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Parrotfishes (family Scaridae) are important to coral reef ecosystems and highly
prized by both commercial and recreational fishers in the Hawaiian Islands.
Although parrotfishes are known to be strictly diurnal, our knowledge of their
habitat use and movement patterns across daily timescales in tropical systems is
still somewhat limited. Here, acoustic telemetry was used to determine parrotfish
habitat use and movements within a coral reef seascape at Puakō, Hawai‘i. An
array of acoustic receivers was deployed in a nearshore reef to track fine-scale
movements of two common species: ember parrotfish (Scarus rubroviolaceus)
and palenose parrotfish (Scarus psittacus). Transmitters were mounted externally
on fish and tracked over a four-week period using an acoustic positioning
system. Coral habitats (reef flat, fore reef) within the study area weremapped and
used in conjunction with triangulated positions to characterize habitat use and
movements. Findings indicated that both species commonly inhabited the fore
reef habitat during the day (91.6% and 95.0% of total detections, respectively),
spending limited time in the reef flat during the day and no time in this habitat
at night. Activity spaces (based on 95% and 50% kernel utilization distributions)
indicated that home ranges and core use of both species were significantly larger
during the day than night, with daytime home ranges (mean ±1 SD) significantly
greater for ember parrotfish (8,712 ± 1,991 m2) than palenose parrotfish (3,725
± 1,254 m2). Hourly mean detections peaked during crepuscular periods for
palenose parrotfish and to a lesser extent for ember parrotfish, which was linked
to movements between shallower daytime (foraging) and nighttime (resting)
areas. Kernel utilization distributions indicated that both species occupied similar
core use areas of the seascape (overlap index > 0.5), with both intra- and
interspecific overlapping distributions present. Finding from this study highlight
the value of the fore reef habitat for both daytime foraging and nocturnal resting
activities of ember parrotfish and palenose parrotfish. This study also a�ords
valuable information on primary activity spaces of both species as well as overlap
between these two common congeners, which is essential for developing
management strategies to conserve parrotfish populations.
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Introduction

Coral reefs represent some of the most complex ecosystems on

the planet, supporting high levels of productivity and biodiversity

(1, 2). For the Hawaiian Islands, coral reefs play a key role in

the marine ecosystem and local culture due to their biological

significance and economic value. The Hawaiian Islands are one of

the most remote coral reef systems in the world, and reefs are home

to a high percentage of endemic species (3). The shore fishes of the

main islands of Hawai‘i have an estimated 23% endemism (4). Coral

reefs in Hawai‘i are estimated to be worth nearly 10 billion dollars,

bringing in millions of dollars each year in marine tourism industry

alone (5, 6). However, rapid population growth is causing a drastic

increase in anthropogenic influences, resulting in negative impacts

to the health of coral reef ecosystems in the Hawaiian Islands (3).

Parrotfishes are important components of tropical seascapes

throughout the Hawaiian Islands and critical to the health and

resilience for coral reef ecosystems throughout the world (7–9). As

herbivores, parrotfishes graze heavily on algal turfs and macroalgae

(10, 11) but also serve as primary agents of bioerosion on reefs

by scraping away algae and associated matter from the calcium

carbonate reef matrix (12–14). Parrotfishes are known to actively

forage during the day in tropical seascapes but our understanding

of habitat requirements and movements on coral reefs is lacking

for many species. In addition, the scale of diurnal movements (i.e.,

home range) is unresolved for parrotfishes in many parts of their

geographic range, and this information is critical for implementing

conservation measures and establishing the spatial configuration of

marine protected areas.

