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The most common method of estimating teleost ages is via sectioned otoliths.

With diminishing funding and policies around cost-recovery from fishing

industries, exploring cost-e�ectivemethods of estimating ages is warranted. The

present study used 18 years of size-at-age data collected from monitoring of

the commercial halfbeak (Hyporhamphus australis) fishery o� New South Wales,

Australia, to predict age classes from otolith weights, while considering other

sources of variability such as sex, fish length, and year, month, and location

of capture. We observed a significant linear relationship between age class

and mean otolith weight. A generalized linear mixed model predicted 1-year

olds with an 82% success rate; but was less successful for other ages. Year of

sampling explained the greatest variability in the model and the distributions of

otolith weights for each age class had considerable overlap. We conclude that

substantial inter-annual variability in the age-class to otolith weight relationship,

in addition to the relatively low precision when aging H. australis by counting

annuli in sectioned otoliths, limits the predictive capacity of this model for

future monitoring. Nevertheless, substantial cost savings could bemade through

recalibrating the model for new samples through direct aging of a subset of

otoliths each year. The population of H. australis is continuing to rebuild from

a previously overfished state, with an expectation that older fish will become

more abundant in the fishery. Age estimation from counting annuli in sectioned

otoliths is likely to be the most reliable method of identifying older individuals.
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1 Introduction

Knowing teleost ages is a prerequisite to understanding fundamental biological

characteristics, including growth and resilience to fishing (1). The most common method

for accurately estimating individual teleost age is through the science of sclerochronology

(2), using otoliths, which are calcified structures located in a right and left labyrinth behind

the brain that accumulate material and grow throughout a fish’s life (1, 3–5). Otolith

function relates to hearing and the vestibular system; however, a permanent record of

a fish’s history is provided by the continuous deposition of calcium carbonate, usually

the polymorph aragonite, within a gelatinous protein matrix (6). This material alternates

in opaque and translucent increments which, following validation of periodicity, can be

counted to estimate age at various temporal scales, but those with the most research,

and the most use are daily and annual (3, 7). Because of their unique characteristic as
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natural data loggers, otoliths may be the most important biological

structure for fisheries scientists (8).

By facilitating information on age compositions in exploited

teleost populations, otolith reads are a vital tool for assessing

stock health and sustainability (9). Age-based stock assessments

are commonly used and comprise powerful analyses to support

fisheries management (10). So important are age-based assessments

globally that substantial resources are routinely committed to

otolith-based monitoring, despite the expense associated with

collection, processing and reading (11). As one example, following

an informal survey of fisheries laboratories during 1999, Campana

and Thorrold (1) estimated that at a minimum more than one

million otoliths may have been aged at a cost of potentially

CAN$10 million. During the subsequent two decades, in response

to requirements for better assessments of global fish stocks, otolith

aging efforts have substantially increased along with costs, which

can exceed USD$60 per otolith (12). Intuitively, any efforts at

minimizing expenses while still maintaining data quality are

coherent strategies for all agencies.

A potential, ancillary cost-saving approach for analyzing

otoliths involves quantifying and then extrapolating correlations

between their weight and fish ages (5). However, while significant

linear relationships have been noted for several species [e.g., (13–

18)] models to predict individual fish ages from otolith weights

have had various levels of success. Deficits are likely due to several

factors including, but not limited to, variability in otolith weights

between different age classes, spatial and temporal variations in the

relationship, and/or reader errors from direct otolith interpretation

(3, 5). In cases where there are no biases, or biases can be corrected,

success has been achieved in modeling age compositions, rather

than individual fish age (15, 19, 37).

Off New South Wales (NSW), Australia, one harvested teleost

population that has been managed via monitoring of commercial

catch and effort data and counting validated annuli in sectioned

sagittal otoliths is the eastern sea garfish (Hyporhamphus australis)

(20, 21). Schools of this surface-dwelling species are targeted

by boat-based lampara nets—similar to those used for other

species within the family Hemiramphidae (“halfbeaks”) around the

world (22).

The NSW fishery for H. australis was assessed as being

overfished for a decade during the early 2000s (20) but has since

recovered and was transitioned to quota-management in 2017.

Currently, the estimated sustainable harvest is supported by an

annual age-based stock assessment using a combination of catch,

effort and mortality derived through relative year-class strength

(23, 24). Aging precision is relatively low in this species with the

process of sectioning otoliths and reading them using microscopy

costly (∼AUD$30 an otolith).

