the Savu Sea, particularly

during the tagging period in July–August. These months are

considered the Southeast (SE) monsoon when upwelling occurs

throughout the southeastern part of Bali and East Nusa Tenggara

with high concentrations of chlorophyll-a reaching up to 200 km

from the coast (28, 54).

Meanwhile, the observed vertical behaviors of the pelagic

threshers moving from deeper water (100–400) in the daytime

to shallower depth during nighttime are consistent with previous

studies on the same species in the Red Sea (55), as well as its

sister taxa, common thresher sharks (A. vulpinus) and bigeye

thresher sharks (A. superciliosus) in the Pacific Ocean (56–58). The

use of deeper water during the daytime corresponds to previous

studies on juvenile pelagic thresher sharks that spent their time

predominantly in depths > 200m (55). Similar vertical movement

patterns were observed in bigeye thresher sharks that spent most of

their time 200–300m deep during daytime and moved to 50–90m

during nighttime (57, 59).

The tagged sharks performed occasional nighttime rapid dives

followed by rapid ascents, with the deepest dive recorded for the

species being 1,889.5m; notably the deepest dive ever reported

for the species and the third-deepest dive ever recorded for an

elasmobranch (following the whale shark at 1,926m, and devil rays

at 1,896m) (60–62). In contrast, other studies observed daytime

rapid dives and ascents of pelagic thresher sharks, with the deepest

dive recorded at 632m and 955m for bigeye thresher sharks (55,

57). These movements between deeper and shallower waters lead to

pelagic thresher sharks experiencing a wide range of temperatures,

in this study, from 3.4 to −22◦C. Both pelagic and bigeye thresher

sharks have a rete mirabilia system (vascular structures supporting

counter-current heat exchange) that enable them to maintain their

body temperature above ambient levels. This may be essential in

facilitating these rapid temperature and depth changes (63, 64).

Movement preferences of thresher sharks may be driven by

the distribution of their prey, predation risk, and physical habitat

characteristics (56, 65). For bigeye thresher sharks, nighttime

feeding behavior in shallower depths may provide an advantage

in prey capture because their large eyes extend onto the dorsal

surface of the head, allowing them to move and hunt under low-

light conditions (59, 66, 67). Meanwhile, pelagic thresher sharks

are known to feed on prey that is distributed in mesopelagic

habitats (100–200m) such as Lestidium spp., Polymetme sp.,

and Dosidicus sp. (68, 69), which may explain why they spent

∼70–90% of daytime hours in the mesopelagic zone. Despite

this, daytime (09:00–16:00) and nearshore predation behavior

(10–25m) by pelagic thresher sharks was also witnessed in

the Philippines, where continuous availability of prey such as

sardines may facilitate opportunistic daytime, coastal predation

behaviors (70).

Diel vertical movements of the sharks potentially pose threats

to the pelagic thresher sharks, especially when interacting with

industrial and artisanal longline fisheries. For example, tuna

longline fleets operating within FMAs 713, 714, and 573 usually

deployed daytime deep-set systems at around 200–300m (71),

overlapping with the daytime distribution of pelagic thresher sharks

and therefore making them susceptible to bycatch (72, 73). In Alor,

pelagic thresher sharks were targeted by small fishing communities

using traditional deep handlines (200–300m) (22).
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FIGURE 4

Percentage of time at depth for nine A. pelagicus tagged MiniPAT tags. Histogram depth bins are reported on the Y axis, and the X axis is split into

time spent at depth during the night (left, gray bars) and day (right, white bars). Horizontal bars indicate the mean percentage time at depth for each

tag across all transmitted histograms, and error bars indicate the standard deviation of means. Sharks #2, #3, #10, and #14 were omitted due to

insu�cient data for processing.
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TABLE 4 Summary of A. pelagicus tracked using passive acoustic telemetry in Selat Pantar MPA.