The aim of this study was to characterize the habitat

use and movements of two common parrotfishes (ember or

bicolor parrotfish Scarus rubroviolaceus [hereafter ember], palenose

parrotfish Scarus psittacus) on the leeward coast of Hawai‘i using

acoustic telemetry. Both species inhabit nearshore coral reefs and

are targeted in commercial and non-commercial fisheries. Previous

studies have shown that the relative abundance of parrotfishes and

other herbivorous fishes in this region is high in comparison to

other heavily fished reefs in the Pacific Ocean (15). This study was

performed on a relatively pristine coral reef complex off Puakō,

a dedicated Fisheries Management Area (FMA) that has elevated

live coral cover compared to other reefs in the Hawaiian Islands

(16, 17). Here we hypothesize that parrotfish will exhibit differences

in habitat use among shallow reef flat, shallow fore reef, and deeper

areas of the fore reef. Additionally, we expect to see differences in

the home ranges and core areas between the two parrotfish species

and therefore do not expect interspecific spatial overlap.

Methods

Study site

The study was conducted at Puakō in the district of South

Kohala on the leeward side of the Island of Hawai‘i (19◦58′ 05.37”

N, 155◦ 51
′

14.13” W) (Figure 1). Various areas of Puakō’s reef

have been designated by the State of Hawai‘i as a FMA, which

prohibits the use of any nets, except for throw nets, and engaging

or attempting to engage in fish feeding (Department of Land and

Natural Resources). Depths within the study area ranged from

approximately <1 to 30m and two common reef zones or habitats

were present in the study area (reef flat [< 6m], fore reef [6–30m])

(Figure 1).

Acoustic telemetry

The two species of parrotfish, S. rubroviolaceus (ember

parrotfish) and S. psittacus (palenose parrotfish) were selected

as study species due to their relatively high abundance on coral

reefs in Hawai‘i. A total of 16 individuals were captured at

night with mesh nets: eight ember parrotfish and eight palenose

parrotfish, ranging in size from 43 to 59 cm total length (TL).

Each fish was brought back to shore and placed in holding tanks.

While in holding, fish were closely monitored to ensure that no

injuries had occurred during capture. Each fish was measured and

tagged with cylindrical external coded acoustic transmitters (V8-

4H) (Innovasea www.innovasea.com). Transmitters were mounted

externally on the dorsal musculature immediately below the dorsal

fin as described by Furey et al. (18) to maximize detectability (19).

Each fish was released the followingmorning in the general location

of the capture site.

An array of acoustic receivers (n = 14; Innovasea VR2W,

69 kHz) was placed on Puakō Reef to allow for acoustic positioning

(Innovasea, Vemco Positioning System). Based on detection

distances obtained from a preliminary trial in the study area,

receivers spacing was conservative with locations approximately

40m apart to maximize the potential for triangulation of tagged

individuals within the array. Sync tags were also mounted on all

receivers with two additional reference tags placed within the study

area to ensure accurate position and time synchronization of the

internal clocks among acoustic receivers (20, 21). The positioning

system was in place for 35 days, and individual parrotfish were

tracked from 6/12/2012 to 7/15/2012.

Data analysis

Time-indexed triangulated positions were filtered by horizontal

position error (HPE) following (20). Triangulated positions with

HPE < 12 were assumed to represent positioning errors of less

than a few meters based on a comparable study in a backreef

seascape in the Caribbean Sea (21). Thus, the analysis of position

data was limited to triangulated positions with HPE values below

this threshold.

Time spent by each fish within the monitored area was

quantified by a residency index (RI) expressed as the number

of days an individual was detected divided by the individual’s

potential detection period (i.e., period from the day an individual

was released to the end of the study and removal of receivers) (22).

RI was calculated for the entire array, and values range from 0

(absence) to 1 (permanent residency).