In NSW, full cost-recovery from industry for monitoring

and assessing jurisdictional fisheries is planned and as such it

is appropriate that cost-effective alternatives to current practices

are explored. Stewart et al. (25) reported a significant linear

relationship between age in days and otolith weight for H.

australis; however, no attempt has been made to predict age using

this relationship. We therefore aimed to explore the feasibility

of estimating age compositions without direct aging of otoliths

through establishing models ofH. australis age with otolith weights

and other sampling variables.

2 Methods

2.1 Experimental design

Age-related commercial fishery monitoring data were available

for 6,155 sampled H. australis for 18 years, spanning 2004 to 2021

inclusive [see Stewart and Hughes (21) for more details]. Sampled

fish were measured as fork length (FL) which in H. australis is the

distance from the upper jaw to the fork in the tail, to the nearest cm

rounding down, weighed to the nearest gram and had their sagittal

otoliths removed. Otoliths were accessed ventrally by removing the

gills, scoring the thickened region of the vertebrae with a scalpel

blade and snapping the head back. The otoliths were removed

using forceps, cleaned and stored in small envelopes containing

information on the sample. The sex of each fish was determined

from amacroscopic examination of the gonads. Single otoliths were

subsequently weighed to the nearest 1mg, with the right otolith

always weighed unless obviously deformed in which case the left

otolith was used. The resulting data included the estimated age

(years) of each fish estimated from counts of annuli, along with

sex, FL, body weight and the predictor variable of interest: single

sagittal otolith weight. Fish age was estimated to the nearest integer,

so that 0+ hereafter represents 0–1 years, 1+ represents 1–2 years,

etc. The experimental data also included sampling year, month,

location (port of landing), and one degree latitude band.

2.2 Statistical models

We initially tested the hypothesis that mean otolith weight

increased linearly with estimated fish age using the coefficient

of determination (R2), calculated as the square of Pearson’s

correlation coefficient between the two terms. Otolith weight

and fish age were initially coded as continuous covariates,

ranging from 11.3 to 37.7mg and 0 to 5 years, respectively

(Supplementary Table 1).

We then attempted to predict fish age based on the complete

experimental data, which included the response (age), fixed

treatment variables (sex, FL, body weight, and otolith weight) and

random blocking factors (year, month, and location). Age was now

coded as an ordinal factor with six ordered levels (0+, 1+, . . . ,

5+ years). The observational (and experimental) units for age were

the 6,155 individuals, as characterized by the date and location

of their catch. The fixed treatment variable of primary interest,

otolith weight, was coded as a continuous covariate, ranging

from 0.87 to 46.95mg (Supplementary Figure 1). The remaining

treatment variables were the factor “sex” and covariates “FL” (14.7–

35.5 cm) and “body weight” (11.3–215.4mg). However, FL and

body weight were almost colinear, and so, only the former was

considered hereafter. The random blocking factors were “year”

(18 levels), “month” (12 levels), “location” (29 levels), and their

relevant interactions.

A generalized linear mixed model (GLMM) was fitted to the

ordinal response using ASReml-R (26), assuming a cumulative

multinomial distribution with logit link function. The cumulative

thresholds were set at the boundaries between age classes (0|1, 1|2,

. . . , 4|5 years). ASReml-R calculates the cumulative probability of
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response (individual) i belonging to age class j as:

P
(

yi ≤ j
)

=
1

1+ exp
[

−
(

θj + Xiβ + Ziu
)]

where θj is the threshold coefficient for age class j, β is the vector

of fixed effects and regression coefficients with design matrix Xi for

individual i, and u is the vector of random blocking effects with

design matrix Zi. The probability of individual i belonging to a

specific age class is then obtained by manipulating the cumulative

probabilities as required. The prediction of age class for new

individuals is considered below.

ASReml-R fits GLMMs using penalized quasi-likelihood (27),

and then obtains residual maximum likelihood estimates of the

variance parameters and empirical best linear unbiased estimates

or predictions of the fixed and random effects, respectively. The

significance of fixed terms was determined using approximateWald

chi-square tests, conducted using an incremental sum of squares

with sex and FL followed by otolith weight.

