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Multiple fishways mostly
maintain upstream teleost
movement in a south-eastern
Australian river

Meaghan L. Rourke1,2*, Wayne Robinson1,2, Lee J. Baumgartner2,

Jonathon Doyle1, Martin Mallen-Cooper2,3, Jason D. Thiem1,2

and Matt K. Broadhurst4,5

1NSW Department of Primary Industries, Narrandera Fisheries Centre, Narrandera, NSW, Australia,
2Gubali Institute for Agriculture, Water and Environment, Charles Sturt University, Albury, NSW,

Australia, 3Fishway Consulting Services, St Ives Chase, NSW, Australia, 4Fisheries Conservation

Technology Unit, NSW Department of Primary Industries, National Marine Science Centre, Southern

Cross University, Co�s Harbour, NSW, Australia, 5School of the Environment, The University of

Queensland, Brisbane, QLD, Australia

River development a�ects fish connectivity, with intra-river issues exacerbated

via sequential barriers. Remediation typically involves installing ‘fishways’ to

facilitate upstream movements. Here we evaluated species-specific upstream

fish-passage e�ciencies through three sequential vertical-slot fishways along

the Nepean River in Australia via paired entry and exit trapping. Species-specific

water velocity preferences associated with fishway entrance were informed by

restricting head loss at the entry traps, but not at the exit traps. During 78

paired trap deployments 26,139 fish were caught, comprising 19 species; most

of which successfully negotiated the fishways—albeit with considerable inter-

and intra-specific variability among fishways. Catches of the most abundant

species (38% of total), the amphidromousGobiomorphus coxii (20–160mm total

length; TL), in the entry and exit traps were negatively and positively a�ected

by water velocity, respectively at the second and third fishways, but not at

the first. Catches of other species were also directly or indirectly a�ected by

water velocity, with fewer catadromous Trachystoma petardi (145–460mm fork

length; FL) andMugil cephalus (35–410mm FL) recorded in entry than exit traps,

implying (1) insu�cient water velocity to permit entry and/or (2) confounding

e�ects of the entry-trap design on capture. Conversely, two gudgeons [the

potamodromous Philypnodon grandiceps (29–77mm TL) and Hypseleotris galii

(31–49mmTL)] were caught in significantly greater abundances in the entry than

exit traps implying some restriction to their passage and possibly due to deficits

in fishway hydraulics and/or a lack of motivation to migrate in these species.

The study highlights the value of location-specific monitoring for identifying key

factors a�ecting fishway performance.

KEYWORDS

barriers, vertical-slot fishway, migration, diadromy, fishway trapping

1 Introduction

Growing demand for reliable water supplies to support agriculture, hydropower and

human consumption is increasing pressure on global water resources and their associated

biota, especially fish (1). Currently, only ∼23% of rivers worldwide flow unimpeded to

oceans (2), with the rest subjected to instream barriers such as dams and weirs that
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modify hydrological regimes, often reducing water quality and

causing sedimentation that affects feeding or spawning grounds

(3, 4). These cumulative impacts restrict connectivity, creating

fragmentated fish populations with increased risks of local

extinctions (5, 6). Addressing the loss of riverine connectivity

involves either removing problematic barriers or, more commonly,

retroactively installing so-called ‘fishways’ that facilitate upstream

fish movements around or through obstructions (7). Restoring

connectivity via the latter approach necessitates detailed location

considerations, understanding of the life-history requirements of

the target species, and assessing the suitability of any reconnected

habitats (7).

A successful fishway design requires satisfying three processes

for a particular species: approach, entry and passage (7). There

are considerations for each process that are affected by the

barrier and site-level hydraulics (and hydrology), as well as

the biological characteristics of the fish (8–11). For example,

fishways constructed throughout New Zealand and especially

southern Australia before ∼1985 were generally based on designs

for salmonids, and inefficient at facilitating the passage of

comparatively poorer swimming native species (12–15). Such

deficits in design precipitated critical thinking concerning the

factors required to suit the swimming abilities of native fish

communities (16–18). Fundamental to this change was the

collection of empirical evidence to inform effectiveness of the

structures and future management options.

