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Brewer’s spent yeast (BSY) is a by-product generated during beer production.

After heat inactivation, large quantities of BSY are discarded or sold as a low-

cost animal feed supplement. Fortunately, BSY can be a good source of valuable

compounds such as β-glucan, which has several biological and techno-

functional properties for application as a food ingredient. Practical

application of β-glucan from BSY requires disruption cell wall and

purification steps that significantly influences the yield, cost, biological,

physic-chemical, and technological characteristics of this compound. This

mini-review presents the use of BSY as a source of β-glucan, the available

methods to extract it, and its biological and techno-functional properties.
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Introduction

Beer is a beverage obtained by the alcoholic fermentation of brewer’s wort from barley

malt and water, with the addition of hops (Farber and Barth, 2019). In the brewing

process, yeasts utilize fermentable sugars to produce ethanol and carbon dioxide

(Mohammadi et al., 2011). Some by-products are generated during beer production,

which includes malt bagasse, brewer’s spent yeast (BSY), and trub (particles denser than

the wort that settle at the bottom, e.g., coagulated proteins, hop residue, tannins, among

others) (Onofre et al., 2017; Liu et al., 2021).

Yeasts are reused in new fermentations within a limit that considers inoculum

contamination and cell vitality/viability. After reaching the maximum potential for

use in fermentation, the BSY must be processed due to its complex composition and

high biochemical oxygen demand. BSY is often destined for animal feed, but in other

cases, it is still improperly discarded (Jaeger et al., 2020; Marson et al., 2020).

Fortunately, BSY presents a rich composition in terms of proteins (about 40–60%)

and carbohydrates (about 29–54%) (Onofre et al., 2017; Liu et al., 2021), which

encourages its reuse as a potential source of macro compounds for food application
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(Bacha et al., 2017). Approximately 1.5 kg–3 kg of BSY is

produced for every 100 L of beer, reaching an annual

production of up to 400 million kilograms of biomass

available to obtain valuable compounds (Marson et al., 2020;

Olajire, 2020). Among the macro components in yeasts are β-
glucan, a polysaccharide formed by branched glucose molecules

interconnected by glycosidic bonds and with several biological

and technological activities (Nakashima et al., 2018; Bastos et al.,

2022).

Although yeast contains an appreciable amount of β-glucan
(30–60% of the dry weight) (Yang and Huang, 2021), the

recovery and isolation of this compound could be difficult due

to the compact and rigid cell wall (Bacha et al., 2017). Several

disruption cell wall methods have been developed to extract β-
glucan (Tian et al., 2019; Zheng et al., 2019; Takalloo et al., 2020),

considering its yield, purity, and biological and technological

properties (Figure 1). In this mini-review, the potential of BSY β-
glucan as a food ingredient will be highlighted by discussing the

different extraction methods to obtain it and presenting its

techno-functional and biological properties.

Yeast β-glucan
Yeast β-glucan is a polysaccharide formed by branched

glucose molecules interconnected by other glucose chains,

especially in the β-(1,3) and β-(1,6) bonds. About 50–55% of

β-(1,3) bonds are found in the β-glucan structure, which are

responsible for cell elasticity, and 10–15% of β-(1,6), which
serves as an anchor for cell structure and integrity (Teparić

et al., 2020).

The β-glucan is abundant in the yeast cell wall

(i.e., accounting for 30–60% of the dry weight) (Yang and

Huang, 2021) and associated with other compounds as chitin

and mannoproteins. The amount of β-glucan and the type of

binding can be highly variable according to yeast type, usage

FIGURE 1
β-glucan extraction methods, characterization in terms of biological and technological properties, and application as a food ingredient.
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cycle, cell vitality and viability, and exposure to cellular

depletion factors, which include as follows: temperature

shock, osmotic and oxidative stress, oxygen availability,

hydrostatic pressure, ethanol concentration, internal

acidification, and nutrient limitation (Bastos et al., 2022).

The biological and technological activities of β-glucan
vary in relation to the molecular weight, types of bonds,

degree of branching, and structural arrangement, which can

impact β-glucan solubility (Du et al., 2019; Bastos et al., 2022).

Generally, β-glucan is classified with respect to its solubility in

aqueous solution, including water-soluble, alkali-soluble, and

alkali-insoluble β-glucan (Bastos et al., 2022). In addition, its

properties can be influenced by the disruption/extraction

methods applied.