Shark No. Transmitter
ID

Sex Fork length
(cm)

Tagging date Last
detected
date

Tracking
period
(days)

Total
detections

Detection
days

Mean
visitation
duration
(mins)

Max.
visitation
duration
(mins)

No.
visitation

RI (%)

7 56716∗(d) M 140 25-September-2020 - - - - - - - -

8 56721(d) F 160 29-September-2020 29-March-

2021

181 270 44 20.5 119 43 24.3

9 56723(d) F 180 07-October-2020 29-March-

2021

173 151 32 15.6 73.6 31 18.5

10 56722∗(d) F 165 08-October-2020 - - - - - - - -

14 56718∗(d) F 180 09-October-2020 - - - - - - - -

15 56719∗ F 140 26-September-2020 - - - - - - - -

16 56720 F 160 26-September-2020 03-October-

2020

7 4 2 7.6 7.6 1 -

17 56728∗ M 150 26-September-2020 - - - - - - - -

18 56726 F 150 30-September-2020 03-November-

2020

34 33 11 9.2 20.6 7 32.4

19 56709 F 176 23-November-2020 24-December-

2020

31 14 5 12.8 33.6 3 16.1

20 56725 F 170 19-March-2021 21-March-

2021

2 1 1 - - - -

21 56727 F 160 19-March-2021 22-March-

2021

3 3 1 3.8 3.8 1 -

22 56715∗ F 170 20-March-2021 - - - - - - - -

23 56717∗ M 155 20-March-2021 - - - - - - - -

24 56729∗ F 165 20-March-2021 - - - - - - - -

This includes ID number for each transmitter, Sex: M (male), F (female). ∗Tags were never detected during the study period, (d) the shark was double-tagged with MiniPAT satellite tag.
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FIGURE 5

Acoustic detections were recorded over time for each tagged A. pelagicus at each receiver deployed in Selat Pantar MPA between September

2020–March 2021. The size of the bubbles denotes the duration of each visitation for each shark (Y axis) at each receiver station (bubble colors)
*Denotes the date when the transmitters and receivers were deployed respectively, while vertical black lines represent the dates when each receiver

was recovered.

FIGURE 6

Hourly total number of acoustic detections from tagged A. pelagicus for 24h (0–23) recorded by receivers deployed at Anemone City and

Harilolong, Selat Pantar MPA during the study period (September 2020 to March 2021). Detections from receivers deployed at other sites were not

plotted due to a small number of detections recorded.

4.2 Small-scale movement and habitat use

Although our archival tag results revealed that pelagic

thresher sharks ranged widely offshore and into deep waters, the

complimentary acoustic tagging provided insights into the species’

fine-scale movements around the coastal waters of Selat Pantar

MPA. Similar movement behavior was observed in the Philippines,

where the sharks continuously visited a coastal seamount to interact

with cleaner wrasse to remove parasites and dead tissues (74). The

dependence on the coastal seamounts made them regularly venture

from oceanic habitats into shallow coastal waters, demonstrating

the role that specific habitat types play in their life-history

strategies (25).

We also identified high detections at two sites, where the

tagged sharks exhibited diel peaks. The distinct diel visitation

periods may indicate differences in species occurrence and how

they use these specific habitats (75). For example, greater visitation

to cleaning stations in the coastal seamount of the Philippines is

known to occur in early daylight hours because cleaner fish feed

at higher rates in the early morning, increasing the probability

of pelagic thresher sharks to visit the stations earlier in the day

(74, 76). Diel visitation and habitat use can also be sex-specific,

such as for nursery or birthing (77–79). In our case, where most

targeted thresher sharks in the fisheries are pregnant females

(22), the sharks may visit Kalabahi Bay for birthing and pass

through either Harilolong or Anemone City for cleaning or feeding
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where both sites are located adjacent to the mouth of the bay

(Figure 1). Interpreting the results should be with caution as the

noise associated with the reef activity could have impacted the

detection range, and therefore the number of detections recorded

by the receivers deployed on/near reef environments.

The most active receivers were located close (∼2 km) to the

main fishing grounds of the Alor shark fishers. This potential

critical habitat makes the local population vulnerable to mortality

due to continuous exposure from the ongoing fisheries, although

both areas are located within the MPA. For example, shark #8

was recaptured by a fisher in May 2021. Additionally, although

no receivers detected Shark #17, it was also recaptured in March

2021. Both individuals were tagged in September 2020 and later

recaptured at almost the same locations,∼3 km from the Anemone

City receiver. These findings may provide a fundamental insight

that the sharks are highly likely to be recaptured even in small

tagging samples. It also suggests that some individuals may be

resident or exhibit seasonal philopatry (80), returning to the same

areas during certain times of the year. A longer study period to

identify longer-term residency or philopatry would be essential

in the future, because continuous fishing pressures may deplete

the local pelagic thresher shark population, impacting the local

biodiversity and the livelihoods of the communities that rely on the

species as economic and food sources.