2.3 Age prediction of new individuals

The cumulative probability of new individual i belonging to age

class j is calculated as:

P
(

y∗i ≤ j
)

=
1

1+ exp
[

−

(

θ̂j + X∗
i β̂

)]

where X∗
i is the design matrix for new individual i, which

contains information on otolith weight, sex and FL. The cumulative

probability calculated here is obtained by conditioning on the

random effects at their average value of zero, but note that

appropriate random effects can be included where required (e.g.,

date of catch). Also note that the GLMM can be updated with new

data to estimate new year effects and their interaction with month

and location.

3 Results

Ages ranged between 0+ and 5+ years, but were mostly

(81%) 1+ or 2+ years (Figure 1, Supplementary Table 1). The

coefficient of determination confirmed that mean otolith weight

increased with age (significant positive linear relationship; R2 =

0.95, Supplementary Table 1).

The GLMM indicated that year was the major source of

variation, followed by interactions between year and month and

between year, month, and location (Table 1). The model had a

high classification success rate for fish aged 1+ years, with 82%

having the same observed and predicted ages and most (85%) mis-

classified fish predicted to be 2+ years (Table 2). The next highest

successful classification rate was for fish aged 2+ years, with 59%

having the same observed and predicted ages and most (94%)

mis-classified fish predicted to be 1+ years (Table 2). Overall, the

age compositions derived from observed and predicted data were

similar with age 1+ being slightly over-estimated, and other age

classes slightly under-estimated (Figure 2). The GLMM successfully

predicted the age for 67% of all fish (Supplementary Figure 1).

FIGURE 1

Histograms of otolith weights for 6,155 individuals in the

Hyporhamphus australis dataset, by age class. The mean otolith

weight across all age classes was 15.87mg. The images are of

Hyporhamphus australis and the sagittal otolith pair. Scale bar on

the otolith image is 1mm.

Within age classes there was variability in the otolith weights

likely to be associated with successful and unsuccessful prediction

of age class (Supplementary Figure 1). Heavier otolith weights in

1+ fish were more likely to be mis-classified; whereas lighter otolith
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weights in the older (2+ to 5+) age classes were more likely to

be mis-classified.

4 Discussion

This study was initiated under the hypothesis that H. australis

was an ideal candidate to estimate fish age from otolith weights—a

supposition based on the species being relatively fast growing (21)

with only few (6) age classes present in samples from commercial

landings. However, the model we developed was only partially

successful in predicting fish age from otolith weight and covariates

sex, fish length, year, month, and location. Age class 1+ had a more

than 80% successful prediction rate from the GLMM, but with an

upward bias of mis-classifying individuals toward age class 2+.

Older age classes tended to exhibit downward bias toward age class

1+. This was likely driven by the predominance of age class 1+ fish

in the dataset, representing 50% of all fish sampled. Nonetheless,

to the authors’ knowledge this is the first attempt at predicting age

class in teleosts from otolith weights using a GLMM.

The relationship between fish age and otolith weight is

influenced by physiological and environmental factors, including

variation in fish growth rates and the deposition of aragonite

TABLE 1 Estimates of fixed terms and variance parameters from the

GLMM fitted to the Hyporhamphus australis dataset, with standard errors

in parentheses.

Fixed term∗ Estimate Variance parameter Estimate

Thresholds−0|1 5.61 (0.74) Year 6.32 (2.32)

−1|2 9.72 (0.75) Month 0.17 (0.13)

−2|3 13.42 (0.76) Location 0.02 (0.03)

−3|4 16.91 (0.77) Year:Month 0.21 (0.08)

−4|5 18.68 (0.87) Year:Location 0.06 (0.07)

Sex—Male −0.27 (0.13) Year:Month:Location 0.22 (0.08)

−Female −0.04 (0.13)

Fork length −0.11 (0.02)

Otolith weight −0.30 (0.01)

∗Significance of fixed terms was determined using approximate Wald chi-square tests, with

p < 0.0001 in all cases.

and organic matter into otoliths, driven by water chemistry,

temperature and salinity (5, 28, 29). Our modeling indicated

considerable temporal and spatial variability for H. australis, with

the random blocking factor year being the greatest source of

variation, and month and location also influential. Hyporhamphus

australis is a fast-growing species with relatively large otoliths

(21) and exhibits considerable inter-annual variability in year-class

strength and population size (23, 24). This species also inhabits

temperate waters off eastern Australia, a region acknowledged as a

global hotspot for ocean warming (30). These factors make it highly

likely that H. australis have substantial inter-annual variation in

growth rates, which in turn influences the relationship between age

and otolith weight.