Cell disruption methods for β-glucan
extraction

Cell rupture methods for β-glucan include mechanical and

non-mechanical strategies usually applied as sole (Takalloo

et al., 2020), combined (Tian et al., 2019), or in sequence

(Zheng et al., 2019). The choice of the rupture method

depends partly on the disruption effectiveness and

efficiency (Jacob et al., 2019), and it considerably affects

the yield, purity, physicochemical, and functional

properties of the β-glucan obtained (Fu et al., 2022).

Generally, the methods used to β-glucan extraction from BSY

are the same as those applied to disrupt and lysis yeast’s cells.

Mechanical methods favor scalability and present low

operational cost but are not selective and can result in

fragments of β-glucan with low purity. Some examples include

agitation with glass beads (also known as milling) (Avramia and

Amariei, 2022), homogenization at high pressure (Tian et al.,

2019; Dimopoulos et al., 2020), and ultrasound (Bzducha-

Wróbel et al., 2014; Zheng et al., 2019; Dimopoulos et al.,

2020). Non-mechanical methods, in turn, are mostly selective

but limited regarding the potential for scale-up (Liu et al., 2016).

These include pulsed electric field (Ganeva et al., 2020), alkaline/

acid extraction (Bacha et al., 2017), hot water extraction

(Bzducha-Wróbel et al., 2020), autolysis (Vieira et al., 2017),

and hydrolysis with commercial enzymes (Marson et al., 2019).

Emerging technologies involving ionic liquids are also reported

to release β-glucan (Khanh et al., 2020).

Alkaline and alkaline-acid extractions are extensively

applied to recover β-glucan—the first consists of using an

alkaline solution combined with heating and time. For

example, a typical alkaline extraction utilizes sodium

hydroxide as a solvent at 90°C for 2 h (Bacha et al., 2017)

or potassium hydroxide with different concentrations at room

temperature for 2 h (Pinto et al., 2015). Parameters such as

alkali concentration, extraction time, and temperature can be

evaluated during β-glucan extractions (Varelas et al., 2016;

Vaithanomsat et al., 2022). The extraction results in the

precipitate (insoluble β-glucan) and supernatant fractions

after a centrifugation step, where the last one is commonly

mixed with ethanol to obtain soluble β-glucan. Sometimes the

alkali method is followed by acid extraction (Pengkumsri

et al., 2016; Dimopoulos et al., 2020; Mahmoud Amer

et al., 2021), where the insoluble fraction is mixed with

hydrochloric acid, acetic acid, and phosphoric acid (Krpan

et al., 2010; Bzducha-Wróbel et al., 2020; Mahmoud Amer

et al., 2021), among others.

Hot water extraction is another common method for β-
glucan extraction that utilizes pressurized steam to release

protein and some carbohydrates to the soluble phase while

maintaining β-glucan in the solid phase. Some reports

mention that hot water extraction occurs with a biomass

suspension in water/buffer in a steam autoclave at 121°C

and 1.1 atm for 1–5 h (Borchani et al., 2014; Bzducha-

Wróbel et al., 2020). At the end of the process, phases are

separated, and the sediment containing insoluble β-glucan is

recovered; the liquid phase one can be added with ethanol to

precipitate soluble β-glucan.
Among enzymatic approaches for cell wall disintegration,

autolysis is an extensively applied treatment that utilizes

endogenous enzymes in the yeast biomass and usually

occurs between 50 and 60°C for 24–48 h (Pengkumsri et al.,

2016; Bertolo et al., 2019; Jacob et al., 2019; Dimopoulos et al.,

2020; Takalloo et al., 2020). It can be performed by adding

some lytic promoters, such as inorganic salts (e.g., sodium

chloride) (Bertolo et al., 2019; Jacob et al., 2019) and organic

solvents (e.g., ethanol) (Takalloo et al., 2020), and optimized

regarding operational parameters (e.g., temperature and

autolysis time) (Vieira et al., 2017). Enzymatic hydrolysis,

in turn, applies endo or exoproteases (Alcalase®,
Flavourzyme®, Protamex®, Savinase®, Neutrase®) (Borchani

et al., 2014; Lee et al., 2015; Marson et al., 2019;

Vaithanomsat et al., 2022) to hydrolyze β-glucan-associated
proteins, resulting in both β-glucan fraction and a protein-

rich hydrolysate. Sometimes carbohydrases are applied to

hydrolyze polysaccharides in the yeast cell wall, which

could result in soluble β-glucan fragments (Zheng et al.,

2019). In both cases, parameters, including enzyme

amount, temperature, pH, time, and yeast biomass

concentration, can be evaluated during β-glucan extraction

(Marson et al., 2019; Zheng et al., 2019). Enzymatic

procedures are completed by heating (above 80°C) the final

medium to inactivate enzymes (Bertolo et al., 2019;

Vaithanomsat et al., 2022), followed by a solid-liquid

separation step (e.g., centrifugation).