4.3 Implications for conservation and
management

Highly mobile species can be impacted by many stressors

during different life stages and migratory periods, making them

especially challenging to manage effectively (10, 81). The pelagic

thresher shark population throughout the Indo-Pacific is estimated

to have declined by about 50%−79% over the last three generations

(55.5 years), and the species was recently assessed as globally

endangered (EN) (17). Conservation interventions for pelagic

thresher sharks, including any action for a recovery or area-based

management plan, are still lacking. In addition, its occurrence in

protected areas is currently unknown (17, 82).

Our study suggests that the pelagic thresher shark movements

overlapped with high-intensity fisheries in the Indian Ocean, where

unregulated and under-reported gillnet and longline fisheries

mostly occur (83, 84). Reported catches of pelagic thresher sharks

are also high in major fishing ports like Tanjung Luar, Benoa,

and Merauke (73, 85, 86). Pelagic thresher sharks contributed

about 18.6% of the bycatch of tuna longline and 3.74% of targeted

shark longline fisheries operating in these regions (85). Our study

showed potential residency within the existing Selat Pantar MPA,

also threatened by local fisheries (22). The results are crucial for

future revisions of the conservation zones in Selat Pantar MPA to

ensure the prevention of any mortality due to fisheries pressures.

For instance, it will be necessary to establish a dedicated “No

Take Zone” to prohibit any fisheries activities within the identified

critical habitats of the pelagic thresher sharks.

The Indonesian government has already established two

policies to manage the bycatch of pelagic thresher sharks through

Ministerial Decrees No. 12, 2012, and No. 58, 2020, corresponding

to the IOTC resolution 12/09. The policies were set to prohibit the

retention of any part of a thresher shark on board and promote

the live release of thresher sharks from the fisheries (87). However,

it is still legal to catch thresher sharks within Indonesia’s waters

due to its value to local economies. Therefore, implementing

conservation measures (i.e., a blanket capture and retention ban)

would potentially lead to reduced incomes, loss of livelihoods, and

reduced food security in the absence of proposing incentives or

alternative income opportunities (8, 88).

In recent years, the non-extractive use of sharks and rays

(i.e., ecotourism) has increased and has shown the possibility

of providing long-term economic benefits to conservation,

development, and local economies, particularly as alternative

incomes to local communities (89–92). For example, in

Malapascua, the Philippines, pelagic thresher shark-focused

tourism could generate an annual economic benefit of more

than USD11 million for the island, which also contributes to

more extensive community development and resilience such as

post-disaster economic recovery (25, 93). These shark-focused

tourism initiatives need to be supported by a clear understanding

of how sharks use their habitat, which will determine their seasonal

presence and help target and sustain local tourism activities

(94, 95).

5 Conclusions

Despite the relatively small sample size, our study has provided

initial information on pelagic thresher shark movements and

residency behaviors in and around the area within Selat Pantar

MPA. The area showed a promising opportunity as a focal

site for longer-term studies on their ecological movements and

behaviors. This information will be important in stimulating

ideas around future alternative incomes, such as pelagic thresher

shark-focused tourism that could shift local shark fishers’

dependency away from direct capture of the species. We

have communicated the findings to the district and provincial

governments, resulting in a proposal to include ∼20% of

the identified habitat of pelagic thresher sharks as a new

conservation zone to limit fisheries activities. Furthermore, the

local government has increased its political will to push legislation

to completely protect pelagic thresher sharks through the

Governor’s Instruction Dis.Pkl.188.48/B1.57/VIII/2022 throughout

the East Nusa Tenggara province. This new legislation has

created the opportunity to improve localized conservation efforts

to incentivize new alternative livelihoods for shark fishers and

mitigate ongoing population decline, especially toward pregnant

females that make up most catches in the local fisheries.
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