While an empirically informed fishway can facilitate multiple

upstream species movements past a barrier, in some cases

efficiencies can still reduce with sequential use within a single

watershed (19, 20). For example, Gowans et al. (19) demonstrated

cumulative losses of Atlantic salmon (Salmo salar) migrating

upstream to reach spawning grounds, while Caudill et al. (20)

identified unsuccessful migrations of adult Chinook salmon

(Oncorhynchus tshawytscha) and steelhead (O. mykiss) were

associated with delayed passage through a multiple-dam reach.

Similarly, Castro-Santos et al. (21) noted delays at fishways limited

the migratory range of the sea lamprey (Petromyzon marinus), and

the effects were cumulative across four fishways.

Following refinement and re-evaluation, appropriate fishways

at sequential barriers can improve connectivity within a system

(22, 23). One example is the Hawkesbury–Nepean River system

(hereafter the Nepean River) in south-eastern Australia, where

many fish species require access to freshwater and marine

environments to complete their lifecycles, but there are at least

278 structures (construction dating back to 1888) affecting passage

(24) (NSW Passage Database, NSW DPI 2023). Between 1913 and

1985, some 44 fishways were built in New South Wales (NSW);

albeit with poor performances for native species (13, 16, 25, 26).

During 2009/10, ten low-gradient, vertical-slot fishways [following

the designs described by Mallen-Cooper (27)] were installed at

consecutive weirs in the Nepean River to reconnect ∼250 km of

riverine habitat to the estuary.

Rourke et al. (22) subsequently detected improvements in

species richness between weirs in the Nepean River, presumably

owing to improved fish passage, but there was species-specific

variability, and in some cases individual species performances

remain unknown. Generally, there was an overall upstream

improvement among the distributions of native species, including

freshwater herring (Potamalosa richmondia), sea mullet (Mugil

cephalus), and freshwater mullet (Trachystoma petardi). However,

several other species including bullrout (Notesthes robusta),

empire gudgeon (Hypseleotris compressa) and striped gudgeon

(Gobiomorphus australis) showed no changes in distributions. Data

are required to determine if these latter species were unsuccessfully

attempting to pass through the fishways or were simply remaining

in situ. Such information will facilitate progressing future fishway

design refinements and operation, and inform the mechanisms

contributing toward population recoveries, or lack thereof, within

this river system (22).

Considering the deficit described above, the aim of this study

was to assess the fish-passage efficiencies of three Nepean River

fishways to determine whether their design was limiting the

upstream movement of abundant species. The specific objectives

were to determine relative species and size compositions at the

entrance and exit of the fishways. Satisfying these objectives will not

only aid in the future refinement of fishways for fish communities

in south-eastern Australia, but also their application and design

more broadly.

2 Methods

2.1 Study site and fishways

The Hawkesbury–Nepean catchment encompasses 21,400 km2

and it supplies most of metropolitan Sydney’s water (28). Land use

along the Nepean River includes agriculture, urban development

and native vegetation, which varies in condition. The river’s

morphology varies along its course, with steep and rocky upper

reaches transitioning into wider, slower-flowing sections inmid and

lower reaches. TheNepean River supports diverse fish communities

including many diadromous species (57). Maximum total lengths

(TL) range from ∼7 cm (e.g., Australian smelt, Retropinna semoni,

and gudgeons) to >1m (long-finned eel, Anguilla reinhardtii). The

Nepean River has also been highly modified, with five dams and

twelve weirs starting downstream at Penrith and to Pheasants Nest

(over∼250 km; Figure 1).

Historically, some weirs were equipped with a fishway, but

these were not operating effectively, and many diadromous species

including freshwater herring, and sea mullet, were absent at

upstream locations (22, 24, 29–32). Consequently, between January

2009 and December 2010, ten vertical-slot fishways were installed

with the same design criteria: low-gradient (1:21.4), low head loss

between pools of 100mm (producing a maximum water velocity of

1.4 ms−1), pool size (2.0m long by 1.5mwide), and a variable baffle

shape that produced low turbulence (34W/m−3) at low water levels

and a higher turbulence (52 W/m−3) and attraction flow at higher

water levels [see (32) for details and Supplementary Figure 1 and

Supplementary Table 1]. All fishways varied in length, bends and

layout (Supplementary Figures 2–4). The entrance design of each

fishway followed the Mekong River Commission (33) guidelines

on fishway design, ensuring the entrance: (i) was at the upstream

limit of migration, (ii) the entrance flow was not masked by flow

passing over the spillway, and (iii) that additional attraction flow

was provided by a lower section of weir crest near the fishway (see

Supplementary Figures 2–4).
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FIGURE 1

Map showing the Nepean River in New South Wales (NSW) with all weirs that have been retroactively fitted with vertical-slot fishways shown as black

triangles, and those fishways that were trapped are shown as red triangles.