Triangulated positions were categorized into the distinct

periods of the day (day, night, and twilight [dawn/dusk]) to

investigate diel variability on fish activity. Duration of each phase

was calculated daily using the civil twilight timetable (available
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FIGURE 1

Study site in Puakō Bay, Island of Hawai‘i, highlighting the location of the high-density acoustic receiver array (orange circles). Shades of blue indicate
depth intervals and reef zones: fore reef (6–30m, darker shades) and reef flat (<6m, lighter shades).

at: https://www.timeanddate.com/sun/usa/honolulu?month=6&

year=2012). The estimation of activity spaces for both species

were restricted to the diurnal period due to the limited number

of triangulated positions recorded during the night and twilight

periods (Table 1). Diurnal activity spaces of both species were

estimated with kernel density plots of triangulated positions using

the R package adehabitatHR (23). Kernel utilization distributions

(KUD) of 95% (home range) and 50% (core use) areas were

estimated for individual parrotfish based on bivariate fixed kernels

(24) using the ad hoc smoothing parameter to prevent under-

and over-smoothing (25). KUD estimates were limited to fish

with at least 150 diurnal triangulated positions and detected over

a minimum of 14 days (ember parrotfish n = 4, and palenose

parrotfish n = 4). An overlap index (OI) was calculated for both

95% and 50% KUDs for each pair of individuals to assess potential

overlap of areas in the seascape within and between both species

of parrotfish. Overlap was calculated as: OI = OV (KUDi,KUDi+1)÷

(KUDi + KUDi+1), where OV (KUDi,KUDi+1) is the overlap area

between the home range or core use area of a pair of individuals,

and (KUDi + KUDi+1) is the combination of home range or core

use area of the two individuals (26, 27). OI values range from 0

(no overlap) to 1 (complete overlap). All statical measures are

expressed as mean ± standard deviation (SD). Student’s t-test was

used to assess differences in both activity spaces (home range and

core use areas) and OI between ember parrotfish and palenose

parrotfish. Significance was tested at α = 0.05.

Results

Detections (> 114,000) of both parrotfish species resulted in

over 11,000 triangulated positions: ember parrotfish (6,082) and

palenose parrotfish (5,048) (Table 1). High quality estimates with

HPE values < 12 accounted for 92% of triangulated positions, and

all descriptions and analyses were limited to these data. Half of the

tagged fish (four ember parrotfish and four palenose parrotfish)

were detected for 14 or more days and showed moderate to high

residency to the monitored area on the short term (RI = 0.48 to

0.91; Figure 2). The remaining fish were detected for 6 days or

less, and one ember parrotfish was never detected. Detections and

resulting triangulated positions were significantly higher during the

day for both species, with daytime positions accounting for 98.7%

and 95.7% of total positions for ember parrotfish and palenose

parrotfish, respectively.

Triangulated positions of tagged parrotfish were primarily

observed on the fore reef at depths >6 m: ember parrotfish (91.6%)
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TABLE 1 Monitoring data for ember parrotfish (SR1–SR8) and palenose parrotfish (SP1–SP8) in Puakō Bay, Island of Hawai‘i.

Fish ID TL (cm) Date tagged
(dd/mm/yyyy)

Detection
end date

(dd/mm/yyyy)

Days
detected

RI Positions (HPE < 12) Home range
(KUD 95%,

m2)

Core use
area (KUD
50%, m2)