Steps such as purification, chemical modification (for

insoluble β-glucan), and polishing commonly occur after

extraction (Pinto et al., 2015). The characterization of β-
glucan in terms of structure and biological and

technological properties is also recommended (Pinto et al.,
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2015; Bacha et al., 2017; Mahmoud Amer et al., 2021) to better

knowledge for future applications.

Technological properties and
applications of BSY β-glucan as an
ingredient

The food industry is continuously looking for novel healthy

ingredients to enhance the products’ nutritional and functional

value and reduce production costs. Yeast β-glucans are already

considered safe food ingredients by the European Food Safety

Authority (EFSA. Scientific, 2011) and received the generally

recognized as safe (GRAS) status from the United States Food

and Drug Administration (FDA Services DoHH, 2008). In fact,

several food products have been proposed with the addition of

yeast β-glucans (Krpan et al., 2009) and this carbohydrate is

commercially available for food supplementation (e.g.,

Wellmune®, Goldcell® or Yestimun®). In particular, the β-
glucans extracted from the BSY have been used in feed

applications as alternative diets or supplements for shrimps

(Suphantharika et al., 2003) or pigs (Bo et al., 2020).

β-glucan can be used as an ingredient and potentiator for

other ingredients promoting the characteristics of foods and

beverages. β-glucan can also act as a substitute for

components, e.g., fat, with an effect on the nutritional,

techno-functional, and sensory properties; and provide

thickening and assist in the emulsification, stabilization, and

gelation of different foods, which include bakery, meat, and dairy

products (Mykhalevych et al., 2022; Sengul and Ufuk, 2022).

Additionally, β-glucans act as a water retainer and are a suitable

fat replacer, having a good mouthfeel similar to fat (Thammakiti

et al., 2004) and enabling the reduction or exclusion of fat levels

in foods. This compound can change the sensory properties,

viscosity, and rheology of added products, even in small

concentrations (Sengul and Ufuk, 2022).

The technological potential of β-glucan in dairy products

includes the increasing of overrun ice cream, binding of free

moisture, milk fat mimetic, structure formation, and increasing

the yield of cheeses, even if low concentrations of β-glucan in the

formulations (in the range of 0.5–3.0%) (Mykhalevych et al.,

2022). Furthermore, BSY β-glucan as a fat replacer in skim milk

yogurt has already resulted in better rheological properties and

physical stability (Mejri et al., 2014).

In bakery products, the inclusion of β-glucan can modify the

expansion rate, reduce the volume, increase the firmness of the

bread, promote an adverse effect on the gluten matrix, increase

the water consumption of the dough due to the increase in the

fibrous fraction, and increase the number of pores in bread,

among other effects. Also, the incorporation of BSY β-glucan in

bread preparations improved the nutritional/health-promoting

properties of the product (Martins et al., 2018) and enhanced the

quality and shelf life during the chilled storage (Suwannarong

et al., 2020). Thus, it is essential to establish the consequences of

adding β-glucan and evaluate its suitable concentration that

results in less impact on the product and, whenever possible,

to correlate with its biological properties (Andrzej et al., 2019).

In meat products, β-glucan can reduce fat content, acting as a
substitute ingredient. The β-glucan also acts as an agent to

minimize cooking losses of emulsions and increase viscosity

and retention of moisture and fat due to its ability to create a

three-dimensional network. Additionally, a reduction in textural

parameters is verified, indicating the use of β-glucan in meat

products with a softer texture, for example (Álvarez and Barbut,

2013).

BSY β-glucans can be incorporated in mayonnaises as a fat

replacer, contributing to higher storage stability and a lower

caloric value (Worrasinchai et al., 2006; Marinescu et al., 2011). It

also exhibit a protective effect of lactobacilli during freeze-drying,

refrigerated storage and exposure to simulated gastrointestinal

conditions, which make them interesting additives for functional

foods containing probiotics (Guedes et al., 2019).