Three of the ten vertical-slot fishways were sampled; the

most downstream (Penrith Weir), central (Theresa Park Weir)

and upstream barriers (i.e., Douglas Park Causeway) in the

system (Figure 1). The Penrith Weir fishway was the shortest

(∼40m) with 16 baffles in a relatively straight channel with

two minor bends (Supplementary Figure 2), while the Douglas

Park Causeway fishway was also 40m long, but with four bends

and 11 baffles, and it passed under a road resulting in lower

diurnal light levels (Supplementary Figure 4). The Theresa Park

fishway was the longest at 90m, with five bends and 36 baffles

(Supplementary Figure 3).

2.2 Fish traps and experimental design

One fish trap was constructed for each fishway and was

designed to be compatible with both the entrance and exit
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slots (Supplementary Figure 5). Each trap comprised an aluminum

frame andmeasured 1,600mm long, 1,300mmwide, and 1,400mm

high (except for the Douglas Park Causeway fish trap which

was 1,100mm high) (Supplementary Figure 5). The funnels on

all traps were 350mm wide at the entrance and extended

back into the trap 600mm on one side and 350mm on the

other. The exit of the funnel (where fish entered the main

body of the fish trap) was 200mm wide and 550mm high

(Supplementary Figure 5). All traps were covered in 4-mm square

aluminum mesh to ensure small fish were retained, and the

funnel was fitted with 80-mm long polyamide brushes to prevent

any egress/ingress over the entire vertical slot. The traps were

deployed and retrieved from the fishway using a gantry crane

(Graham Handling Equipment) and Hitachi electric hoist (Model

1S1, capacity 1,000 kg) (Supplementary Figure 6).

Trapping was done during spring and summer (during the

peak austral migration period for diadromous fish) from 2010 to

2013. Monitoring involved determining the numbers of fish (1)

attempting to ascend the fishway (‘entry trapping’; i.e., attempting

to migrate upstream), and (2) successfully ascending the fishway

(‘exit trapping’; i.e., successfullymigrating upstream). Trapping was

stratified so that a paired entry and exit sample were performed

over a ∼48-h period, with traps set for ∼24 h at each location. The

order of entry and exit trapping samples was randomized during

each sampling week to avoid biases and any fish escape from the

entrance and exit was assumed to be the same.

The entry trapping sample was used to infer that fish

could locate the fishway entrance and there were no behavioral

inhibitions. Because the swimming capacity of fish is positively

influenced by their size (34, 56) high water velocity could preclude

some smaller individuals from entering fishways and so we

reduced the head loss at the entrance baffle from 100mm to

∼50mm (∼1.0 ms−1) by inserting stop logs in the exit baffle

to restrict the discharge of water through the fishway (15, 27).

Head loss was used as a proxy for water velocities through

the fishway pools: higher head losses increased velocities, while

lower head losses reduced velocities. The entrance head loss

was measured at the start and end of trapping to provide an

average for each event, thus accounting for natural variations

in river flow that could affect head loss height. Exit trapping

was conducted with the fishway under normal operation and

without flow-control stop logs, with head loss similarly measured.

We considered the fishway to be operating successfully if fish

abundances and biomasses at the fishway exit were similar to those

at the entrance.

2.3 Data collected and analyses

The deployment and retrieval times of all traps were recorded.

After each 24-h trapping event, all fish were transferred to an

aerated 60- or 200-l container of river water, identified, counted and

up to 50 of each species were measured for fork length (FL – fork-

tailed species) or TL (all other species) to the nearest 1mm. Known

length-weight relationships for key species were used to derive their

catch weights. All fish were released alive. We classified species by

migratory strategy: catadromous, anadromous, amphidromous or

potamodromous. We classified fish as potamodromous (defined

here as freshwater species that migrate between two or more

habitats, which is essential for their life history) either from the

literature or if they were abundant in a fishway exit. The latter

showed that there was motivation and bioenergetic cost used in

ascending the fishway, which indicated migration—although it is

unknown if this was migration between two habitats, countering

displacement as larvae or juveniles, or intergenerational dispersal.