Day Night Twilight Total

Ember parrotfish

SR1 47 13/06/2012 12/07/2012 30 0.91 1,352 3 33 1,388 6,392.78 1,101.33

SR2 45 13/06/2012 14/06/2012 2 - 494 0 9 503 - -

SR3 57 13/06/2012 23/06/2012 2 - 46 0 0 46 - -

SR4 46 13/06/2012 13/06/2012 1 - 4 0 0 4 - -

SR5 46 13/06/2012 02/07/2012 19 0.58 721 20 2 743 9,683.06 2,449.95

SR6 47 13/06/2012 18/06/2012 6 - 34 0 0 34 - -

SR7 59 17/06/2012 01/07/2012 14 0.48 488 2 1 491 7,859.95 916.56

SR8 51 17/06/2012 15/07/2012 29 1.00 2,109 0 1 2,110 10,914.93 2,270.87

Palenose parrotfish

SP1 57 13/06/2012 16/06/2012 4 - 86 0 1 87 - -

SP2 56 13/06/2012 01/07/2012 19 0.58 1,467 42 86 1,595 3,245.19 470.52

SP3 43 13/06/2012 - - - - - - - - -

SP4 49 13/06/2012 28/06/2012 16 0.48 1,285 7 61 1,353 5,067.82 443.37

SP5 48 17/06/2012 01/07/2012 15 0.52 1,708 0 7 1,715 2,218.99 424.88

SP6 47 17/06/2012 18/06/2012 2 - 4 0 0 4 - -

SP7 45 17/06/2012 04/07/2012 18 0.62 157 0 5 162 4,370.63 845.80

SP8 47 17/06/2012 17/06/2012 1 - 10 0 0 10 - -

Total length (TL, cm), residency index (RI), total number of triangulated positions with horizontal position error (HPE) values < 12. Home ranges and core use areas estimated as 95% and 50% kernel utilization distribution (KUD), respectively. Not calculated (-)

and fish IDs in bold denote individuals used for activity space and overlap investigations.

F
ro
n
tie

rs
in

F
ish

S
c
ie
n
c
e

0
4

fro
n
tie

rsin
.o
rg

https://doi.org/10.3389/frish.2024.1448809
https://www.frontiersin.org/journals/fish-science
https://www.frontiersin.org


Annandale et al. 10.3389/frish.2024.1448809

FIGURE 2

Abacus plot of ember parrotfish (SR1-SR8, blue) and palenose parrotfish (SP1-SP8, orange) monitored in Puakō Bay from 6/12/2012 to 7/15/2012.
Asterisks indicate fish release dates.

and palenose parrotfish (95.0%). Both species were observed at a

wide range of depths during the day (1.2–30.3m); however, limited

use of the shallow water reef flat was observed for each species,

accounting for <7% of daytime detections. At night, triangulated

positions for both species were observed exclusively in the deeper

fore reef (range: 8.7–15.0m), indicating the reef flat was not used

as a nocturnal resting (i.e., sleeping) habitat. Triangulated positions

for palenose parrotfish were at shallower depths during the midday

(∼1,000 to 1,600 h) and more consistent throughout the entire day

for ember parrotfish (Figure 3).

Daytime home ranges (95% KUD) of individual ember

parrotfish ranged from 6,392 to 10,914m2 (mean: 8,712m2 ± 1,991

m² SD) and were centered on the fore reef with 78.7% to 95.2% of

home ranges at depths >6m (Figure 4). Similarly, home ranges of

individual palenose parrotfish were concentrated on the fore reef

(74.7 to 99.6 %), albeit 95% KUDs were significantly smaller in area

than observed for ember parrotfish ranging from 2,218 to 5,067 m2

(mean: 3,725 m2 ± 1,254 m² SD) (t = 4.2, p < 0.001). Daytime

core use areas (50% KUD) for both species were entirely located

on the fore reef, except for ember parrotfish SR5, which had a small

percentage (2.6%) of triangulated positions on the reef flat. Core use

areas of individual ember parrotfish were also significantly greater

in area (mean:1,684m2 ± 787m² SD) relative to palenose parrotfish

(mean: 546 m2 ± 787 m² SD) (t = 3.6, p = 0.010). The reduced

number of nocturnal positions for both species prevented estimates

of activity spaces at night.

Low to moderate overlap was observed in daytime home ranges

(OI range: 0.18 to 0.49; mean: 0.29 ± 0.09) and core use areas

(range: 0 to 0.30; mean: 0.08 ± 0.11) between the two species

(Figure 5). Intraspecific overlap in home range (95% KUD) was

significantly greater among ember parrotfish individuals (OI= 0.52

± 0.09) in comparison to palenose parrotfish individuals (OI= 0.22

± 0.11) (t = 5.25, p < 0.001). The degree of intraspecific overlap in

core use areas (50% KUD) was also greater among ember parrotfish

(OI = 0.15 ± 0.20), while most palenose parrotfish individuals

occupied non-overlapping core use areas (OI= 0.04± 0.10).