Due to its characteristics, yeast β-glucan can be used as a

substitute for traditional ingredients applied at an industrial

scale, such as alginates, gum arabic, pectin, and

carboxymethylcellulose, with similar or improved properties

(Sengul and Ufuk, 2022). However, as yeast β-glucan is a new

ingredient, recently applied at industrial scale in food products, it

is essential to evaluate the impact of its incorporation in food

matrices. The same applies to BSY, which industrial use is still

limited but has shown a technological potential to be inserted

into different food categories with distinct purposes, as discussed

above.

Biological properties of BSY β-glucan
Several studies have reported the multi-bioactivity of yeast β-

glucans, considering them as interesting compounds for food,

pharmaceutical and biomedical applications (Geller et al., 2019;

Caruso et al., 2022). Nevertheless, only a few numbers of works

described the biological effect of β-glucans extracted from BSY as by-

product of the brewing industry (Table 1).

BSY β-glucans positively affected the immunogenic activity

in different animals. This bioactivity was demonstrated both

in vitro and in vivo by increasing of some important immune

index indicators, such as the phenoloxidase activity in black tiger

shrimps (Penaeus monodon) fed with BSY β-glucan (Thanardkit

et al., 2002; Suphantharika et al., 2003).

Furthermore, an increase in the number of haemocytes and in

the antibacterial activity against the pathogenVibrio harveyiwas also

achieved for the shrimps (Thanardkit et al., 2002). The

immunogenic activity was also demonstrated in murine

peritoneal macrophages after a carboxymethylation reaction to

obtain soluble BSY β-glucan (Liepins et al., 2015). The

carboxymethylated β-glucan was able to mediate the induction of
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tumor necrosis factor-alpha (TNF-α). The hypocholesterolemic

activity of dried BSY, as well as the soluble and insoluble β-
glucans isolated from it, was reported by Waszkiewicz-Robak

and Bartnikowska (Waszkiewicz-Robak and Bartnikowska, 2009).

In this study, 6 weeks of a supplemented diet containing dried BSY

or BSY β-glucans positively affected the lipid metabolism in blood

and liver of mice by reducing the cholesterol and triacylglycerols.

The bioactivity of BSY β-glucan, namely the antioxidant potential,

was also demonstrated in humans (Araújo et al., 2015). The oral

administration of carboxymethylated BSY β-glucan promoted a

significant reduction of malondialdehyde levels in healthy men,

thus suggesting the positive action of this carbohydrate in preventing

oxidative damage.

Overall, it is expected that the promising bioactivity results

already obtained for BSY β-glucan could lead to additional studies

where the specific structure of the extracted carbohydrates would be

directly associated with their biological effect. These studies would

greatly contribute to defining and establishing suitable

methodologies for β-glucan extraction from BSY.

Conclusion and perspectives

BSY is an important source of β-glucan with already

demonstrated biological and technological properties. For

application in foods and beverages, β-glucan needs to be

extracted, purified, and fully characterized to a better

knowledge of its potential applications. The available scientific

information is not enough to establish an exact interconnection

between the extraction strategy, molecular structure, biological

and techno-functional properties. Therefore, additional studies

are needed to define suitable strategies for BSY valorization and

β-glucan application.

Governmental disposal policies are needed to implement

reuse practices in the beer industry, promoting the efficient

conversion of by-products into value-added compounds

(circular economy).
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TABLE 1 Bioactivity of β-glucan extracted from brewer´s spent yeast.

Type of glucan Bioactivity Specific effect References

Human tested

Carboxymethyl-glucan Antioxidant activity ↓ malondialdehyde levels in healthy men Araújo et al. (2015)

Animal tested

β-glucan Immunogenic and
antibacterial activity

↑ phenoloxidase activity, the number of haemocytes and the
antibacterial activity against Vibrio harveyi in black tiger shrimp

Thanardkit et al. (2002)

β-glucan Immunogenic activity ↑ phenoloxidase activity in haemocytes of black tiger shrimp Suphantharika et al. (2003)

Carboxymethyl-glucan
and β-glucan

Hypocholesterolemic activity ↓cholesterol concentration in blood and reduce the lipid concentration
in liver of mice

Waszkiewicz-Robak and
Bartnikowska, (2009)

Carboxymethyl-glucan Immunogenic activity ↑ induction of tumor necrosis factor alfa in mice Liepins et al. (2015)
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