The numbers and weights of individual species trapped

in sufficient quantities were standardized to 24 h−1 and log-

transformed to act multiplicatively before being separately analyzed

in linear mixed models (LMMs). In these analyses, ‘locations’ (up

to three), ‘traps’ (entry vs. exit) and ‘head loss’ (as a default for

water velocity) were fixed factors, with all second- and third-order

interactions included. Because water velocity was always greater

at the exit than entrance, head loss was normalized to ensure its

variation was included yet remained independent of trap location.

Reduced LMMs were used for those species only occurring at one

or two locations. Random blocking effects in all LMMs included

‘pairs’ of trapping events, ‘months’ (within years) and ‘years’. The

distributional assumptions and model fits were assessed via QQ

tests and plots of residuals, respectively before the significance of

fixed effects (5% level) were determined using exact Wald-F tests.

Models were fitted using the ASReml function in R (35, 36). Raw

means of interest were plotted.

Relative selectivity curves were fitted to the length

frequencies of abundant trapped species at each location

using generalized additive modeling (GAM). Data were first scaled

up by subsampling fractions to estimate total frequencies trap

deployment−1. Relative selectivity was assessed whereby n
Entry trap

l

and n
Exit trap
l

denote the number of length l fish caught in those

traps. Then

pl =
n
Entry trap

l

n
Entry trap

l
+ n

Exit trap
l

is the proportion caught in the entry trap. The expected value of

pl was modeled on the logit scale using cubic regression splines of

dimension three, denoted s(l), whereby

E
[

pl
]

=
exp(s(l))

1+ exp(s(l))

The error distribution of pl was specified to be quasi-

binomial and so incorporate overdispersion. The GAMs were

fitted using the gam function within the mgcv package in R

(37), while spline confidence intervals were obtained using a

1,000 iteration double bootstrap (38, 39). This catch-comparison

analysis was implemented using the SELECT R package (40, 41). A

permutation test was used (1,000 resamples) to test for no FL/TL

effects due to trap location (exit or entry), whereby the relative

selectivities between the entry and exit traps were the same for all

FL/TLs (42).
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TABLE 1 The total numbers (in descending order) of trapped species and their measured numbers in parentheses (if not all done) at the entry and exits

of verticle-slot fishways at Penrith and Theresa Park weirs and Douglas Park Causeway during 27, 27, and 24 respective paired sample days.

Species Penrith Weir Theresa Park Weir Douglas Park Causeway

Entry Exit Entry Exit Entry Exit

ACox’s gudgeon (Gobiomorphus coxii) 801 (527) 1,120 (509) 188 (176) 207 3,989 (885) 3,572 (776)

AEmpire gudgeon (Hypseleotris compressa) 3,472 (375) 3,213 (379) 0 0 0 0

PAustralian smelt (Retropinna semoni†) 513 (417) 1,336 (675) 91 149 (130) 794 (531) 948 (594)

CFreshwater herring (Potamalosa richmondia) 3 2,368 (153) 0 1 0 0

CAustralian bass (Percalates novemaculeata) 1,045 (319) 418 (311) 68 (67) 172 (170) 9 47

AStriped gudgeon (Gobiomorphus australis) 469 (179) 386 (146) 47 36 0 0

CFreshwater mullet (Trachystoma petardi) 49 48 2 68 0 8

PFlat-headed gudgeon (Philypnodon grandiceps) 41 0 79 3 20 0

CSea mullet (Mugil cephalus) 23 92 0 4 0 0

Firetail gudgeon (Hypseleotris galii) 2 0 8 1 65 12

CBullrout (Notesthes robusta) 24 58 0 0 0 0

Dwarf flat-headed gudgeon (Philypnodon macrostomus) 0 1 8 0 12 0

CLong-finned eel (Anguilla reinhardtii) 1 9 1 2 4 1

PCommon carp (Cyprinus carpioI) 0 9 0 2 0 3

Freshwater catfish (Tandanus tandanusN ) 0 4 0 1 0 5

CShort-finned eel (Anguilla australis) 1 2 0 0 0 0

Eastern gambusia (Gambusia holbrookiI ) 0 0 0 0 2 0

PSilver perch. (Bidyanus bidyanusN ) 0 1 0 0 0 0

Goldfish (Carassius auratusI) 0 0 1 0 0 0

Location total 6,444 9,065 493 646 4,895 4,596

Aamphidromous; Ccatadromous; Ppotamodromous; Iintroduced species; Nnative species outside its natural range. †Some southern coastal populations of Australian smelt are facultatively

diadromous (54, 55) but there is no evidence of this to date from the Nepean River.