Discussion

Triangulated positions of both ember parrotfish and palenose

parrotfish during the day were almost exclusively (>90%) in the

deeper (6–30m), more complex fore reef, with limited use of

the shallow (<6m), less complex reef flat. Previous research has

shown that adult parrotfish often select for areas of higher habitat

complexity within coral reef seascapes (e.g., 27, 28), which may

be responsible for the more limited use of the reef flat that is

often dominated by lower-relief corals relative to the fore reef (16),

including coral reefs in Hawai‘i proximal to Puakō (28). Many

studies have demonstrated that habitat complexity (rugosity) is

positively correlated with abundance and diversity of reef fishes,

including parrotfish (29, 30). The greater structural complexity and

coral diversity on the fore reef at Puakō appears responsible for the

almost exclusive use of this habitat by both ember parrotfish and

palenose parrotfish relative to the reef flat. While coral diversity in

the fore reef enhances foraging opportunities for parrotfish (i.e.,

greater types of foraging substrates), the habitat complexity of

the fore reef habitat also affords parrotfish with larger and more
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FIGURE 3

Mean hourly detection (%) for (A) ember parrotfish and (B) palenose parrotfish. Background colors represent the di�erent periods of the day: night
(dark gray), twilight (light gray), and day (white).

suitable refuge or shelter locations (i.e., crevices) within the coral

seascape, likely lowering their predation risk (31, 32).

Diel shifts in movement and habitat use is relatively common

for coral reef fishes (21, 33, 34), and prior research on parrotfish

has demonstrated dichotomous day-night patterns with individuals

foraging in shallower habitats of the seascapes during the day and

moving into deeper areas of the reef at night (35, 36). Our findings

are in accord with these patterns, with both ember parrotfish and

palenose parrotfish moving to the shallow reef flat only during

the day, with all detections at night in the deeper fore reef.

Detection numbers and movements of both species were markedly

greater during the day, with limited or no movement detected

at night when parrotfish are known to rest/sleep in crevices or

spaces within the reef matrix (29, 37). This was primarily due to

the rugose nature of the structured reef habitat in the nighttime

resting areas which could limit the acoustic detections unless the

receiver was directly adjacent to the location of the resting fish.

Additionally, individuals would have a reduced chance of being

detected on multiple receivers due to their limited movement

(and the structured habitat), therefore reducing the number of

overall detections (37). Although limited in number, triangulated

positions at night typically occurred in the same relative area

across consecutive nights, indicative of fidelity to resting sites.

Site fidelity by parrotfish to diurnal and/or nocturnal habitats
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FIGURE 4

Estimated home range (95% KUD, lighter shades) and core use area (50% KUD, darker shades) for ember parrotfish (SR1, SR5, SR7, SR8; shades of
blue) and palenose parrotfish (SP2, SP4, SP5, SP7; shades of orange). Acoustic receiver locations (black circles) and nighttime triangulated positions
(gray circles) are indicated on each map. Depth contours (3m, 6m, and 10m) are also shown.

FIGURE 5

Intra- and interspecific overlap index (OI) calculated for each pair of
ember parrotfish (SR1, SR5, SR7, SR8) and palenose parrotfish (SP2,
SP4, SP5, SP7). OI was calculated between both home range (95%
KUD, upper triangle) and core use area (50% KUD, lower triangle).
Darker shades of blue indicate higher overlap and lighter shades
indicate lower overlap. White blocks represent non-overlapping
home ranges/core use areas.

has been reported previously in the Caribbean Sea (38), Red

Sea (39), and equatorial Pacific Ocean (40). Nocturnal resting

locations of both the ember parrotfish and palenose parrotfish

were consistently within daytime home ranges for individuals with

available nighttime position estimates.