Our dataset spanned 18 years and provides an important

insight into the large effect of inter-annual variability on the

predictive capacity of age class from otolith weight. Such limitations

could potentially be overcome if future monitoring calibrated the

relationship between age class, otolith weight, and covariates (sex

and length) for a representative sub-sample from each new sample

of fish and was applied only to that year of sampling. Whether such

an approach would be cost-effective would need to be considered

in terms of how large a sub-set of fish would need to be aged to

calibrate the predictive model when, on average, 435 fish have been

sampled each year during the past decade.

As hypothesized, and similar to many other species (31),

the otoliths of H. australis get heavier with fish age, albeit with

considerable overlap in otolith weight distributions between age

classes. In addition to temporal effects on the predictive success

of the model, it is highly probable that the life-history and otolith

appearance ofH. australis contributed to the broad range of otolith

weights within each year class for at least two reasons. First, H.

australis have a protracted (∼7 month) spawning season (32),

meaning that in combination with variable growth rates (21) fish

within the same age class can represent a wide-range of sizes and

associated otolith weights. Second, the otoliths of H. australis are

difficult to interpret due to the diffuse and inconsistent appearance

of the annuli in sections (21). Consequently, aging precision is

at the lower end generally reported for teleosts (3, 21), and it is

possible that many of the individual samples with incorrect age

predictions from the GLMM resulted from inaccurate age estimates

during sectioned otolith reads, rather than a failure of the true

age-class to otolith weight relationship.

TABLE 2 Observed (rows) vs. predicted (columns) ages for 6,155 individuals in the Hyporhamphus australis dataset.

Predicted

Age class 0+ 1+ 2+ 3+ 4+ 5+ Total

Observed 0+ 409 414 6 829

1+ 82 2,521 470 1 3,074

2+ 1 741 1,142 46 1,930

3+ 18 205 51 3 277

4+ 20 17 3 40

5+ 2 2 1 5

Total 492 3,694 1,843 117 8 1 6,155

Numbers in bold highlight exact matches.
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FIGURE 2

Histograms of observed and predicted ages for 6,155 individuals in the Hyporhamphus australis dataset.

Previous studies have highlighted that precise prediction of

age class from otolith weights may not be possible in species that

exhibit substantial overlap in the distributions of otolith weights

between age classes (19, 33). We also found that predicting the ages

of H. australis with high accuracy from otolith weight, including

covariates such as sex and fish length, could not be achieved

across the entire age-range of samples. Nevertheless, the GLMM

produced estimates of expected levels and directional bias for

each observed age class, meaning that a simple bias adjustment

could be applied to future predictions of age compositions derived

from new otolith samples. This approach would substantially

reduce the costs associated with the routine age assessment of

H. australis but comes with the risk of estimating biased age

compositions if the relationship between fish age, otolith weight,

sex, and fish length in future years differs to that observed in

the 18-year dataset analyzed here. Given the substantial year

effect observed in the GLMM, such risk may be considerable. A

more precautionary approach may be to recalibrate the model

based on a representative subset each year as described above,

while continuing to directly age fish with heavier otoliths. This

approach may be important as the population of H. australis

is continuing to rebuild from a previously overfished state (20),

with an expectation that older (>3 years) fish will become

increasingly apparent in the landed catch. The species has been

reported to attain at least 6 years of age (23), and if similar

to its conspecific Hyporhamphus melanochir may attain 10 years

(34, 35). Direct age estimation from counting annuli in sectioned

otoliths is likely to be the most reliable method of identifying these

older individuals.

Beyond the utility of the data presented for H. australis

here, deciphering predictive relationships between age classes

and otolith weights for other species is likely to benefit

fisheries agencies more broadly. Identifying potential candidate

species for augmenting direct age estimation from reading

sectioned otoliths using otolith weights would substantially

reduce processing costs and the financial burden for industry

under cost-recovery policies. Species within the Hemiramphidae

are typically challenging to age precisely due to the diffuse

appearance of annuli within the family (35, 36) and our method

of estimating age from otolith weights and other variables

would be worth investigating for other species within the

family globally.
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