3 Results

3.1 Head loss/water di�erential among
locations

The mean (±SE) head losses (mm) at the fishway entrances

at Penrith Weir, Theresa Park Weir and Douglas Park Causeway

were 55.7 (2.2), 58.5 (3.3) and 67.8 (2.7) mm, while exit head

losses were 108.3 (2.3), 121.4 (3.6) and 98.9 (2.3) mm, respectively

(Supplementary Table 2). Two head-loss replicates were missing

for the exit traps at Theresa Park Weir fishway and so the

associated catch data were not included in analyses (although

length data were).

3.2 Species composition

A total of 26,139 fish representing 19 species were trapped

during 27 paired entry and exit samples at Penrith and Theresa Park

Weir fishways and 24 paired samples at Douglas Park Causeway

(Table 1). Most fish were trapped at Penrith Weir (59%) and

Douglas Park Causeway (36%). Empire gudgeon was the most

common species at PenrithWeir (43% of catch) but was not caught

at the other locations, while Cox’s gudgeon (Gobiomorphus coxii)

dominated catches at Theresa Park Weir (35%) and Douglas Park

Causeway (80%) and was also frequently caught at Penrith weir

(Table 1). Australian bass (Percalates novemaculeata), Australian

smelt and flat-headed gudgeon (Philypnodon grandiceps) were

also collected from all three fishways. These species, along with

freshwater herring (nearly all at Penrith Weir and in one trapping

event), striped gudgeon, freshwater mullet, sea mullet, firetail

(Hypseleotris galii) and bullrout accounted for 99.6% of the total

number and so, excluding freshwater herring, formed the basis

of the catch analyses. Very few introduced species [common

carp (Cyprinus carpio), goldfish (Carassius auratus) and eastern

gambusia (Gambusia holbrooki)] were trapped at any of the

fishways (Table 1).

3.3 Analyses of catches

Four groups of LMMs were done. The first group of models

were used for Cox’s gudgeon, Australian smelt, Australian bass and

flat-headed gudgeon at all three locations (Table 2). These models

returned a significant third-order interaction for the number

and weight of Cox’s gudgeon, second-order interactions between
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TABLE 2 Summaries of Wald F-value significance (or otherwise) from linear mixed models assessing the importance of ‘locations’ (up to three), ‘traps’

(entry vs. exit), normalized ‘head loss’ (continuous) and all interactions on the numbers (no.) and weights (wt) of key species caught.

Catches Locations (L) Traps (T) Head loss (H) L × T L × H T × H L × T × H

All locations

No. of Cox’s gudgeon ∗∗∗ Ns Ns Ns Ns ∗∗ ∗

Wt of Cox’s gudgeon ∗∗∗ Ns Ns Ns Ns ∗∗ ∗

No. of Australian smelt ∗∗∗ Ns Ns Ns ∗ Ns Ns

Wt of Australian smelt ∗∗∗ Ns Ns Ns ∗ Ns Ns

No. of Australian bass ∗∗∗ Ns Ns ∗ ∗∗ Ns Ns

Wt of Australian bass Ns ∗∗ Ns ∗ ∗∗∗ Ns Ns

No. of flat-headed gudgeon Ns ∗∗∗ Ns Ns Ns Ns Ns

Penrith and Theresa Park Weirs only

No. of striped gudgeon ∗∗∗ Ns Ns Ns ∗ Ns Ns

Wt of striped gudgeon ∗∗∗ Ns ∗ Ns ∗ Ns Ns

No. of freshwater mullet Ns ∗ Ns Ns Ns ∗ Ns

Penrith Weir only

No. of empire gudgeon – Ns Ns – – Ns –

Wt of empire gudgeon – Ns Ns – – Ns –

No. of sea mullet – ∗∗∗ Ns – – Ns –

No. of bullrout – Ns Ns – – Ns –

Douglas Park Causeway only

No. of firetail gudgeon – ∗ Ns – – Ns –

∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001; Ns, not significant.

‘Pairs’ of trapping events, ‘months’ (nested in years) and ‘years’ were included in all models as random blocking factors.

location and head loss for the numbers and weights of Australian

smelt and Australian bass and between location and traps for the

catches of Australian bass, and a significant main effect of traps on

the number of flat-headed gudgeon 24-h trapping event−1 (LMM,

p < 0.05; Table 2, Supplementary Table 3, Figures 2A–C, 3A–C).