Fidelity to activity spaces or territories by both ember parrotfish

and palenose parrotfish supports other studies showing strong

repetitive space-use dynamics of parrotfish to both diurnal and/or

nocturnal areas on coral seascapes (35, 41). Previous research

has demonstrated that daily space-use patterns of parrotfish may

remain relatively fixed over time periods of months (27, 39),

with more conspicuous changes in home ranges or core use

areas occurring over longer time periods and often linked to

ontogenetic shifts (42). In the present study, home range estimates

for individuals of both species were ∼6,000 to 10,000 m2 (<0.01

km2), which were noticeably lower than 95% KUD estimates for

other parrotfish species tracked passively with acoustic telemetry

(27, 40, 43). It is important to note that the spatial extent of

the receiver array, tracking duration, type of tracking (active

vs. passive), space use estimation methods, and age/stage/social

status of the individual all influence home range estimates.

Additionally, we did not have adequate sample sizes from both

sexes across the two species to conduct an extensive analysis.

Therefore, it is difficult to align the specific results of this

study with results reported across different acoustic telemetry

studies (23, 40, 44). As an example, Manning and McCoy (41)

reported significantly smaller home ranges (<500 m2) for five

different species of parrotfish in the Caribbean Sea (Bonaire),

which appears due to home ranges being based on averages of

several short-term, active tracking events by divers for each species

under investigation.

Low to moderate interspecific spatial overlap was observed

in daytime home ranges and core use areas between ember

parrotfish and palenose parrotfish at the Puakō study site, and

this is suggestive of resource partitioning. Reduced resource

overlap between these two congeners may serve to limit agonistic
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interactions and facilitate their coexistence in the Hawaiian

Islands. Findings from this study are not surprising given

that several studies have intimated that low spatial overlap of

habitats, substrates, and reef zones by territorial species within the

parrotfish complex minimizes competitive interactions (41, 45).

Many parrotfish species exhibit haremic social systems wherein

adult terminal phase males actively patrol and defend well-

defined territories containing conspecific initial phase females

against other conspecific terminal phase males (46). Therefore,

territorial agonistic interactions and resulting establishment of low

or non-overlapping space use areas in parrotfishes is expected

to be more pronounced among intraspecific terminal phase

males (41, 47). All palenose parrotfish monitored in Puakō reefs

were adult males with low intraspecific overlap among their

home ranges and completely non-overlapping core use areas in

5 of the 6 possible combinations within pairs of individuals.

Conversely, ember parrotfish were all initial phase females, and

thus may account for significantly higher overlap of activity

spaces for this species. Higher overlap between core use areas

of certain ember parrotfish (e.g., SR1-SR7 and SR5-SR8, with

OI ∼ 0.5) and low values between other pairs (OI = 0–0.05)

may indicate that these fish were associated with two different

harems (29).

Findings from this study indicate that Puakō reef serves as

an important habitat for ember parrotfish and palenose parrotfish

as both species showed strong site fidelity to daytime foraging

and nocturnal resting areas on the reef. Although tagged adults

of each species showed a strong preference for deeper and more

complex areas of the fore reef, schools of juvenile parrotfishes

were observed foraging on the shallow reef flat, highlighting the

potential value of both the fore reef and reef flat as critical habitats

of parrotfish conservation in Hawai‘i (5, 6, 17). The application of

acoustic receiver arrays with the ability to triangulate fish position

is increasingly used to describe fine-scale movement patterns and

habitat use of reef fishes in coral seascapes, including parrotfish.

In the present study, this approach was used to enhance our

understanding the habitat requirements and movements of two

exploited parrotfish, shining new light on their spatiotemporal

activity spaces in coral seascapes. This information will serve

to guide future management efforts (e.g., design of marine

protected areas) for conserving both species throughout the

Hawaiian Islands.
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