Owing to similarity in significance for weights and numbers,

only data for the latter were plotted in Figures 2, 3. For Cox’s

gudgeon, head loss was positively and negatively associated with

entry and exit trapping, respectively at Penrith Weir, but the

opposite trend occurred at Theresa Park Weir and Douglas

Park Causeway (Supplementary Table 3, Figures 2A–C). Among

locations (and regardless of traps) the catches of trapped Australian

smelt and Australian bass were both positively and negatively

associated with head loss at Penrith and Douglas Park, respectively,

while at Theresa Park head loss had a negative effect on the

catches of Australian smelt and a positive effect on Australian

bass (Supplementary Table 3). In terms of trap effects, there were

no significant differences in catches 24 h−1 between entry and

exit traps for Australian smelt (LMM, p > 0.05; although the

means were greater in exit traps at all locations), but there were

divergent trends for Australian bass, withmore caught in entry than

exit traps at Penrith, and the opposite occurring at Theresa and

Douglas parks (LMM, p < 0.05; Table 2, Supplementary Table 3,

Figures 3A, B). Regardless of location, ∼98% of flat-headed

gudgeon were caught in the entry traps (LMM, p < 0.001; Table 2,

Supplementary Table 3, Figure 3C).

The second group of models was done for the number

and weight of striped gudgeon and the numbers of freshwater

mullet at Penrith Weir and Theresa Weir fishways (Table 2,

Supplementary Table 4). There was a significant interaction

between locations and head loss for striped gudgeon (LMM, p

< 0.05), with negative and positive coefficients at Penrith and

Theresa Park, but no significant effects involving traps (LMM, p

> 0.05; Table 2, Supplementary Table 4, Figure 3D). There was a

significant interaction between traps and head loss for the number

of freshwater mullet: producing negative and positive coefficients

for entry and exit traps, respectively regardless of locations (LMM,

p < 0.05; Table 2, Supplementary Table 4, Figure 2D).

The third and fourth groups of models were restricted to the

number and weight of empire gudgeon and numbers of sea mullet

and bullrout at Penrith Weir and the number of firetail gudgeon

at Douglas Park (Table 2, Supplementary Tables 5, 6). The only

significant effects involved traps on the numbers of sea mullet and

firetail gudgeon, with more of the former in the exit trap at Penrith

Weir fishway and more of the latter in the entry trap at Douglas

Park Causeway (LMM, p < 0.05; Table 2, Supplementary Tables 5,

6, Figures 3F, H).

3.4 Analyses of sizes

Sufficient data were collected for most species to permit

relative size-selectivity analyses, which were separated by location

(Figures 4, 5). For nearly all species at all locations, the p-values

for the hypothesis of no FL/TL effects on the proportions retained
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FIGURE 2

Scatter plots of the relationships between head loss and traps in

fishways for the numbers caught 24 h−1 of Cox’s gudgeon,

(Gobiomorphus coxii) at (A) Penrith Weir, (B) Theresa Park Weir and

(C) Douglas Park Causeway and of (D) freshwater mullet

(Trachystoma petardi) across Penrith and Theresa Park weirs.

Untransformed data are shown for ease of interpretation, but

analyses included log-transformed abundances and normalized

head loss (a proxy for water velocity), with the directions of

regression coe�cients (negative or positive) indicated (see

Supplementary Tables 3, 4).

in the exit traps exceeded 0.1 (permutation test, Figures 4, 5). The

exceptions were Cox’s gudgeon at Douglas Park (p = 0.08) and

Australian smelt at Theresa Park (p = 0.06), with a bias toward

smaller Cox’s gudgeon (<70mm TL) and larger Australian smelt

(>∼45mm FL) being retained at greater proportions in the exit

traps (Figures 4C, E). There were also trends of proportionally

more large Australian bass retained in the exit traps at Penrith

and Theresa Park fishways and freshwater mullet at Penrith

(Figures 4G, H, 5D).

4 Discussion

This study reiterates the utility of a vertical-slot fishway system

formaintaining the upstreammigration ofmost fish and size classes

in the Nepean River (22, 32) and contributes toward the broader

literature supporting retroactively fitted barrier modifications

globally (11, 19, 43, 44). Nevertheless, by incorporating a

hierarchical analysis of trapped catches at the entrances (water

velocity controlled) and exits of sequential fishways, we have

identified considerable inter- and intra-specific variability in fish

passage. Because we accepted the hypothesis of no size effects for all

species, the observed trapped catch variabilities might be attributed

to broader species-specific behavioral/physiological responses, and

these are ultimately discussed to propose guidance for fishway

management into the future.

Most analyzed species, and certainly all those that were

amphidromous or catadromous, moved through the fishways—

evidenced by similar or greater catches in at least some exit than

entry traps. However, several species’ passages were either directly

or indirectly affected by water velocity and with variable spatial

influence. Specifically, catches of the most abundant species (38%

of total), the amphidromous Cox’s gudgeon (20–160mm TL) in

the entry and exit traps were negatively and positively affected

by water velocity, respectively at the Theresa Park and Douglas

Park fishways, but not at Penrith (i.e., the first of the sequential

fishways). Like all gudgeons, this species has a round tail (hence the

TL measure); a characteristic, along with their general body form,

implying they would be less proficient at swimming than similar-

sized fish with forked or lunate tails presenting greater caudal

fin ratios (i.e., those species measured for FL) (45). Nevertheless,

in 50% of the traps at the three fishways (entry at Penrith and

exits at Theresa Park and Douglas Park), catches of Cox’s gudgeon

were positively affected by water velocity (indicating no issues with

swimming within the range of flows experienced), while in the

other 50% of the traps, the opposite occurred.

Although speculative, such differences in the effects of water

velocity on the capture of Cox’s gudgeon could simply reflect

localized behavioral responses to the fishways and/or site-specific

confounding effects of the trap design when used at the entry.

For example, at least some Cox’s gudgeon may have simply

sought shelter at the entrance chamber and were not migrating,

whereby lower water velocity would be expected to facilitate

trapped catches, which is what occurred at the upstream Theresa

Park and Douglas Park fishways (and consistent across two

slightly different-sized traps). Alternatively, because the types of
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FIGURE 3

Di�erences in mean (+SE) numbers caught 24 h−1 in entry and exit traps installed in fishways at relevant locations (Penrith and Theresa Park weirs

and/or Douglas Park Causeway) for (A) Australian smelt (Retropinna semoni), (B) Australian bass (Percalates novemaculeata), (C) flat-headed

gudgeon (Philypnodon grandiceps), (D) striped gudgeon (Gobiomorphus australis), (E) empire gudgeon (Hypseleotris compressa), (F) sea mullet

(Mugil cephalus), (G) bullrout (Notesthes robusta), and (H) firetail gudgeon (Hypseleotris galii). White and gray histograms indicate significant (p <

0.05) and non-significant (p > 0.05) e�ects, respectively involving traps that were detected in linear mixed models.

traps used here are typically more efficient with greater water

velocity (i.e., after entry, with faster flows fish might find it

more difficult to relocate the brushed funnel and escape) (46),

there may have been some confounding effects of the design on

capture at these fishway entrances. The latter hypothesis might

also explain the negative relationship between water velocity and

trapped catches of freshwater mullet at the Penrith and Theresa

Park fishways—although this species has a lunate tail and would be

amore proficient swimmer than any of the gudgeons. Possibly there

was insufficient water velocity to facilitate entry and/or preclude

any escape back though the brushed entry funnel of the trap.

While there were no other direct effects of water velocity

on trapped catches, significantly fewer sea mullet (35–410mm

FL and catadromous) were trapped at the slower-velocity entry

than faster velocity exit of the Penrith fishway, implying indirect

effects. Also, the potamodromous Australian smelt showed a

similar non-significant trend as both mullets with lower mean

catches at all entry traps and almost returned a significant size
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FIGURE 4

Cubic regression splines (solid lines) with 95% pointwise confidence intervals (gray bands) fitted to the proportions (black circles) of the combined

catches (entry + exit traps) of each total or fork length retained in the exit trap at three fishways (Penrith Weir, Theresa Park Weir and Douglas Park

Causeway) for (A–C) Cox’s gudgeon (Gobiomorphus coxii), (D–F) Australian smelt (Retropinna semoni), and (G–I) Australian bass (Percalates

novemaculeata). Unless stated, p-values from permutation tests for an e�ect of length were > 0.1.

effect, manifesting as proportionally larger (i.e., faster swimming)

fish at the exit of the Theresa Park fishway (characterized by

the greatest mean velocity of all fishways). A similar non-

significant trend in sizes was observed for freshwater mullet at the

Penrith fishway.

Regardless of the mechanisms contributing toward the lower

catches of some species in the entry than exit traps, these did not

extend to two of the lesser abundant species of potamodromous

gudgeons (flat-headed gudgeon [31–49mm TL] and firetail

gudgeon [29–77mm TL]). Rather, these species were almost

entirely caught in the entry traps; a result that implies limitations to

their passage up the fishways. The life-history movements of these

species are not well understood, though there is some evidence that

flat-headed gudgeon undertake both downstream and upstream

migrations [(47) and references therein (48–50)]. Similarly, firetail

gudgeon also undertake upstreammigrations following increases in

discharge (47).

Assuming flat-headed and firetail gudgeons would normally

seek to migrate upstream, their small sizes recorded here may have

affected their ability to ascend the fishways, although the same-sized

Cox’s gudgeon were not similarly affected and other studies have

detected the passage of flat-headed gudgeon through faster-flowing

fishways in the Murray River (50). Also, during laboratory studies,

Kilsby and Walker (51) noted that flat-headed gudgeon were

capable of high burst swimming speeds. Possibly, despite capacity

to move up the fishway, and as discussed above, flat-headed and

firetail gudgeons were simply using the entrance for shelter and

were not migrating upstream. Because these species are capable of

completing their lifecycle solely in freshwater, any affected small-

scale migrations might be less important than for amphidromous
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FIGURE 5

Cubic regression splines (solid lines) with 95% pointwise confidence intervals (gray bands) fitted to the proportions (black circles) of the combined

catches of each total or fork length retained in the exit trap of the fishway at Penrith Weir for (A) striped gudegon (Gobiomorphus australis), (B)

empire gudgeon (Hypseleotris compressa), (C) bullrout (Notesthes robusta), (D) freshwater mullet (Trachystoma petardi), and (E) sea mullet (Mugil

cephalus). All p-values from permutation tests for an e�ect of length were > 0.1.

(e.g., Cox’s gudgeon) or catadromous (e.g., Australian bass and

sea mullet) species. Certainly, the similar-sized amphidromous

empire gudgeons, which need to migrate upstream to maintain

populations in freshwater habitats, were caught in the same (albeit

variable) amounts in entry and exit traps. Ongoing research is

warranted to investigate the observed inter-specific differences in

gudgeon movements.

The small sizes of species like flat-headed and firetail gudgeons

(and others) in the Nepean River precludes tagging with passive

transponders to better understand their movements. Coded wire

tags and visual implant elastomers might be applicable for some

larger individuals, but these require recaptures (lethal in some

cases) which can be labor intensive for routine application.

Other methods such as eDNA are likely to have practical

future applications (58). Nevertheless, as necessary and existing

structures, fishway monitoring via non-lethal trapping will likely

remain a useful tool for understanding fish movements in the

Nepean River and so, considering the data here, future research

efforts warrant assessing for, and eliminating, any confounding

effects when positioning traps at fishway entrances.

In the interim, reducing velocity at the entrance of fishways

doesn’t seem to be an essential requirement for most fish and in

fact seems to hinder some species, including freshwater mullet.

This result implies fishways should be regularly maintained to

ensure that natural debris doesn’t block compartments and reduce

head loss at the entry. Another design feature that warrants

attention are the effects of light and/or visibility on fishway

passage (52). Neither parameter was investigated here, although

the Douglas Park Causeway fishway passes under a road and

with lower ambient diurnal light. While confounded by a plethora

of other technical parameters (head loss, length of fishway and

bends), the species-specific trends in catches at this fishway were

maintained with either Penrith or Theresa Park, which may

suggest few light-related impacts and/or possibly most fish were

nocturnally moving.

Notwithstanding the observed intra- and inter-specific

variability in passage, the catches in the exit traps [and

other methods involving electrofishing by Rourke et al.

(22)] indicate fishways offer a solution for facilitating the

upstream passage of most amphidromous and catadromous

fish around barriers and across the range of coherent

water velocities within the Nepean River. These data

support similar conclusions for other waterways and

warrant the widespread use of fishways at anthropogenic

barriers, albeit with ongoing monitoring to assess and refine

operations (53).
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